658f0cbe7ce8ca3b545c28cba577258ed54f4e52
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / raw / fsmc_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ST Microelectronics
4  * Flexible Static Memory Controller (FSMC)
5  * Driver for NAND portions
6  *
7  * Copyright © 2010 ST Microelectronics
8  * Vipin Kumar <vipin.kumar@st.com>
9  * Ashish Priyadarshi
10  *
11  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
13  *  Copyright © 2009 Alessandro Rubini
14  */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand-ecc-sw-hamming.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/platform_device.h>
31 #include <linux/of.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/io.h>
34 #include <linux/slab.h>
35 #include <linux/amba/bus.h>
36 #include <mtd/mtd-abi.h>
37
38 /* fsmc controller registers for NOR flash */
39 #define CTRL                    0x0
40         /* ctrl register definitions */
41         #define BANK_ENABLE             BIT(0)
42         #define MUXED                   BIT(1)
43         #define NOR_DEV                 (2 << 2)
44         #define WIDTH_16                BIT(4)
45         #define RSTPWRDWN               BIT(6)
46         #define WPROT                   BIT(7)
47         #define WRT_ENABLE              BIT(12)
48         #define WAIT_ENB                BIT(13)
49
50 #define CTRL_TIM                0x4
51         /* ctrl_tim register definitions */
52
53 #define FSMC_NOR_BANK_SZ        0x8
54 #define FSMC_NOR_REG_SIZE       0x40
55
56 #define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
57                                          (FSMC_NOR_BANK_SZ * (bank)) +  \
58                                          (reg))
59
60 /* fsmc controller registers for NAND flash */
61 #define FSMC_PC                 0x00
62         /* pc register definitions */
63         #define FSMC_RESET              BIT(0)
64         #define FSMC_WAITON             BIT(1)
65         #define FSMC_ENABLE             BIT(2)
66         #define FSMC_DEVTYPE_NAND       BIT(3)
67         #define FSMC_DEVWID_16          BIT(4)
68         #define FSMC_ECCEN              BIT(6)
69         #define FSMC_ECCPLEN_256        BIT(7)
70         #define FSMC_TCLR_SHIFT         (9)
71         #define FSMC_TCLR_MASK          (0xF)
72         #define FSMC_TAR_SHIFT          (13)
73         #define FSMC_TAR_MASK           (0xF)
74 #define STS                     0x04
75         /* sts register definitions */
76         #define FSMC_CODE_RDY           BIT(15)
77 #define COMM                    0x08
78         /* comm register definitions */
79         #define FSMC_TSET_SHIFT         0
80         #define FSMC_TSET_MASK          0xFF
81         #define FSMC_TWAIT_SHIFT        8
82         #define FSMC_TWAIT_MASK         0xFF
83         #define FSMC_THOLD_SHIFT        16
84         #define FSMC_THOLD_MASK         0xFF
85         #define FSMC_THIZ_SHIFT         24
86         #define FSMC_THIZ_MASK          0xFF
87 #define ATTRIB                  0x0C
88 #define IOATA                   0x10
89 #define ECC1                    0x14
90 #define ECC2                    0x18
91 #define ECC3                    0x1C
92 #define FSMC_NAND_BANK_SZ       0x20
93
94 #define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
95
96 struct fsmc_nand_timings {
97         u8 tclr;
98         u8 tar;
99         u8 thiz;
100         u8 thold;
101         u8 twait;
102         u8 tset;
103 };
104
105 enum access_mode {
106         USE_DMA_ACCESS = 1,
107         USE_WORD_ACCESS,
108 };
109
110 /**
111  * struct fsmc_nand_data - structure for FSMC NAND device state
112  *
113  * @base:               Inherit from the nand_controller struct
114  * @pid:                Part ID on the AMBA PrimeCell format
115  * @nand:               Chip related info for a NAND flash.
116  *
117  * @bank:               Bank number for probed device.
118  * @dev:                Parent device
119  * @mode:               Access mode
120  * @clk:                Clock structure for FSMC.
121  *
122  * @read_dma_chan:      DMA channel for read access
123  * @write_dma_chan:     DMA channel for write access to NAND
124  * @dma_access_complete: Completion structure
125  *
126  * @dev_timings:        NAND timings
127  *
128  * @data_pa:            NAND Physical port for Data.
129  * @data_va:            NAND port for Data.
130  * @cmd_va:             NAND port for Command.
131  * @addr_va:            NAND port for Address.
132  * @regs_va:            Registers base address for a given bank.
