Merge tag 'mtd/for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / raw / brcmnand / brcmnand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5
6 #include <linux/clk.h>
7 #include <linux/version.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/log2.h>
31
32 #include "brcmnand.h"
33
34 /*
35  * This flag controls if WP stays on between erase/write commands to mitigate
36  * flash corruption due to power glitches. Values:
37  * 0: NAND_WP is not used or not available
38  * 1: NAND_WP is set by default, cleared for erase/write operations
39  * 2: NAND_WP is always cleared
40  */
41 static int wp_on = 1;
42 module_param(wp_on, int, 0444);
43
44 /***********************************************************************
45  * Definitions
46  ***********************************************************************/
47
48 #define DRV_NAME                        "brcmnand"
49
50 #define CMD_NULL                        0x00
51 #define CMD_PAGE_READ                   0x01
52 #define CMD_SPARE_AREA_READ             0x02
53 #define CMD_STATUS_READ                 0x03
54 #define CMD_PROGRAM_PAGE                0x04
55 #define CMD_PROGRAM_SPARE_AREA          0x05
56 #define CMD_COPY_BACK                   0x06
57 #define CMD_DEVICE_ID_READ              0x07
58 #define CMD_BLOCK_ERASE                 0x08
59 #define CMD_FLASH_RESET                 0x09
60 #define CMD_BLOCKS_LOCK                 0x0a
61 #define CMD_BLOCKS_LOCK_DOWN            0x0b
62 #define CMD_BLOCKS_UNLOCK               0x0c
63 #define CMD_READ_BLOCKS_LOCK_STATUS     0x0d
64 #define CMD_PARAMETER_READ              0x0e
65 #define CMD_PARAMETER_CHANGE_COL        0x0f
66 #define CMD_LOW_LEVEL_OP                0x10
67
68 struct brcm_nand_dma_desc {
69         u32 next_desc;
70         u32 next_desc_ext;
71         u32 cmd_irq;
72         u32 dram_addr;
73         u32 dram_addr_ext;
74         u32 tfr_len;
75         u32 total_len;
76         u32 flash_addr;
77         u32 flash_addr_ext;
78         u32 cs;
79         u32 pad2[5];
80         u32 status_valid;
81 } __packed;
82
83 /* Bitfields for brcm_nand_dma_desc::status_valid */
84 #define FLASH_DMA_ECC_ERROR     (1 << 8)
85 #define FLASH_DMA_CORR_ERROR    (1 << 9)
86
87 /* Bitfields for DMA_MODE */
88 #define FLASH_DMA_MODE_STOP_ON_ERROR    BIT(1) /* stop in Uncorr ECC error */
89 #define FLASH_DMA_MODE_MODE             BIT(0) /* link list */
90 #define FLASH_DMA_MODE_MASK             (FLASH_DMA_MODE_STOP_ON_ERROR | \
91                                                 FLASH_DMA_MODE_MODE)
92
93 /* 512B flash cache in the NAND controller HW */
94 #define FC_SHIFT                9U
95 #define FC_BYTES                512U
96 #define FC_WORDS                (FC_BYTES >> 2)
97
98 #define BRCMNAND_MIN_PAGESIZE   512
99 #define BRCMNAND_MIN_BLOCKSIZE  (8 * 1024)
100 #define BRCMNAND_MIN_DEVSIZE    (4ULL * 1024 * 1024)
101
102 #define NAND_CTRL_RDY                   (INTFC_CTLR_READY | INTFC_FLASH_READY)
103 #define NAND_POLL_STATUS_TIMEOUT_MS     100
104
105 /* flash_dma registers */
106 enum flash_dma_reg {
107         FLASH_DMA_REVISION = 0,
108         FLASH_DMA_FIRST_DESC,
109         FLASH_DMA_FIRST_DESC_EXT,
110         FLASH_DMA_CTRL,
111         FLASH_DMA_MODE,
112         FLASH_DMA_STATUS,
113         FLASH_DMA_INTERRUPT_DESC,
114         FLASH_DMA_INTERRUPT_DESC_EXT,
115         FLASH_DMA_ERROR_STATUS,
116         FLASH_DMA_CURRENT_DESC,
117         FLASH_DMA_CURRENT_DESC_EXT,
118 };
119
120 /* flash_dma registers v1*/
121 static const u16 flash_dma_regs_v1[] = {
122         [FLASH_DMA_REVISION]            = 0x00,
123         [FLASH_DMA_FIRST_DESC]          = 0x04,
124         [FLASH_DMA_FIRST_DESC_EXT]      = 0x08,
125         [FLASH_DMA_CTRL]                = 0x0c,
126         [FLASH_DMA_MODE]                = 0x10,
127         [FLASH_DMA_STATUS]              = 0x14,
128         [FLASH_DMA_INTERRUPT_DESC]      = 0x18,
129         [FLASH_DMA_INTERRUPT_DESC_EXT]  = 0x1c,
130         [FLASH_DMA_ERROR_STATUS]        = 0x20,
131         [FLASH_DMA_CURRENT_DESC]        = 0x24,
132         [FLASH_DMA_CURRENT_DESC_EXT]    = 0x28,
133 };
134
135 /* flash_dma registers v4 */
136 static const u16 flash_dma_regs_v4[] = {
137         [FLASH_DMA_REVISION]            = 0x00,
138         [FLASH_DMA_FIRST_DESC]          = 0x08,
139         [FLASH_DMA_FIRST_DESC_EXT]      = 0x0c,
140         [FLASH_DMA_CTRL]                = 0x10,
141         [FLASH_DMA_MODE]                = 0x14,
142         [FLASH_DMA_STATUS]              = 0x18,
143         [FLASH_DMA_INTERRUPT_DESC]      = 0x20,
144         [FLASH_DMA_INTERRUPT_DESC_EXT]  = 0x24,
145         [FLASH_DMA_ERROR_STATUS]        = 0x28,
146         [FLASH_DMA_CURRENT_DESC]        = 0x30,
147         [FLASH_DMA_CURRENT_DESC_EXT]    = 0x34,
148 };
149
150 /* Controller feature flags */
151 enum {
152         BRCMNAND_HAS_1K_SECTORS                 = BIT(0),
153         BRCMNAND_HAS_PREFETCH                   = BIT(1),
154         BRCMNAND_HAS_CACHE_MODE                 = BIT(2),
155         BRCMNAND_HAS_WP                         = BIT(3),
156 };
157
158 struct brcmnand_controller {
159         struct device           *dev;
160         struct nand_controller  controller;
161         void __iomem            *nand_base;
162         void __iomem            *nand_fc; /* flash cache */
163         void __iomem            *flash_dma_base;
164         unsigned int            irq;
165         unsigned int            dma_irq;
166         int                     nand_version;
167
168         /* Some SoCs provide custom interrupt status register(s) */
169         struct brcmnand_soc     *soc;
170
171         /* Some SoCs have a gateable clock for the controller */
172         struct clk              *clk;
173
174         int                     cmd_pending;
175         bool                    dma_pending;
176         struct completion       done;
177         struct completion       dma_done;
