global: Move remaining CONFIG_SYS_NAND_* to CFG_SYS_NAND_*
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / fsl_ifc_spl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
4  *
5  * Copyright 2011 Freescale Semiconductor, Inc.
6  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
7  */
8
9 #include <common.h>
10 #include <cpu_func.h>
11 #include <asm/io.h>
12 #include <fsl_ifc.h>
13 #include <part.h>
14 #include <linux/mtd/rawnand.h>
15 #ifdef CONFIG_CHAIN_OF_TRUST
16 #include <fsl_validate.h>
17 #endif
18
19 static inline int is_blank(uchar *addr, int page_size)
20 {
21         int i;
22
23         for (i = 0; i < page_size; i++) {
24                 if (__raw_readb(&addr[i]) != 0xff)
25                         return 0;
26         }
27
28         /*
29          * For the SPL, don't worry about uncorrectable errors
30          * where the main area is all FFs but shouldn't be.
31          */
32         return 1;
33 }
34
35 /* returns nonzero if entire page is blank */
36 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
37                                  unsigned int bufnum, int page_size)
38 {
39         u32 reg = eccstat[bufnum / 4];
40         int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
41
42         if (errors == 0xf) { /* uncorrectable */
43                 /* Blank pages fail hw ECC checks */
44                 if (is_blank(buf, page_size))
45                         return 1;
46
47                 puts("ecc error\n");
48                 for (;;)
49                         ;
50         }
51
52         return 0;
53 }
54
55 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
56 {
57         struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
58         int ver = 0;
59
60         ver = ifc_in32(&regs.gregs->ifc_rev);
61         if (ver >= FSL_IFC_V2_0_0)
62                 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
63         else
64                 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
65
66         return regs.rregs;
67 }
68
69 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
70 {
71         struct fsl_ifc_runtime *ifc = runtime_regs_address();
72         u32 status;
73         u32 eccstat[8];
74         int bufperpage = page_size / 512;
75         int bufnum_end, i;
76
77         bufnum *= bufperpage;
78         bufnum_end = bufnum + bufperpage - 1;
79
80         do {
81                 status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
82         } while (!(status & IFC_NAND_EVTER_STAT_OPC));
83
84         if (status & IFC_NAND_EVTER_STAT_FTOER) {
85                 puts("flash time out error\n");
86                 for (;;)
87                         ;
88         }
89
90         for (i = bufnum / 4; i <= bufnum_end / 4; i++)
91                 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
92
93         for (i = bufnum; i <= bufnum_end; i++) {
94                 if (check_read_ecc(buf, eccstat, i, page_size))
95                         break;
96         }
97
98         ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
99 }
100
101 static inline int bad_block(uchar *marker, int port_size)
102 {
103         if (port_size == 8)
104                 return __raw_readb(marker) != 0xff;
105         else
106                 return __raw_readw((u16 *)marker) != 0xffff;
107 }
108
109 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
110 {
111         struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
112         struct fsl_ifc_runtime *ifc = NULL;
113         uchar *buf = (uchar *)CFG_SYS_NAND_BASE;
114         int page_size;
115         int port_size;
116         int pages_per_blk;
117         int blk_size;
118         int bad_marker = 0;
119         int bufnum_mask, bufnum, ver = 0;
120
121         int csor, cspr;
122         int pos = 0;
123         int j = 0;
124
125         int sram_addr;
126         int pg_no;
127         uchar *dst = vdst;
128
129         ifc = runtime_regs_address();
130
131         /* Get NAND Flash configuration */
132         csor = CFG_SYS_NAND_CSOR;
133         cspr = CFG_SYS_NAND_CSPR;
134
135         port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
136
137         if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
138                 page_size = 8192;
139                 bufnum_mask = 0x0;
140         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
141                 page_size = 4096;
142                 bufnum_mask = 0x1;
143         } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
144                 page_size = 2048;
145                 bufnum_mask = 0x3;
146         } else {
147                 page_size = 512;
148                 bufnum_mask = 0xf;
149
150                 if (port_size == 8)
151                         bad_marker = 5;
152         }
153
154         ver = ifc_in32(&gregs->ifc_rev);
155         if (ver >= FSL_IFC_V2_0_0)
156                 bufnum_mask = (bufnum_mask * 2) + 1;
157
158         pages_per_blk =
159                 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
160
161         blk_size = pages_per_blk * page_size;
162
163         /* Open Full SRAM mapping for spare are access */
164         ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
165
166         /* Clear Boot events */
167         ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
168
169         /* Program FIR/FCR for Large/Small page */
170         if (page_size > 512) {
171                 ifc_out32(&ifc->ifc_nand.nand_fir0,
172                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
173                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