133  */
134 struct fsmc_nand_data {
135         struct nand_controller  base;
136         u32                     pid;
137         struct nand_chip        nand;
138
139         unsigned int            bank;
140         struct device           *dev;
141         enum access_mode        mode;
142         struct clk              *clk;
143
144         /* DMA related objects */
145         struct dma_chan         *read_dma_chan;
146         struct dma_chan         *write_dma_chan;
147         struct completion       dma_access_complete;
148
149         struct fsmc_nand_timings *dev_timings;
150
151         dma_addr_t              data_pa;
152         void __iomem            *data_va;
153         void __iomem            *cmd_va;
154         void __iomem            *addr_va;
155         void __iomem            *regs_va;
156 };
157
158 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
159                                    struct mtd_oob_region *oobregion)
160 {
161         struct nand_chip *chip = mtd_to_nand(mtd);
162
163         if (section >= chip->ecc.steps)
164                 return -ERANGE;
165
166         oobregion->offset = (section * 16) + 2;
167         oobregion->length = 3;
168
169         return 0;
170 }
171
172 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
173                                     struct mtd_oob_region *oobregion)
174 {
175         struct nand_chip *chip = mtd_to_nand(mtd);
176
177         if (section >= chip->ecc.steps)
178                 return -ERANGE;
179
180         oobregion->offset = (section * 16) + 8;
181
182         if (section < chip->ecc.steps - 1)
183                 oobregion->length = 8;
184         else
185                 oobregion->length = mtd->oobsize - oobregion->offset;
186
187         return 0;
188 }
189
190 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
191         .ecc = fsmc_ecc1_ooblayout_ecc,
192         .free = fsmc_ecc1_ooblayout_free,
193 };
194
195 /*
196  * ECC placement definitions in oobfree type format.
197  * There are 13 bytes of ecc for every 512 byte block and it has to be read
198  * consecutively and immediately after the 512 byte data block for hardware to
199  * generate the error bit offsets in 512 byte data.
200  */
201 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
202                                    struct mtd_oob_region *oobregion)
203 {
204         struct nand_chip *chip = mtd_to_nand(mtd);
205
206         if (section >= chip->ecc.steps)
207                 return -ERANGE;
208
209         oobregion->length = chip->ecc.bytes;
210
211         if (!section && mtd->writesize <= 512)
212                 oobregion->offset = 0;
213         else
214                 oobregion->offset = (section * 16) + 2;
215
216         return 0;
217 }
218
219 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
220                                     struct mtd_oob_region *oobregion)
221 {
222         struct nand_chip *chip = mtd_to_nand(mtd);
223
224         if (section >= chip->ecc.steps)
225                 return -ERANGE;
226
227         oobregion->offset = (section * 16) + 15;
228
229         if (section < chip->ecc.steps - 1)
230                 oobregion->length = 3;
231         else
232                 oobregion->length = mtd->oobsize - oobregion->offset;
233
234         return 0;
235 }
236
237 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
238         .ecc = fsmc_ecc4_ooblayout_ecc,
239         .free = fsmc_ecc4_ooblayout_free,
240 };
241
242 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
243 {
244         return container_of(chip, struct fsmc_nand_data, nand);
245 }
246
247 /*
248  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
249  *
250  * This routine initializes timing parameters related to NAND memory access in
251  * FSMC registers
252  */
253 static void fsmc_nand_setup(struct fsmc_nand_data *host,
254                             struct fsmc_nand_timings *tims)
255 {
256         u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
257         u32 tclr, tar, thiz, thold, twait, tset;
258
259         tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
260         tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
261         thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
262         thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
263         twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
264         tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
265
266         if (host->nand.options & NAND_BUSWIDTH_16)
267                 value |= FSMC_DEVWID_16;
268
269         writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
270         writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
271         writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
272 }
273
274 static int fsmc_calc_timings(struct fsmc_nand_data *host,
275                              const struct nand_sdr_timings *sdrt,
276                              struct fsmc_nand_timings *tims)
277 {
278         unsigned long hclk = clk_get_rate(host->clk);
279         unsigned long hclkn = NSEC_PER_SEC / hclk;
280         u32 thiz, thold, twait, tset;
281
282         if (sdrt->tRC_min < 30000)
283                 return -EOPNOTSUPP;
284
285         tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
286         if (tims->tar > FSMC_TAR_MASK)
287                 tims->tar = FSMC_TAR_MASK;