178
179         /* List of NAND hosts (one for each chip-select) */
180         struct list_head host_list;
181
182         /* flash_dma reg */
183         const u16               *flash_dma_offsets;
184         struct brcm_nand_dma_desc *dma_desc;
185         dma_addr_t              dma_pa;
186
187         /* in-memory cache of the FLASH_CACHE, used only for some commands */
188         u8                      flash_cache[FC_BYTES];
189
190         /* Controller revision details */
191         const u16               *reg_offsets;
192         unsigned int            reg_spacing; /* between CS1, CS2, ... regs */
193         const u8                *cs_offsets; /* within each chip-select */
194         const u8                *cs0_offsets; /* within CS0, if different */
195         unsigned int            max_block_size;
196         const unsigned int      *block_sizes;
197         unsigned int            max_page_size;
198         const unsigned int      *page_sizes;
199         unsigned int            max_oob;
200         u32                     features;
201
202         /* for low-power standby/resume only */
203         u32                     nand_cs_nand_select;
204         u32                     nand_cs_nand_xor;
205         u32                     corr_stat_threshold;
206         u32                     flash_dma_mode;
207         bool                    pio_poll_mode;
208 };
209
210 struct brcmnand_cfg {
211         u64                     device_size;
212         unsigned int            block_size;
213         unsigned int            page_size;
214         unsigned int            spare_area_size;
215         unsigned int            device_width;
216         unsigned int            col_adr_bytes;
217         unsigned int            blk_adr_bytes;
218         unsigned int            ful_adr_bytes;
219         unsigned int            sector_size_1k;
220         unsigned int            ecc_level;
221         /* use for low-power standby/resume only */
222         u32                     acc_control;
223         u32                     config;
224         u32                     config_ext;
225         u32                     timing_1;
226         u32                     timing_2;
227 };
228
229 struct brcmnand_host {
230         struct list_head        node;
231
232         struct nand_chip        chip;
233         struct platform_device  *pdev;
234         int                     cs;
235
236         unsigned int            last_cmd;
237         unsigned int            last_byte;
238         u64                     last_addr;
239         struct brcmnand_cfg     hwcfg;
240         struct brcmnand_controller *ctrl;
241 };
242
243 enum brcmnand_reg {
244         BRCMNAND_CMD_START = 0,
245         BRCMNAND_CMD_EXT_ADDRESS,
246         BRCMNAND_CMD_ADDRESS,
247         BRCMNAND_INTFC_STATUS,
248         BRCMNAND_CS_SELECT,
249         BRCMNAND_CS_XOR,
250         BRCMNAND_LL_OP,
251         BRCMNAND_CS0_BASE,
252         BRCMNAND_CS1_BASE,              /* CS1 regs, if non-contiguous */
253         BRCMNAND_CORR_THRESHOLD,
254         BRCMNAND_CORR_THRESHOLD_EXT,
255         BRCMNAND_UNCORR_COUNT,
256         BRCMNAND_CORR_COUNT,
257         BRCMNAND_CORR_EXT_ADDR,
258         BRCMNAND_CORR_ADDR,
259         BRCMNAND_UNCORR_EXT_ADDR,
260         BRCMNAND_UNCORR_ADDR,
261         BRCMNAND_SEMAPHORE,
262         BRCMNAND_ID,
263         BRCMNAND_ID_EXT,
264         BRCMNAND_LL_RDATA,
265         BRCMNAND_OOB_READ_BASE,
266         BRCMNAND_OOB_READ_10_BASE,      /* offset 0x10, if non-contiguous */
267         BRCMNAND_OOB_WRITE_BASE,
268         BRCMNAND_OOB_WRITE_10_BASE,     /* offset 0x10, if non-contiguous */
269         BRCMNAND_FC_BASE,
270 };
271
272 /* BRCMNAND v4.0 */
273 static const u16 brcmnand_regs_v40[] = {
274         [BRCMNAND_CMD_START]            =  0x04,
275         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
276         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
277         [BRCMNAND_INTFC_STATUS]         =  0x6c,
278         [BRCMNAND_CS_SELECT]            =  0x14,
279         [BRCMNAND_CS_XOR]               =  0x18,
280         [BRCMNAND_LL_OP]                = 0x178,
281         [BRCMNAND_CS0_BASE]             =  0x40,
282         [BRCMNAND_CS1_BASE]             =  0xd0,
283         [BRCMNAND_CORR_THRESHOLD]       =  0x84,
284         [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
285         [BRCMNAND_UNCORR_COUNT]         =     0,
286         [BRCMNAND_CORR_COUNT]           =     0,
287         [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
288         [BRCMNAND_CORR_ADDR]            =  0x74,
289         [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
290         [BRCMNAND_UNCORR_ADDR]          =  0x7c,
291         [BRCMNAND_SEMAPHORE]            =  0x58,
292         [BRCMNAND_ID]                   =  0x60,
293         [BRCMNAND_ID_EXT]               =  0x64,
294         [BRCMNAND_LL_RDATA]             = 0x17c,
295         [BRCMNAND_OOB_READ_BASE]        =  0x20,
296         [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
297         [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
298         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
299         [BRCMNAND_FC_BASE]              = 0x200,
300 };
301
302 /* BRCMNAND v5.0 */
303 static const u16 brcmnand_regs_v50[] = {
304         [BRCMNAND_CMD_START]            =  0x04,
305         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
306         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
307         [BRCMNAND_INTFC_STATUS]         =  0x6c,
308         [BRCMNAND_CS_SELECT]            =  0x14,
309         [BRCMNAND_CS_XOR]               =  0x18,
310         [BRCMNAND_LL_OP]                = 0x178,
311         [BRCMNAND_CS0_BASE]             =  0x40,
312         [BRCMNAND_CS1_BASE]             =  0xd0,
313         [BRCMNAND_CORR_THRESHOLD]       =  0x84,