174                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
175                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
176                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
177                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
178
179                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
180                           (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
181                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
182         } else {
183                 ifc_out32(&ifc->ifc_nand.nand_fir0,
184                           (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
185                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
186                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
187                           (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
188                 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
189
190                 ifc_out32(&ifc->ifc_nand.nand_fcr0,
191                           NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
192         }
193
194         /* Program FBCR = 0 for full page read */
195         ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
196
197         /* Read and copy u-boot on SDRAM from NAND device, In parallel
198          * check for Bad block if found skip it and read continue to
199          * next Block
200          */
201         while (pos < uboot_size) {
202                 int i = 0;
203                 do {
204                         pg_no = offs / page_size;
205                         bufnum = pg_no & bufnum_mask;
206                         sram_addr = bufnum * page_size * 2;
207
208                         ifc_out32(&ifc->ifc_nand.row0, pg_no);
209                         ifc_out32(&ifc->ifc_nand.col0, 0);
210                         /* start read */
211                         ifc_out32(&ifc->ifc_nand.nandseq_strt,
212                                   IFC_NAND_SEQ_STRT_FIR_STRT);
213
214                         /* wait for read to complete */
215                         nand_wait(&buf[sram_addr], bufnum, page_size);
216
217                         /*
218                          * If either of the first two pages are marked bad,
219                          * continue to the next block.
220                          */
221                         if (i++ < 2 &&
222                             bad_block(&buf[sram_addr + page_size + bad_marker],
223                                       port_size)) {
224                                 puts("skipping\n");
225                                 offs = (offs + blk_size) & ~(blk_size - 1);
226                                 pos &= ~(blk_size - 1);
227                                 break;
228                         }
229
230                         for (j = 0; j < page_size; j++)
231                                 dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
232
233                         pos += page_size;
234                         offs += page_size;
235                 } while ((offs & (blk_size - 1)) && (pos < uboot_size));
236         }
237
238         return 0;
239 }
240
241 /*
242  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
243  * configured and available since this code loads the main U-Boot image
244  * from NAND into SDRAM and starts from there.
245  */
246 void nand_boot(void)
247 {
248         __attribute__((noreturn)) void (*uboot)(void);
249         /*
250          * Load U-Boot image from NAND into RAM
251          */
252         nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
253                             CFG_SYS_NAND_U_BOOT_SIZE,
254                             (uchar *)CFG_SYS_NAND_U_BOOT_DST);
255
256 #ifdef CONFIG_NAND_ENV_DST
257         nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
258                             (uchar *)CONFIG_NAND_ENV_DST);
259
260 #ifdef CONFIG_ENV_OFFSET_REDUND
261         nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
262                             (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
263 #endif
264 #endif
265         /*
266          * Jump to U-Boot image
267          */
268 #ifdef CONFIG_SPL_FLUSH_IMAGE
269         /*
270          * Clean d-cache and invalidate i-cache, to
271          * make sure that no stale data is executed.
272          */
273         flush_cache(CFG_SYS_NAND_U_BOOT_DST, CFG_SYS_NAND_U_BOOT_SIZE);
274 #endif
275
276 #ifdef CONFIG_CHAIN_OF_TRUST
277         /*
278          * U-Boot header is appended at end of U-boot image, so
279          * calculate U-boot header address using U-boot header size.
280          */
281 #define CONFIG_U_BOOT_HDR_ADDR \
282                 ((CFG_SYS_NAND_U_BOOT_START + \
283                   CFG_SYS_NAND_U_BOOT_SIZE) - \
284                  CONFIG_U_BOOT_HDR_SIZE)
285         spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
286                            CFG_SYS_NAND_U_BOOT_START);
287         /*
288          * In case of failure in validation, spl_validate_uboot would
289          * not return back in case of Production environment with ITS=1.
290          * Thus U-Boot will not start.
291          * In Development environment (ITS=0 and SB_EN=1), the function
292          * may return back in case of non-fatal failures.
293          */
294 #endif
295
296         uboot = (void *)CFG_SYS_NAND_U_BOOT_START;
297         uboot();
298 }
299
300 #ifndef CONFIG_TPL_NAND_INIT
301 void nand_init(void)
302 {
303 }
304
305 void nand_deselect(void)
306 {
307 }
308 #endif