288         tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
289         if (tims->tclr > FSMC_TCLR_MASK)
290                 tims->tclr = FSMC_TCLR_MASK;
291
292         thiz = sdrt->tCS_min - sdrt->tWP_min;
293         tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
294
295         thold = sdrt->tDH_min;
296         if (thold < sdrt->tCH_min)
297                 thold = sdrt->tCH_min;
298         if (thold < sdrt->tCLH_min)
299                 thold = sdrt->tCLH_min;
300         if (thold < sdrt->tWH_min)
301                 thold = sdrt->tWH_min;
302         if (thold < sdrt->tALH_min)
303                 thold = sdrt->tALH_min;
304         if (thold < sdrt->tREH_min)
305                 thold = sdrt->tREH_min;
306         tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
307         if (tims->thold == 0)
308                 tims->thold = 1;
309         else if (tims->thold > FSMC_THOLD_MASK)
310                 tims->thold = FSMC_THOLD_MASK;
311
312         twait = max(sdrt->tRP_min, sdrt->tWP_min);
313         tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
314         if (tims->twait == 0)
315                 tims->twait = 1;
316         else if (tims->twait > FSMC_TWAIT_MASK)
317                 tims->twait = FSMC_TWAIT_MASK;
318
319         tset = max(sdrt->tCS_min - sdrt->tWP_min,
320                    sdrt->tCEA_max - sdrt->tREA_max);
321         tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
322         if (tims->tset == 0)
323                 tims->tset = 1;
324         else if (tims->tset > FSMC_TSET_MASK)
325                 tims->tset = FSMC_TSET_MASK;
326
327         return 0;
328 }
329
330 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
331                                 const struct nand_interface_config *conf)
332 {
333         struct fsmc_nand_data *host = nand_to_fsmc(nand);
334         struct fsmc_nand_timings tims;
335         const struct nand_sdr_timings *sdrt;
336         int ret;
337
338         sdrt = nand_get_sdr_timings(conf);
339         if (IS_ERR(sdrt))
340                 return PTR_ERR(sdrt);
341
342         ret = fsmc_calc_timings(host, sdrt, &tims);
343         if (ret)
344                 return ret;
345
346         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
347                 return 0;
348
349         fsmc_nand_setup(host, &tims);
350
351         return 0;
352 }
353
354 /*
355  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
356  */
357 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
358 {
359         struct fsmc_nand_data *host = nand_to_fsmc(chip);
360
361         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
362                        host->regs_va + FSMC_PC);
363         writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
364                        host->regs_va + FSMC_PC);
365         writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
366                        host->regs_va + FSMC_PC);
367 }
368
369 /*
370  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
371  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
372  * max of 8-bits)
373  */
374 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
375                                 u8 *ecc)
376 {
377         struct fsmc_nand_data *host = nand_to_fsmc(chip);
378         u32 ecc_tmp;
379         unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
380
381         do {
382                 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
383                         break;
384
385                 cond_resched();
386         } while (!time_after_eq(jiffies, deadline));
387
388         if (time_after_eq(jiffies, deadline)) {
389                 dev_err(host->dev, "calculate ecc timed out\n");
390                 return -ETIMEDOUT;
391         }
392
393         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
394         ecc[0] = ecc_tmp;
395         ecc[1] = ecc_tmp >> 8;
396         ecc[2] = ecc_tmp >> 16;
397         ecc[3] = ecc_tmp >> 24;
398
399         ecc_tmp = readl_relaxed(host->regs_va + ECC2);
400         ecc[4] = ecc_tmp;
401         ecc[5] = ecc_tmp >> 8;
402         ecc[6] = ecc_tmp >> 16;
403         ecc[7] = ecc_tmp >> 24;
404
405         ecc_tmp = readl_relaxed(host->regs_va + ECC3);
406         ecc[8] = ecc_tmp;
407         ecc[9] = ecc_tmp >> 8;
408         ecc[10] = ecc_tmp >> 16;
409         ecc[11] = ecc_tmp >> 24;
410
411         ecc_tmp = readl_relaxed(host->regs_va + STS);
412         ecc[12] = ecc_tmp >> 16;
413
414         return 0;
415 }
416
417 /*
418  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
419  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
420  * max of 1-bit)
421  */
422 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
423                                 u8 *ecc)
424 {
425         struct fsmc_nand_data *host = nand_to_fsmc(chip);
426         u32 ecc_tmp;
427
428         ecc_tmp = readl_relaxed(host->regs_va + ECC1);
429         ecc[0] = ecc_tmp;
430         ecc[1] = ecc_tmp >> 8;
431         ecc[2] = ecc_tmp >> 16;
432
433         return 0;
434 }
435
436 static int fsmc_correct_ecc1(struct nand_chip *chip,
437                              unsigned char *buf,
438                              unsigned char *read_ecc,
439                              unsigned char *calc_ecc)
440 {
441         bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
442
443         return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc,