314         [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
315         [BRCMNAND_UNCORR_COUNT]         =     0,
316         [BRCMNAND_CORR_COUNT]           =     0,
317         [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
318         [BRCMNAND_CORR_ADDR]            =  0x74,
319         [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
320         [BRCMNAND_UNCORR_ADDR]          =  0x7c,
321         [BRCMNAND_SEMAPHORE]            =  0x58,
322         [BRCMNAND_ID]                   =  0x60,
323         [BRCMNAND_ID_EXT]               =  0x64,
324         [BRCMNAND_LL_RDATA]             = 0x17c,
325         [BRCMNAND_OOB_READ_BASE]        =  0x20,
326         [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
327         [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
328         [BRCMNAND_OOB_WRITE_10_BASE]    = 0x140,
329         [BRCMNAND_FC_BASE]              = 0x200,
330 };
331
332 /* BRCMNAND v6.0 - v7.1 */
333 static const u16 brcmnand_regs_v60[] = {
334         [BRCMNAND_CMD_START]            =  0x04,
335         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
336         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
337         [BRCMNAND_INTFC_STATUS]         =  0x14,
338         [BRCMNAND_CS_SELECT]            =  0x18,
339         [BRCMNAND_CS_XOR]               =  0x1c,
340         [BRCMNAND_LL_OP]                =  0x20,
341         [BRCMNAND_CS0_BASE]             =  0x50,
342         [BRCMNAND_CS1_BASE]             =     0,
343         [BRCMNAND_CORR_THRESHOLD]       =  0xc0,
344         [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xc4,
345         [BRCMNAND_UNCORR_COUNT]         =  0xfc,
346         [BRCMNAND_CORR_COUNT]           = 0x100,
347         [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
348         [BRCMNAND_CORR_ADDR]            = 0x110,
349         [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
350         [BRCMNAND_UNCORR_ADDR]          = 0x118,
351         [BRCMNAND_SEMAPHORE]            = 0x150,
352         [BRCMNAND_ID]                   = 0x194,
353         [BRCMNAND_ID_EXT]               = 0x198,
354         [BRCMNAND_LL_RDATA]             = 0x19c,
355         [BRCMNAND_OOB_READ_BASE]        = 0x200,
356         [BRCMNAND_OOB_READ_10_BASE]     =     0,
357         [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
358         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
359         [BRCMNAND_FC_BASE]              = 0x400,
360 };
361
362 /* BRCMNAND v7.1 */
363 static const u16 brcmnand_regs_v71[] = {
364         [BRCMNAND_CMD_START]            =  0x04,
365         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
366         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
367         [BRCMNAND_INTFC_STATUS]         =  0x14,
368         [BRCMNAND_CS_SELECT]            =  0x18,
369         [BRCMNAND_CS_XOR]               =  0x1c,
370         [BRCMNAND_LL_OP]                =  0x20,
371         [BRCMNAND_CS0_BASE]             =  0x50,
372         [BRCMNAND_CS1_BASE]             =     0,
373         [BRCMNAND_CORR_THRESHOLD]       =  0xdc,
374         [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xe0,
375         [BRCMNAND_UNCORR_COUNT]         =  0xfc,
376         [BRCMNAND_CORR_COUNT]           = 0x100,
377         [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
378         [BRCMNAND_CORR_ADDR]            = 0x110,
379         [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
380         [BRCMNAND_UNCORR_ADDR]          = 0x118,
381         [BRCMNAND_SEMAPHORE]            = 0x150,
382         [BRCMNAND_ID]                   = 0x194,
383         [BRCMNAND_ID_EXT]               = 0x198,
384         [BRCMNAND_LL_RDATA]             = 0x19c,
385         [BRCMNAND_OOB_READ_BASE]        = 0x200,
386         [BRCMNAND_OOB_READ_10_BASE]     =     0,
387         [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
388         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
389         [BRCMNAND_FC_BASE]              = 0x400,
390 };
391
392 /* BRCMNAND v7.2 */
393 static const u16 brcmnand_regs_v72[] = {
394         [BRCMNAND_CMD_START]            =  0x04,
395         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
396         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
397         [BRCMNAND_INTFC_STATUS]         =  0x14,
398         [BRCMNAND_CS_SELECT]            =  0x18,
399         [BRCMNAND_CS_XOR]               =  0x1c,
400         [BRCMNAND_LL_OP]                =  0x20,
401         [BRCMNAND_CS0_BASE]             =  0x50,
402         [BRCMNAND_CS1_BASE]             =     0,
403         [BRCMNAND_CORR_THRESHOLD]       =  0xdc,
404         [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xe0,
405         [BRCMNAND_UNCORR_COUNT]         =  0xfc,
406         [BRCMNAND_CORR_COUNT]           = 0x100,
407         [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
408         [BRCMNAND_CORR_ADDR]            = 0x110,
409         [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
410         [BRCMNAND_UNCORR_ADDR]          = 0x118,
411         [BRCMNAND_SEMAPHORE]            = 0x150,
412         [BRCMNAND_ID]                   = 0x194,
413         [BRCMNAND_ID_EXT]               = 0x198,
414         [BRCMNAND_LL_RDATA]             = 0x19c,
415         [BRCMNAND_OOB_READ_BASE]        = 0x200,
416         [BRCMNAND_OOB_READ_10_BASE]     =     0,
417         [BRCMNAND_OOB_WRITE_BASE]       = 0x400,
418         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
419         [BRCMNAND_FC_BASE]              = 0x600,
420 };
421
422 enum brcmnand_cs_reg {
423         BRCMNAND_CS_CFG_EXT = 0,
424         BRCMNAND_CS_CFG,
425         BRCMNAND_CS_ACC_CONTROL,
426         BRCMNAND_CS_TIMING1,
427         BRCMNAND_CS_TIMING2,
428 };
429
430 /* Per chip-select offsets for v7.1 */
431 static const u8 brcmnand_cs_offsets_v71[] = {
432         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
433         [BRCMNAND_CS_CFG_EXT]           = 0x04,
434         [BRCMNAND_CS_CFG]               = 0x08,
435         [BRCMNAND_CS_TIMING1]           = 0x0c,
436         [BRCMNAND_CS_TIMING2]           = 0x10,
437 };
438
439 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
440 static const u8 brcmnand_cs_offsets[] = {
441         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
442         [BRCMNAND_CS_CFG_EXT]           = 0x04,
443         [BRCMNAND_CS_CFG]               = 0x04,
444         [BRCMNAND_CS_TIMING1]           = 0x08,
445         [BRCMNAND_CS_TIMING2]           = 0x0c,
446 };
447
448 /* Per chip-select offset for <= v5.0 on CS0 only */
449 static const u8 brcmnand_cs_offsets_cs0[] = {
450         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
451         [BRCMNAND_CS_CFG_EXT]           = 0x08,
452         [BRCMNAND_CS_CFG]               = 0x08,
453         [BRCMNAND_CS_TIMING1]           = 0x10,
454         [BRCMNAND_CS_TIMING2]           = 0x14,
455 };
456
457 /*
458  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
459  * one config register, but once the bitfields overflowed, newer controllers
460  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
461  */
462 enum {
463         CFG_BLK_ADR_BYTES_SHIFT         = 8,
464         CFG_COL_ADR_BYTES_SHIFT         = 12,
465         CFG_FUL_ADR_BYTES_SHIFT         = 16,
466         CFG_BUS_WIDTH_SHIFT             = 23,
467         CFG_BUS_WIDTH                   = BIT(CFG_BUS_WIDTH_SHIFT),
468         CFG_DEVICE_SIZE_SHIFT           = 24,
469
470         /* Only for pre-v7.1 (with no CFG_EXT register) */
471         CFG_PAGE_SIZE_SHIFT             = 20,
472         CFG_BLK_SIZE_SHIFT              = 28,
473
474         /* Only for v7.1+ (with CFG_EXT register) */
475         CFG_EXT_PAGE_SIZE_SHIFT         = 0,
476         CFG_EXT_BLK_SIZE_SHIFT          = 4,
477 };
478
479 /* BRCMNAND_INTFC_STATUS */
480 enum {
481         INTFC_FLASH_STATUS              = GENMASK(7, 0),
482
483         INTFC_ERASED                    = BIT(27),
484         INTFC_OOB_VALID                 = BIT(28),
485         INTFC_CACHE_VALID               = BIT(29),
486         INTFC_FLASH_READY               = BIT(30),
487         INTFC_CTLR_READY                = BIT(31),
488 };
489
490 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
491 {
492         return brcmnand_readl(ctrl->nand_base + offs);
493 }
494
495 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
496                                  u32 val)
497 {
498         brcmnand_writel(val, ctrl->nand_base + offs);
499 }
500
501 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
502 {
503         static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
504         static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
505         static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
506
507         ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
508
509         /* Only support v4.0+? */
510         if (ctrl->nand_version < 0x0400) {
511                 dev_err(ctrl->dev, "version %#x not supported\n",
512                         ctrl->nand_version);
513                 return -ENODEV;
514         }
515
516         /* Register offsets */
517         if (ctrl->nand_version >= 0x0702)
518                 ctrl->reg_offsets = brcmnand_regs_v72;
519         else if (ctrl->nand_version == 0x0701)
520                 ctrl->reg_offsets = brcmnand_regs_v71;
521         else if (ctrl->nand_version >= 0x0600)
522                 ctrl->reg_offsets = brcmnand_regs_v60;
523         else if (ctrl->nand_version >= 0x0500)
524                 ctrl->reg_offsets = brcmnand_regs_v50;
525         else if (ctrl->nand_version >= 0x0400)
526                 ctrl->reg_offsets = brcmnand_regs_v40;
527
528         /* Chip-select stride */
529         if (ctrl->nand_version >= 0x0701)
530                 ctrl->reg_spacing = 0x14;
531         else
532                 ctrl->reg_spacing = 0x10;
533
534         /* Per chip-select registers */
535         if (ctrl->nand_version >= 0x0701) {
536                 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
537         } else {
538                 ctrl->cs_offsets = brcmnand_cs_offsets;
539
540                 /* v5.0 and earlier has a different CS0 offset layout */
541                 if (ctrl->nand_version <= 0x0500)
542                         ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
543         }
544
545         /* Page / block sizes */
546         if (ctrl->nand_version >= 0x0701) {
547                 /* >= v7.1 use nice power-of-2 values! */
548                 ctrl->max_page_size = 16 * 1024;
549                 ctrl->max_block_size = 2 * 1024 * 1024;
550         } else {
551                 ctrl->page_sizes = page_sizes;
552                 if (ctrl->nand_version >= 0x0600)
553                         ctrl->block_sizes = block_sizes_v6;
554                 else
555                         ctrl->block_sizes = block_sizes_v4;
556
557                 if (ctrl->nand_version < 0x0400) {
558                         ctrl->max_page_size = 4096;
559                         ctrl->max_block_size = 512 * 1024;
560                 }
561         }
562
563         /* Maximum spare area sector size (per 512B) */
564         if (ctrl->nand_version == 0x0702)
565                 ctrl->max_oob = 128;
566         else if (ctrl->nand_version >= 0x0600)
567                 ctrl->max_oob = 64;
568         else if (ctrl->nand_version >= 0x0500)
569                 ctrl->max_oob = 32;
570         else
571                 ctrl->max_oob = 16;
572
573         /* v6.0 and newer (except v6.1) have prefetch support */
574         if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
575                 ctrl->features |= BRCMNAND_HAS_PREFETCH;
576
577         /*
578          * v6.x has cache mode, but it's implemented differently. Ignore it for
579          * now.