444                                       chip->ecc.size, sm_order);
445 }
446
447 /* Count the number of 0's in buff upto a max of max_bits */
448 static int count_written_bits(u8 *buff, int size, int max_bits)
449 {
450         int k, written_bits = 0;
451
452         for (k = 0; k < size; k++) {
453                 written_bits += hweight8(~buff[k]);
454                 if (written_bits > max_bits)
455                         break;
456         }
457
458         return written_bits;
459 }
460
461 static void dma_complete(void *param)
462 {
463         struct fsmc_nand_data *host = param;
464
465         complete(&host->dma_access_complete);
466 }
467
468 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
469                     enum dma_data_direction direction)
470 {
471         struct dma_chan *chan;
472         struct dma_device *dma_dev;
473         struct dma_async_tx_descriptor *tx;
474         dma_addr_t dma_dst, dma_src, dma_addr;
475         dma_cookie_t cookie;
476         unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
477         int ret;
478         unsigned long time_left;
479
480         if (direction == DMA_TO_DEVICE)
481                 chan = host->write_dma_chan;
482         else if (direction == DMA_FROM_DEVICE)
483                 chan = host->read_dma_chan;
484         else
485                 return -EINVAL;
486
487         dma_dev = chan->device;
488         dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
489
490         if (direction == DMA_TO_DEVICE) {
491                 dma_src = dma_addr;
492                 dma_dst = host->data_pa;
493         } else {
494                 dma_src = host->data_pa;
495                 dma_dst = dma_addr;
496         }
497
498         tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
499                         len, flags);
500         if (!tx) {
501                 dev_err(host->dev, "device_prep_dma_memcpy error\n");
502                 ret = -EIO;
503                 goto unmap_dma;
504         }
505
506         tx->callback = dma_complete;
507         tx->callback_param = host;
508         cookie = tx->tx_submit(tx);
509
510         ret = dma_submit_error(cookie);
511         if (ret) {
512                 dev_err(host->dev, "dma_submit_error %d\n", cookie);
513                 goto unmap_dma;
514         }
515
516         dma_async_issue_pending(chan);
517
518         time_left =
519         wait_for_completion_timeout(&host->dma_access_complete,
520                                     msecs_to_jiffies(3000));
521         if (time_left == 0) {
522                 dmaengine_terminate_all(chan);
523                 dev_err(host->dev, "wait_for_completion_timeout\n");
524                 ret = -ETIMEDOUT;
525                 goto unmap_dma;
526         }
527
528         ret = 0;
529
530 unmap_dma:
531         dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
532
533         return ret;
534 }
535
536 /*
537  * fsmc_write_buf - write buffer to chip
538  * @host:       FSMC NAND controller
539  * @buf:        data buffer
540  * @len:        number of bytes to write
541  */
542 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
543                            int len)
544 {
545         int i;
546
547         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
548             IS_ALIGNED(len, sizeof(u32))) {
549                 u32 *p = (u32 *)buf;
550
551                 len = len >> 2;
552                 for (i = 0; i < len; i++)
553                         writel_relaxed(p[i], host->data_va);
554         } else {
555                 for (i = 0; i < len; i++)
556                         writeb_relaxed(buf[i], host->data_va);
557         }
558 }
559
560 /*
561  * fsmc_read_buf - read chip data into buffer
562  * @host:       FSMC NAND controller
563  * @buf:        buffer to store date
564  * @len:        number of bytes to read
565  */
566 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
567 {
568         int i;
569
570         if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
571             IS_ALIGNED(len, sizeof(u32))) {
572                 u32 *p = (u32 *)buf;
573
574                 len = len >> 2;
575                 for (i = 0; i < len; i++)
576                         p[i] = readl_relaxed(host->data_va);
577         } else {
578                 for (i = 0; i < len; i++)
579                         buf[i] = readb_relaxed(host->data_va);
580         }
581 }
582
583 /*
584  * fsmc_read_buf_dma - read chip data into buffer
585  * @host:       FSMC NAND controller
586  * @buf:        buffer to store date
587  * @len:        number of bytes to read
588  */
589 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
590                               int len)
591 {
592         dma_xfer(host, buf, len, DMA_FROM_DEVICE);
593 }
594
595 /*
596  * fsmc_write_buf_dma - write buffer to chip
597  * @host:       FSMC NAND controller
598  * @buf:        data buffer
599  * @len:        number of bytes to write
600  */
601 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
602                                int len)
603 {
604         dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
605 }
606
607 /*
608  * fsmc_exec_op - hook called by the core to execute NAND operations
609  *
610  * This controller is simple enough and thus does not need to use the parser
611  * provided by the core, instead, handle every situation here.