580          */
581         if (ctrl->nand_version >= 0x0700)
582                 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
583
584         if (ctrl->nand_version >= 0x0500)
585                 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
586
587         if (ctrl->nand_version >= 0x0700)
588                 ctrl->features |= BRCMNAND_HAS_WP;
589         else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
590                 ctrl->features |= BRCMNAND_HAS_WP;
591
592         return 0;
593 }
594
595 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
596 {
597         /* flash_dma register offsets */
598         if (ctrl->nand_version >= 0x0703)
599                 ctrl->flash_dma_offsets = flash_dma_regs_v4;
600         else
601                 ctrl->flash_dma_offsets = flash_dma_regs_v1;
602 }
603
604 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
605                 enum brcmnand_reg reg)
606 {
607         u16 offs = ctrl->reg_offsets[reg];
608
609         if (offs)
610                 return nand_readreg(ctrl, offs);
611         else
612                 return 0;
613 }
614
615 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
616                                       enum brcmnand_reg reg, u32 val)
617 {
618         u16 offs = ctrl->reg_offsets[reg];
619
620         if (offs)
621                 nand_writereg(ctrl, offs, val);
622 }
623
624 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
625                                     enum brcmnand_reg reg, u32 mask, unsigned
626                                     int shift, u32 val)
627 {
628         u32 tmp = brcmnand_read_reg(ctrl, reg);
629
630         tmp &= ~mask;
631         tmp |= val << shift;
632         brcmnand_write_reg(ctrl, reg, tmp);
633 }
634
635 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
636 {
637         return __raw_readl(ctrl->nand_fc + word * 4);
638 }
639
640 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
641                                      int word, u32 val)
642 {
643         __raw_writel(val, ctrl->nand_fc + word * 4);
644 }
645
646 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
647 {
648
649         /* Clear error addresses */
650         brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
651         brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
652         brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
653         brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
654 }
655
656 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
657 {
658         u64 err_addr;
659
660         err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
661         err_addr |= ((u64)(brcmnand_read_reg(ctrl,
662                                              BRCMNAND_UNCORR_EXT_ADDR)
663                                              & 0xffff) << 32);
664
665         return err_addr;
666 }
667
668 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
669 {
670         u64 err_addr;
671
672         err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
673         err_addr |= ((u64)(brcmnand_read_reg(ctrl,
674                                              BRCMNAND_CORR_EXT_ADDR)
675                                              & 0xffff) << 32);
676
677         return err_addr;
678 }
679
680 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
681 {
682         struct nand_chip *chip =  mtd_to_nand(mtd);
683         struct brcmnand_host *host = nand_get_controller_data(chip);
684         struct brcmnand_controller *ctrl = host->ctrl;
685
686         brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
687                            (host->cs << 16) | ((addr >> 32) & 0xffff));
688         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
689         brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
690                            lower_32_bits(addr));
691         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
692 }
693
694 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
695                                      enum brcmnand_cs_reg reg)
696 {
697         u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
698         u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
699         u8 cs_offs;
700
701         if (cs == 0 && ctrl->cs0_offsets)
702                 cs_offs = ctrl->cs0_offsets[reg];
703         else
704                 cs_offs = ctrl->cs_offsets[reg];
705
706         if (cs && offs_cs1)
707                 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
708
709         return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
710 }
711
712 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
713 {
714         if (ctrl->nand_version < 0x0600)
715                 return 1;
716         return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
717 }
718
719 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
720 {
721         struct brcmnand_controller *ctrl = host->ctrl;
722         unsigned int shift = 0, bits;
723         enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
724         int cs = host->cs;
725
726         if (ctrl->nand_version == 0x0702)
727                 bits = 7;
728         else if (ctrl->nand_version >= 0x0600)
729                 bits = 6;
730         else if (ctrl->nand_version >= 0x0500)
731                 bits = 5;
732         else
733                 bits = 4;
734
735         if (ctrl->nand_version >= 0x0702) {
736                 if (cs >= 4)
737                         reg = BRCMNAND_CORR_THRESHOLD_EXT;
738                 shift = (cs % 4) * bits;
739         } else if (ctrl->nand_version >= 0x0600) {
740                 if (cs >= 5)
741                         reg = BRCMNAND_CORR_THRESHOLD_EXT;
742                 shift = (cs % 5) * bits;
743         }
744         brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
745 }
746
747 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
748 {
749         if (ctrl->nand_version < 0x0602)
750                 return 24;
751         return 0;
752 }
753
754 /***********************************************************************
755  * NAND ACC CONTROL bitfield
756  *
757  * Some bits have remained constant throughout hardware revision, while
758  * others have shifted around.
759  ***********************************************************************/
760
761 /* Constant for all versions (where supported) */
762 enum {
763         /* See BRCMNAND_HAS_CACHE_MODE */
764         ACC_CONTROL_CACHE_MODE                          = BIT(22),
765
766         /* See BRCMNAND_HAS_PREFETCH */
767         ACC_CONTROL_PREFETCH                            = BIT(23),
768
769         ACC_CONTROL_PAGE_HIT                            = BIT(24),
770         ACC_CONTROL_WR_PREEMPT                          = BIT(25),
771         ACC_CONTROL_PARTIAL_PAGE                        = BIT(26),
772         ACC_CONTROL_RD_ERASED                           = BIT(27),
773         ACC_CONTROL_FAST_PGM_RDIN                       = BIT(28),
774         ACC_CONTROL_WR_ECC                              = BIT(30),
775         ACC_CONTROL_RD_ECC                              = BIT(31),
776 };
777
778 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
779 {
780         if (ctrl->nand_version == 0x0702)
781                 return GENMASK(7, 0);
782         else if (ctrl->nand_version >= 0x0600)
783                 return GENMASK(6, 0);
784         else
785                 return GENMASK(5, 0);
786 }
787
788 #define NAND_ACC_CONTROL_ECC_SHIFT      16
789 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT  13
790
791 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
792 {
793         u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
794
795         mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
796
797         /* v7.2 includes additional ECC levels */
798         if (ctrl->nand_version >= 0x0702)
799                 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
800
801         return mask;
802 }
803
804 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
805 {
806         struct brcmnand_controller *ctrl = host->ctrl;
807         u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
808         u32 acc_control = nand_readreg(ctrl, offs);
809         u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
810
811         if (en) {
812                 acc_control |= ecc_flags; /* enable RD/WR ECC */
813                 acc_control |= host->hwcfg.ecc_level
814                                << NAND_ACC_CONTROL_ECC_SHIFT;
815         } else {
816                 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
817                 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
818         }
819
820         nand_writereg(ctrl, offs, acc_control);
821 }
822
823 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
824 {
825         if (ctrl->nand_version >= 0x0702)
826                 return 9;
827         else if (ctrl->nand_version >= 0x0600)
828                 return 7;
829         else if (ctrl->nand_version >= 0x0500)
830                 return 6;
831         else
832                 return -1;
833 }
834
835 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
836 {
837         struct brcmnand_controller *ctrl = host->ctrl;
838         int shift = brcmnand_sector_1k_shift(ctrl);
839         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
840                                                   BRCMNAND_CS_ACC_CONTROL);
841
842         if (shift < 0)
843                 return 0;
844
845         return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
846 }
847
848 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
849 {
850         struct brcmnand_controller *ctrl = host->ctrl;
851         int shift = brcmnand_sector_1k_shift(ctrl);
852         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
853                                                   BRCMNAND_CS_ACC_CONTROL);
854         u32 tmp;
855
856         if (shift < 0)
857                 return;