612  */
613 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
614                         bool check_only)
615 {
616         struct fsmc_nand_data *host = nand_to_fsmc(chip);
617         const struct nand_op_instr *instr = NULL;
618         int ret = 0;
619         unsigned int op_id;
620         int i;
621
622         if (check_only)
623                 return 0;
624
625         pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
626
627         for (op_id = 0; op_id < op->ninstrs; op_id++) {
628                 instr = &op->instrs[op_id];
629
630                 nand_op_trace("  ", instr);
631
632                 switch (instr->type) {
633                 case NAND_OP_CMD_INSTR:
634                         writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
635                         break;
636
637                 case NAND_OP_ADDR_INSTR:
638                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
639                                 writeb_relaxed(instr->ctx.addr.addrs[i],
640                                                host->addr_va);
641                         break;
642
643                 case NAND_OP_DATA_IN_INSTR:
644                         if (host->mode == USE_DMA_ACCESS)
645                                 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
646                                                   instr->ctx.data.len);
647                         else
648                                 fsmc_read_buf(host, instr->ctx.data.buf.in,
649                                               instr->ctx.data.len);
650                         break;
651
652                 case NAND_OP_DATA_OUT_INSTR:
653                         if (host->mode == USE_DMA_ACCESS)
654                                 fsmc_write_buf_dma(host,
655                                                    instr->ctx.data.buf.out,
656                                                    instr->ctx.data.len);
657                         else
658                                 fsmc_write_buf(host, instr->ctx.data.buf.out,
659                                                instr->ctx.data.len);
660                         break;
661
662                 case NAND_OP_WAITRDY_INSTR:
663                         ret = nand_soft_waitrdy(chip,
664                                                 instr->ctx.waitrdy.timeout_ms);
665                         break;
666                 }
667         }
668
669         return ret;
670 }
671
672 /*
673  * fsmc_read_page_hwecc
674  * @chip:       nand chip info structure
675  * @buf:        buffer to store read data
676  * @oob_required:       caller expects OOB data read to chip->oob_poi
677  * @page:       page number to read
678  *
679  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
680  * performed in a strict sequence as follows:
681  * data(512 byte) -> ecc(13 byte)
682  * After this read, fsmc hardware generates and reports error data bits(up to a
683  * max of 8 bits)
684  */
685 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
686                                 int oob_required, int page)
687 {
688         struct mtd_info *mtd = nand_to_mtd(chip);
689         int i, j, s, stat, eccsize = chip->ecc.size;
690         int eccbytes = chip->ecc.bytes;
691         int eccsteps = chip->ecc.steps;
692         u8 *p = buf;
693         u8 *ecc_calc = chip->ecc.calc_buf;
694         u8 *ecc_code = chip->ecc.code_buf;
695         int off, len, ret, group = 0;
696         /*
697          * ecc_oob is intentionally taken as u16. In 16bit devices, we
698          * end up reading 14 bytes (7 words) from oob. The local array is
699          * to maintain word alignment
700          */
701         u16 ecc_oob[7];
702         u8 *oob = (u8 *)&ecc_oob[0];
703         unsigned int max_bitflips = 0;
704
705         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
706                 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
707                 chip->ecc.hwctl(chip, NAND_ECC_READ);
708                 ret = nand_read_data_op(chip, p, eccsize, false, false);
709                 if (ret)
710                         return ret;
711
712                 for (j = 0; j < eccbytes;) {
713                         struct mtd_oob_region oobregion;
714
715                         ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
716                         if (ret)
717                                 return ret;
718
719                         off = oobregion.offset;
720                         len = oobregion.length;
721
722                         /*
723                          * length is intentionally kept a higher multiple of 2
724                          * to read at least 13 bytes even in case of 16 bit NAND
725                          * devices
726                          */
727                         if (chip->options & NAND_BUSWIDTH_16)
728                                 len = roundup(len, 2);
729
730                         nand_read_oob_op(chip, page, off, oob + j, len);
731                         j += len;
732                 }
733
734                 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
735                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
736
737                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
738                 if (stat < 0) {
739                         mtd->ecc_stats.failed++;
740                 } else {
741                         mtd->ecc_stats.corrected += stat;
742                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
743                 }
744         }
745
746         return max_bitflips;
747 }
748
749 /*
750  * fsmc_bch8_correct_data
751  * @mtd:        mtd info structure
752  * @dat:        buffer of read data
753  * @read_ecc:   ecc read from device spare area
754  * @calc_ecc:   ecc calculated from read data
755  *
756  * calc_ecc is a 104 bit information containing maximum of 8 error
757  * offset information of 13 bits each in 512 bytes of read data.
758  */
759 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
760                                   u8 *read_ecc, u8 *calc_ecc)
761 {
762         struct fsmc_nand_data *host = nand_to_fsmc(chip);
763         u32 err_idx[8];
764         u32 num_err, i;
765         u32 ecc1, ecc2, ecc3, ecc4;
766
767         num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
768
769         /* no bit flipping */
770         if (likely(num_err == 0))
771                 return 0;
772
773         /* too many errors */
774         if (unlikely(num_err > 8)) {
775                 /*
776                  * This is a temporary erase check. A newly erased page read
777                  * would result in an ecc error because the oob data is also
778                  * erased to FF and the calculated ecc for an FF data is not
779                  * FF..FF.
780                  * This is a workaround to skip performing correction in case
781                  * data is FF..FF
782                  *
783                  * Logic:
784                  * For every page, each bit written as 0 is counted until these
785                  * number of bits are greater than 8 (the maximum correction
786                  * capability of FSMC for each 512 + 13 bytes)
787                  */
788
789                 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
790                 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
791
792                 if ((bits_ecc + bits_data) <= 8) {
793                         if (bits_data)
794                                 memset(dat, 0xff, chip->ecc.size);
795                         return bits_data;
796                 }
797
798                 return -EBADMSG;
799         }
800
801         /*
802          * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
803          * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
804          *
805          * calc_ecc is a 104 bit information containing maximum of 8 error
806          * offset information of 13 bits each. calc_ecc is copied into a
807          * u64 array and error offset indexes are populated in err_idx
808          * array
809          */
810         ecc1 = readl_relaxed(host->regs_va + ECC1);
811         ecc2 = readl_relaxed(host->regs_va + ECC2);
812         ecc3 = readl_relaxed(host->regs_va + ECC3);
813         ecc4 = readl_relaxed(host->regs_va + STS);
814
815         err_idx[0] = (ecc1 >> 0) & 0x1FFF;
816         err_idx[1] = (ecc1 >> 13) & 0x1FFF;
817         err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
818         err_idx[3] = (ecc2 >> 7) & 0x1FFF;
819         err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
820         err_idx[5] = (ecc3 >> 1) & 0x1FFF;
821         err_idx[6] = (ecc3 >> 14) & 0x1FFF;
822         err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
823
824         i = 0;
825         while (num_err--) {
826                 err_idx[i] ^= 3;
827
828                 if (err_idx[i] < chip->ecc.size * 8) {
829                         int err = err_idx[i];
830
831                         dat[err >> 3] ^= BIT(err & 7);
832                         i++;
833                 }
834         }
835         return i;
836 }
837
838 static bool filter(struct dma_chan *chan, void *slave)
839 {
840         chan->private = slave;
841         return true;
842 }
843
844 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
845                                      struct fsmc_nand_data *host,
846                                      struct nand_chip *nand)
847 {
848         struct device_node *np = pdev->dev.of_node;
849         u32 val;
850         int ret;
851
852         nand->options = 0;
853
854         if (!of_property_read_u32(np, "bank-width", &val)) {
855                 if (val == 2) {
856                         nand->options |= NAND_BUSWIDTH_16;
857                 } else if (val != 1) {
858                         dev_err(&pdev->dev, "invalid bank-width %u\n", val);
859                         return -EINVAL;
860                 }
861         }
862
863         if (of_get_property(np, "nand-skip-bbtscan", NULL))
864                 nand->options |= NAND_SKIP_BBTSCAN;
865
866         host->dev_timings = devm_kzalloc(&pdev->dev,
867                                          sizeof(*host->dev_timings),
868                                          GFP_KERNEL);
869         if (!host->dev_timings)
870                 return -ENOMEM;
871
872         ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
873                                         sizeof(*host->dev_timings));
874         if (ret)
875                 host->dev_timings = NULL;
876
877         /* Set default NAND bank to 0 */
878         host->bank = 0;
879         if (!of_property_read_u32(np, "bank", &val)) {
880                 if (val > 3) {
881                         dev_err(&pdev->dev, "invalid bank %u\n", val);
882                         return -EINVAL;
883                 }
884                 host->bank = val;
885         }
886         return 0;
887 }
888
889 static int fsmc_nand_attach_chip(struct nand_chip *nand)
890 {
891         struct mtd_info *mtd = nand_to_mtd(nand);
892         struct fsmc_nand_data *host = nand_to_fsmc(nand);
893
894         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
895                 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
896
897         if (!nand->ecc.size)
898                 nand->ecc.size = 512;
899
900         if (AMBA_REV_BITS(host->pid) >= 8) {
901                 nand->ecc.read_page = fsmc_read_page_hwecc;
902                 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
903                 nand->ecc.correct = fsmc_bch8_correct_data;
904                 nand->ecc.bytes = 13;
905                 nand->ecc.strength = 8;
906         }
907
908         if (AMBA_REV_BITS(host->pid) >= 8) {
909                 switch (mtd->oobsize) {
910                 case 16:
911                 case 64:
912                 case 128:
913                 case 224:
914                 case 256:
915                         break;
916                 default:
917                         dev_warn(host->dev,
918                                  "No oob scheme defined for oobsize %d\n",
919                                  mtd->oobsize);
920                         return -EINVAL;
921                 }
922
923                 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
924
925                 return 0;
926         }
927
928         switch (nand->ecc.engine_type) {
929         case NAND_ECC_ENGINE_TYPE_ON_HOST:
930                 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
931                 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
932                 nand->ecc.correct = fsmc_correct_ecc1;
933                 nand->ecc.hwctl = fsmc_enable_hwecc;
934                 nand->ecc.bytes = 3;
935                 nand->ecc.strength = 1;
936                 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
937                 break;
938
939         case NAND_ECC_ENGINE_TYPE_SOFT:
940                 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
941                         dev_info(host->dev,
942                                  "Using 4-bit SW BCH ECC scheme\n");
943                         break;
944                 }
945                 break;
946
947         case NAND_ECC_ENGINE_TYPE_ON_DIE:
948                 break;
949
950         default:
951                 dev_err(host->dev, "Unsupported ECC mode!\n");
952                 return -ENOTSUPP;
953         }
954
955         /*
956          * Don't set layout for BCH4 SW ECC. This will be
957          * generated later during BCH initialization.