858
859         tmp = nand_readreg(ctrl, acc_control_offs);
860         tmp &= ~(1 << shift);
861         tmp |= (!!val) << shift;
862         nand_writereg(ctrl, acc_control_offs, tmp);
863 }
864
865 /***********************************************************************
866  * CS_NAND_SELECT
867  ***********************************************************************/
868
869 enum {
870         CS_SELECT_NAND_WP                       = BIT(29),
871         CS_SELECT_AUTO_DEVICE_ID_CFG            = BIT(30),
872 };
873
874 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
875                                     u32 mask, u32 expected_val,
876                                     unsigned long timeout_ms)
877 {
878         unsigned long limit;
879         u32 val;
880
881         if (!timeout_ms)
882                 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
883
884         limit = jiffies + msecs_to_jiffies(timeout_ms);
885         do {
886                 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
887                 if ((val & mask) == expected_val)
888                         return 0;
889
890                 cpu_relax();
891         } while (time_after(limit, jiffies));
892
893         dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
894                  expected_val, val & mask);
895
896         return -ETIMEDOUT;
897 }
898
899 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
900 {
901         u32 val = en ? CS_SELECT_NAND_WP : 0;
902
903         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
904 }
905
906 /***********************************************************************
907  * Flash DMA
908  ***********************************************************************/
909
910 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
911 {
912         return ctrl->flash_dma_base;
913 }
914
915 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
916 {
917         if (ctrl->pio_poll_mode)
918                 return;
919
920         if (has_flash_dma(ctrl)) {
921                 ctrl->flash_dma_base = 0;
922                 disable_irq(ctrl->dma_irq);
923         }
924
925         disable_irq(ctrl->irq);
926         ctrl->pio_poll_mode = true;
927 }
928
929 static inline bool flash_dma_buf_ok(const void *buf)
930 {
931         return buf && !is_vmalloc_addr(buf) &&
932                 likely(IS_ALIGNED((uintptr_t)buf, 4));
933 }
934
935 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
936                                     enum flash_dma_reg dma_reg, u32 val)
937 {
938         u16 offs = ctrl->flash_dma_offsets[dma_reg];
939
940         brcmnand_writel(val, ctrl->flash_dma_base + offs);
941 }
942
943 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
944                                   enum flash_dma_reg dma_reg)
945 {
946         u16 offs = ctrl->flash_dma_offsets[dma_reg];
947
948         return brcmnand_readl(ctrl->flash_dma_base + offs);
949 }
950
951 /* Low-level operation types: command, address, write, or read */
952 enum brcmnand_llop_type {
953         LL_OP_CMD,
954         LL_OP_ADDR,
955         LL_OP_WR,
956         LL_OP_RD,
957 };
958
959 /***********************************************************************
960  * Internal support functions
961  ***********************************************************************/
962
963 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
964                                   struct brcmnand_cfg *cfg)
965 {
966         if (ctrl->nand_version <= 0x0701)
967                 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
968                         cfg->ecc_level == 15;
969         else
970                 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
971                         cfg->ecc_level == 15) ||
972                         (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
973 }
974
975 /*
976  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
977  * the layout/configuration.
978  * Returns -ERRCODE on failure.
979  */
980 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
981                                           struct mtd_oob_region *oobregion)
982 {
983         struct nand_chip *chip = mtd_to_nand(mtd);
984         struct brcmnand_host *host = nand_get_controller_data(chip);
985         struct brcmnand_cfg *cfg = &host->hwcfg;
986         int sas = cfg->spare_area_size << cfg->sector_size_1k;
987         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
988
989         if (section >= sectors)
990                 return -ERANGE;
991
992         oobregion->offset = (section * sas) + 6;
993         oobregion->length = 3;
994
995         return 0;
996 }
997
998 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
999                                            struct mtd_oob_region *oobregion)
1000 {
1001         struct nand_chip *chip = mtd_to_nand(mtd);
1002         struct brcmnand_host *host = nand_get_controller_data(chip);
1003         struct brcmnand_cfg *cfg = &host->hwcfg;
1004         int sas = cfg->spare_area_size << cfg->sector_size_1k;
1005         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1006
1007         if (section >= sectors * 2)
1008                 return -ERANGE;
1009
1010         oobregion->offset = (section / 2) * sas;
1011
1012         if (section & 1) {
1013                 oobregion->offset += 9;
1014                 oobregion->length = 7;
1015         } else {
1016                 oobregion->length = 6;
1017
1018                 /* First sector of each page may have BBI */
1019                 if (!section) {
1020                         /*
1021                          * Small-page NAND use byte 6 for BBI while large-page
1022                          * NAND use byte 0.
1023                          */
1024                         if (cfg->page_size > 512)
1025                                 oobregion->offset++;
1026                         oobregion->length--;
1027                 }
1028         }
1029
1030         return 0;
1031 }
1032
1033 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1034         .ecc = brcmnand_hamming_ooblayout_ecc,
1035         .free = brcmnand_hamming_ooblayout_free,
1036 };
1037
1038 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1039                                       struct mtd_oob_region *oobregion)
1040 {
1041         struct nand_chip *chip = mtd_to_nand(mtd);
1042         struct brcmnand_host *host = nand_get_controller_data(chip);
1043         struct brcmnand_cfg *cfg = &host->hwcfg;
1044         int sas = cfg->spare_area_size << cfg->sector_size_1k;
1045         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1046
1047         if (section >= sectors)
1048                 return -ERANGE;
1049
1050         oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1051         oobregion->length = chip->ecc.bytes;
1052
1053         return 0;
1054 }
1055
1056 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1057                                           struct mtd_oob_region *oobregion)
1058 {
1059         struct nand_chip *chip = mtd_to_nand(mtd);
1060         struct brcmnand_host *host = nand_get_controller_data(chip);
1061         struct brcmnand_cfg *cfg = &host->hwcfg;
1062         int sas = cfg->spare_area_size << cfg->sector_size_1k;
1063         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1064
1065         if (section >= sectors)
1066                 return -ERANGE;
1067
1068         if (sas <= chip->ecc.bytes)
1069                 return 0;
1070
1071         oobregion->offset = section * sas;
1072         oobregion->length = sas - chip->ecc.bytes;
1073
1074         if (!section) {
1075                 oobregion->offset++;
1076                 oobregion->length--;
1077         }
1078
1079         return 0;
1080 }
1081
1082 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1083                                           struct mtd_oob_region *oobregion)
1084 {
1085         struct nand_chip *chip = mtd_to_nand(mtd);
1086         struct brcmnand_host *host = nand_get_controller_data(chip);
1087         struct brcmnand_cfg *cfg = &host->hwcfg;
1088         int sas = cfg->spare_area_size << cfg->sector_size_1k;
1089
1090         if (section > 1 || sas - chip->ecc.bytes < 6 ||
1091             (section && sas - chip->ecc.bytes == 6))
1092                 return -ERANGE;
1093
1094         if (!section) {
1095                 oobregion->offset = 0;
1096                 oobregion->length = 5;
1097         } else {
1098                 oobregion->offset = 6;
1099                 oobregion->length = sas - chip->ecc.bytes - 6;
1100         }
1101
1102         return 0;
1103 }
1104
1105 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1106         .ecc = brcmnand_bch_ooblayout_ecc,
1107         .free = brcmnand_bch_ooblayout_free_lp,
1108 };
1109
1110 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1111         .ecc = brcmnand_bch_ooblayout_ecc,
1112         .free = brcmnand_bch_ooblayout_free_sp,
1113 };
1114
1115 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1116 {
1117         struct brcmnand_cfg *p = &host->hwcfg;
1118         struct mtd_info *mtd = nand_to_mtd(&host->chip);
1119         struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1120         unsigned int ecc_level = p->ecc_level;
1121         int sas = p->spare_area_size << p->sector_size_1k;
1122         int sectors = p->page_size / (512 << p->sector_size_1k);
1123
1124         if (p->sector_size_1k)
1125                 ecc_level <<= 1;
1126
1127         if (is_hamming_ecc(host->ctrl, p)) {
1128                 ecc->bytes = 3 * sectors;
1129                 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1130                 return 0;
1131         }
1132
1133         /*
1134          * CONTROLLER_VERSION:
1135          *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1136          *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1137          * But we will just be conservative.