958          */
959         if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
960                 switch (mtd->oobsize) {
961                 case 16:
962                 case 64:
963                 case 128:
964                         mtd_set_ooblayout(mtd,
965                                           &fsmc_ecc1_ooblayout_ops);
966                         break;
967                 default:
968                         dev_warn(host->dev,
969                                  "No oob scheme defined for oobsize %d\n",
970                                  mtd->oobsize);
971                         return -EINVAL;
972                 }
973         }
974
975         return 0;
976 }
977
978 static const struct nand_controller_ops fsmc_nand_controller_ops = {
979         .attach_chip = fsmc_nand_attach_chip,
980         .exec_op = fsmc_exec_op,
981         .setup_interface = fsmc_setup_interface,
982 };
983
984 /**
985  * fsmc_nand_disable() - Disables the NAND bank
986  * @host: The instance to disable
987  */
988 static void fsmc_nand_disable(struct fsmc_nand_data *host)
989 {
990         u32 val;
991
992         val = readl(host->regs_va + FSMC_PC);
993         val &= ~FSMC_ENABLE;
994         writel(val, host->regs_va + FSMC_PC);
995 }
996
997 /*
998  * fsmc_nand_probe - Probe function
999  * @pdev:       platform device structure
1000  */
1001 static int __init fsmc_nand_probe(struct platform_device *pdev)
1002 {
1003         struct fsmc_nand_data *host;
1004         struct mtd_info *mtd;
1005         struct nand_chip *nand;
1006         struct resource *res;
1007         void __iomem *base;
1008         dma_cap_mask_t mask;
1009         int ret = 0;
1010         u32 pid;
1011         int i;
1012
1013         /* Allocate memory for the device structure (and zero it) */
1014         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1015         if (!host)
1016                 return -ENOMEM;
1017
1018         nand = &host->nand;
1019
1020         ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1021         if (ret)
1022                 return ret;
1023
1024         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1025         host->data_va = devm_ioremap_resource(&pdev->dev, res);
1026         if (IS_ERR(host->data_va))
1027                 return PTR_ERR(host->data_va);
1028
1029         host->data_pa = (dma_addr_t)res->start;
1030
1031         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1032         host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1033         if (IS_ERR(host->addr_va))
1034                 return PTR_ERR(host->addr_va);
1035
1036         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1037         host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1038         if (IS_ERR(host->cmd_va))
1039                 return PTR_ERR(host->cmd_va);
1040
1041         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1042         base = devm_ioremap_resource(&pdev->dev, res);
1043         if (IS_ERR(base))
1044                 return PTR_ERR(base);
1045
1046         host->regs_va = base + FSMC_NOR_REG_SIZE +
1047                 (host->bank * FSMC_NAND_BANK_SZ);
1048
1049         host->clk = devm_clk_get(&pdev->dev, NULL);
1050         if (IS_ERR(host->clk)) {
1051                 dev_err(&pdev->dev, "failed to fetch block clock\n");
1052                 return PTR_ERR(host->clk);
1053         }
1054
1055         ret = clk_prepare_enable(host->clk);
1056         if (ret)
1057                 return ret;
1058
1059         /*
1060          * This device ID is actually a common AMBA ID as used on the
1061          * AMBA PrimeCell bus. However it is not a PrimeCell.
1062          */
1063         for (pid = 0, i = 0; i < 4; i++)
1064                 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1065                         255) << (i * 8);
1066
1067         host->pid = pid;
1068
1069         dev_info(&pdev->dev,
1070                  "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1071                  AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1072                  AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1073
1074         host->dev = &pdev->dev;
1075
1076         if (host->mode == USE_DMA_ACCESS)
1077                 init_completion(&host->dma_access_complete);
1078
1079         /* Link all private pointers */
1080         mtd = nand_to_mtd(&host->nand);
1081         nand_set_flash_node(nand, pdev->dev.of_node);
1082
1083         mtd->dev.parent = &pdev->dev;
1084
1085         nand->badblockbits = 7;
1086
1087         if (host->mode == USE_DMA_ACCESS) {
1088                 dma_cap_zero(mask);
1089                 dma_cap_set(DMA_MEMCPY, mask);
1090                 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1091                 if (!host->read_dma_chan) {
1092                         dev_err(&pdev->dev, "Unable to get read dma channel\n");
1093                         ret = -ENODEV;
1094                         goto disable_clk;
1095                 }
1096                 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1097                 if (!host->write_dma_chan) {
1098                         dev_err(&pdev->dev, "Unable to get write dma channel\n");
1099                         ret = -ENODEV;
1100                         goto release_dma_read_chan;
1101                 }
1102         }
1103
1104         if (host->dev_timings) {
1105                 fsmc_nand_setup(host, host->dev_timings);
1106                 nand->options |= NAND_KEEP_TIMINGS;
1107         }
1108
1109         nand_controller_init(&host->base);
1110         host->base.ops = &fsmc_nand_controller_ops;
1111         nand->controller = &host->base;
1112
1113         /*
1114          * Scan to find existence of the device
1115          */
1116         ret = nand_scan(nand, 1);
1117         if (ret)
1118                 goto release_dma_write_chan;
1119
1120         mtd->name = "nand";
1121         ret = mtd_device_register(mtd, NULL, 0);
1122         if (ret)
1123                 goto cleanup_nand;
1124
1125         platform_set_drvdata(pdev, host);
1126         dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1127
1128         return 0;
1129
1130 cleanup_nand:
1131         nand_cleanup(nand);
1132 release_dma_write_chan:
1133         if (host->mode == USE_DMA_ACCESS)
1134                 dma_release_channel(host->write_dma_chan);
1135 release_dma_read_chan:
1136         if (host->mode == USE_DMA_ACCESS)
1137                 dma_release_channel(host->read_dma_chan);
1138 disable_clk:
1139         fsmc_nand_disable(host);
1140         clk_disable_unprepare(host->clk);
1141
1142         return ret;
1143 }
1144
1145 /*
1146  * Clean up routine
1147  */
1148 static int fsmc_nand_remove(struct platform_device *pdev)
1149 {
1150         struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1151
1152         if (host) {
1153                 struct nand_chip *chip = &host->nand;
1154                 int ret;
1155
1156                 ret = mtd_device_unregister(nand_to_mtd(chip));
1157                 WARN_ON(ret);
1158                 nand_cleanup(chip);
1159                 fsmc_nand_disable(host);
1160
1161                 if (host->mode == USE_DMA_ACCESS) {
1162                         dma_release_channel(host->write_dma_chan);
1163                         dma_release_channel(host->read_dma_chan);
1164                 }
1165                 clk_disable_unprepare(host->clk);
1166         }
1167
1168         return 0;
1169 }
1170
1171 #ifdef CONFIG_PM_SLEEP
1172 static int fsmc_nand_suspend(struct device *dev)
1173 {
1174         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1175
1176         if (host)
1177                 clk_disable_unprepare(host->clk);
1178
1179         return 0;
1180 }
1181
1182 static int fsmc_nand_resume(struct device *dev)
1183 {
1184         struct fsmc_nand_data *host = dev_get_drvdata(dev);
1185
1186         if (host) {
1187                 clk_prepare_enable(host->clk);
1188                 if (host->dev_timings)
1189                         fsmc_nand_setup(host, host->dev_timings);
1190                 nand_reset(&host->nand, 0);
1191         }
1192
1193         return 0;
1194 }
1195 #endif
1196
1197 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1198
1199 static const struct of_device_id fsmc_nand_id_table[] = {
1200         { .compatible = "st,spear600-fsmc-nand" },
1201         { .compatible = "stericsson,fsmc-nand" },
1202         {}
1203 };
1204 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1205
1206 static struct platform_driver fsmc_nand_driver = {
1207         .remove = fsmc_nand_remove,
1208         .driver = {
1209                 .name = "fsmc-nand",
1210                 .of_match_table = fsmc_nand_id_table,
1211                 .pm = &fsmc_nand_pm_ops,
1212         },
1213 };
1214
1215 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1216
1217 MODULE_LICENSE("GPL v2");
1218 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1219 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");