1138          */
1139         ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1140         if (p->page_size == 512)
1141                 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1142         else
1143                 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1144
1145         if (ecc->bytes >= sas) {
1146                 dev_err(&host->pdev->dev,
1147                         "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1148                         ecc->bytes, sas);
1149                 return -EINVAL;
1150         }
1151
1152         return 0;
1153 }
1154
1155 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1156 {
1157         struct nand_chip *chip = mtd_to_nand(mtd);
1158         struct brcmnand_host *host = nand_get_controller_data(chip);
1159         struct brcmnand_controller *ctrl = host->ctrl;
1160
1161         if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1162                 static int old_wp = -1;
1163                 int ret;
1164
1165                 if (old_wp != wp) {
1166                         dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1167                         old_wp = wp;
1168                 }
1169
1170                 /*
1171                  * make sure ctrl/flash ready before and after
1172                  * changing state of #WP pin
1173                  */
1174                 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1175                                                NAND_STATUS_READY,
1176                                                NAND_CTRL_RDY |
1177                                                NAND_STATUS_READY, 0);
1178                 if (ret)
1179                         return;
1180
1181                 brcmnand_set_wp(ctrl, wp);
1182                 nand_status_op(chip, NULL);
1183                 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1184                 ret = bcmnand_ctrl_poll_status(ctrl,
1185                                                NAND_CTRL_RDY |
1186                                                NAND_STATUS_READY |
1187                                                NAND_STATUS_WP,
1188                                                NAND_CTRL_RDY |
1189                                                NAND_STATUS_READY |
1190                                                (wp ? 0 : NAND_STATUS_WP), 0);
1191
1192                 if (ret)
1193                         dev_err_ratelimited(&host->pdev->dev,
1194                                             "nand #WP expected %s\n",
1195                                             wp ? "on" : "off");
1196         }
1197 }
1198
1199 /* Helper functions for reading and writing OOB registers */
1200 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1201 {
1202         u16 offset0, offset10, reg_offs;
1203
1204         offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1205         offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1206
1207         if (offs >= ctrl->max_oob)
1208                 return 0x77;
1209
1210         if (offs >= 16 && offset10)
1211                 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1212         else
1213                 reg_offs = offset0 + (offs & ~0x03);
1214
1215         return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1216 }
1217
1218 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1219                                  u32 data)
1220 {
1221         u16 offset0, offset10, reg_offs;
1222
1223         offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1224         offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1225
1226         if (offs >= ctrl->max_oob)
1227                 return;
1228
1229         if (offs >= 16 && offset10)
1230                 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1231         else
1232                 reg_offs = offset0 + (offs & ~0x03);
1233
1234         nand_writereg(ctrl, reg_offs, data);
1235 }
1236
1237 /*
1238  * read_oob_from_regs - read data from OOB registers
1239  * @ctrl: NAND controller
1240  * @i: sub-page sector index
1241  * @oob: buffer to read to
1242  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1243  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1244  */
1245 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1246                               int sas, int sector_1k)
1247 {
1248         int tbytes = sas << sector_1k;
1249         int j;
1250
1251         /* Adjust OOB values for 1K sector size */
1252         if (sector_1k && (i & 0x01))
1253                 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1254         tbytes = min_t(int, tbytes, ctrl->max_oob);
1255
1256         for (j = 0; j < tbytes; j++)
1257                 oob[j] = oob_reg_read(ctrl, j);
1258         return tbytes;
1259 }
1260
1261 /*
1262  * write_oob_to_regs - write data to OOB registers
1263  * @i: sub-page sector index
1264  * @oob: buffer to write from
1265  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1266  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1267  */
1268 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1269                              const u8 *oob, int sas, int sector_1k)
1270 {
1271         int tbytes = sas << sector_1k;
1272         int j;
1273
1274         /* Adjust OOB values for 1K sector size */
1275         if (sector_1k && (i & 0x01))
1276                 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1277         tbytes = min_t(int, tbytes, ctrl->max_oob);
1278
1279         for (j = 0; j < tbytes; j += 4)
1280                 oob_reg_write(ctrl, j,
1281                                 (oob[j + 0] << 24) |
1282                                 (oob[j + 1] << 16) |
1283                                 (oob[j + 2] <<  8) |
1284                                 (oob[j + 3] <<  0));
1285         return tbytes;
1286 }
1287
1288 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1289 {
1290         struct brcmnand_controller *ctrl = data;
1291
1292         /* Discard all NAND_CTLRDY interrupts during DMA */
1293         if (ctrl->dma_pending)
1294                 return IRQ_HANDLED;
1295
1296         complete(&ctrl->done);
1297         return IRQ_HANDLED;
1298 }
1299
1300 /* Handle SoC-specific interrupt hardware */
1301 static irqreturn_t brcmnand_irq(int irq, void *data)
1302 {
1303         struct brcmnand_controller *ctrl = data;
1304
1305         if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1306                 return brcmnand_ctlrdy_irq(irq, data);
1307
1308         return IRQ_NONE;
1309 }
1310
1311 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1312 {
1313         struct brcmnand_controller *ctrl = data;
1314
1315         complete(&ctrl->dma_done);
1316
1317         return IRQ_HANDLED;
1318 }
1319
1320 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1321 {
1322         struct brcmnand_controller *ctrl = host->ctrl;
1323         int ret;
1324         u64 cmd_addr;
1325
1326         cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1327
1328         dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1329
1330         BUG_ON(ctrl->cmd_pending != 0);
1331         ctrl->cmd_pending = cmd;
1332
1333         ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1334         WARN_ON(ret);
1335
1336         mb(); /* flush previous writes */
1337         brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1338                            cmd << brcmnand_cmd_shift(ctrl));
1339 }
1340
1341 /***********************************************************************
1342  * NAND MTD API: read/program/erase
1343  ***********************************************************************/
1344
1345 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1346                               unsigned int ctrl)
1347 {
1348         /* intentionally left blank */
1349 }
1350
1351 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1352 {
1353         struct brcmnand_host *host = nand_get_controller_data(chip);
1354         struct brcmnand_controller *ctrl = host->ctrl;
1355         struct mtd_info *mtd = nand_to_mtd(chip);
1356         bool err = false;
1357         int sts;
1358
1359         if (mtd->oops_panic_write) {
1360                 /* switch to interrupt polling and PIO mode */
1361                 disable_ctrl_irqs(ctrl);
1362                 sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1363                                                NAND_CTRL_RDY, 0);
1364                 err = (sts < 0) ? true : false;
1365         } else {
1366                 unsigned long timeo = msecs_to_jiffies(
1367                                                 NAND_POLL_STATUS_TIMEOUT_MS);
1368                 /* wait for completion interrupt */
1369                 sts = wait_for_completion_timeout(&ctrl->done, timeo);
1370                 err = (sts <= 0) ? true : false;
1371         }
1372
1373         return err;
1374 }
1375
1376 static int brcmnand_waitfunc(struct nand_chip *chip)
1377 {
1378         struct brcmnand_host *host = nand_get_controller_data(chip);
1379         struct brcmnand_controller *ctrl = host->ctrl;
1380         bool err = false;
1381
1382         dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1383         if (ctrl->cmd_pending)
1384                 err = brcmstb_nand_wait_for_completion(chip);
1385
1386         if (err) {
1387                 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1388                                         >> brcmnand_cmd_shift(ctrl);
1389
1390                 dev_err_ratelimited(ctrl->dev,
1391                         "timeout waiting for command %#02x\n", cmd);
1392                 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1393                         brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1394         }
1395         ctrl->cmd_pending = 0;
1396         return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1397                                  INTFC_FLASH_STATUS;
1398 }
1399
1400 enum {
1401         LLOP_RE                         = BIT(16),
1402         LLOP_WE                         = BIT(17),
1403         LLOP_ALE                        = BIT(18),
1404         LLOP_CLE                        = BIT(19),
1405         LLOP_RETURN_IDLE                = BIT(31),
1406
1407         LLOP_DATA_MASK                  = GENMASK(15, 0),
1408 };
1409
1410 static int brcmnand_low_level_op(struct brcmnand_host *host,
1411                                  enum brcmnand_llop_type type, u32 data,
1412                                  bool last_op)
1413 {
1414         struct nand_chip *chip = &host->chip;
1415         struct brcmnand_controller *ctrl = host->ctrl;
1416         u32 tmp;
1417
1418         tmp = data & LLOP_DATA_MASK;
1419         switch (type) {
1420         case LL_OP_CMD:
1421                 tmp |= LLOP_WE | LLOP_CLE;
1422                 break;
1423         case LL_OP_ADDR:
1424                 /* WE | ALE */
1425                 tmp |= LLOP_WE | LLOP_ALE;
1426                 break;
1427         case LL_OP_WR:
1428                 /* WE */
1429                 tmp |= LLOP_WE;
1430                 break;
1431         case LL_OP_RD:
1432                 /* RE */
1433                 tmp |= LLOP_RE;
1434                 break;
1435         }
1436         if (last_op)
1437                 /* RETURN_IDLE */
1438                 tmp |= LLOP_RETURN_IDLE;
1439
1440         dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1441
1442         brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1443         (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1444
1445         brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1446         return brcmnand_waitfunc(chip);
1447 }
1448
1449 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1450                              int column, int page_addr)
1451 {
1452         struct mtd_info *mtd = nand_to_mtd(chip);
1453         struct brcmnand_host *host = nand_get_controller_data(chip);
1454         struct brcmnand_controller *ctrl = host->ctrl;
1455         u64 addr = (u64)page_addr << chip->page_shift;
1456         int native_cmd = 0;
1457
1458         if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1459                         command == NAND_CMD_RNDOUT)
1460                 addr = (u64)column;
1461         /* Avoid propagating a negative, don't-care address */
1462         else if (page_addr < 0)
1463                 addr = 0;
1464
1465         dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1466                 (unsigned long long)addr);
1467
1468         host->last_cmd = command;
1469         host->last_byte = 0;
1470         host->last_addr = addr;
1471
1472         switch (command) {
1473         case NAND_CMD_RESET:
1474                 native_cmd = CMD_FLASH_RESET;
1475                 break;
1476         case NAND_CMD_STATUS:
1477                 native_cmd = CMD_STATUS_READ;
1478                 break;
1479         case NAND_CMD_READID:
1480                 native_cmd = CMD_DEVICE_ID_READ;
1481                 break;
1482         case NAND_CMD_READOOB:
1483                 native_cmd = CMD_SPARE_AREA_READ;
1484                 break;
1485         case NAND_CMD_ERASE1:
1486                 native_cmd = CMD_BLOCK_ERASE;
1487                 brcmnand_wp(mtd, 0);
1488                 break;
1489         case NAND_CMD_PARAM:
1490                 native_cmd = CMD_PARAMETER_READ;
1491                 break;
1492         case NAND_CMD_SET_FEATURES:
1493         case NAND_CMD_GET_FEATURES:
1494                 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1495                 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1496                 break;
1497         case NAND_CMD_RNDOUT:
1498                 native_cmd = CMD_PARAMETER_CHANGE_COL;
1499                 addr &= ~((u64)(FC_BYTES - 1));
1500                 /*
1501                  * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1502                  * NB: hwcfg.sector_size_1k may not be initialized yet
1503                  */
1504                 if (brcmnand_get_sector_size_1k(host)) {
1505                         host->hwcfg.sector_size_1k =
1506                                 brcmnand_get_sector_size_1k(host);
1507                         brcmnand_set_sector_size_1k(host, 0);
1508                 }
1509                 break;
1510         }
1511
1512         if (!native_cmd)
1513                 return;
1514
1515         brcmnand_set_cmd_addr(mtd, addr);
1516         brcmnand_send_cmd(host, native_cmd);
1517         brcmnand_waitfunc(chip);
1518
1519         if (native_cmd == CMD_PARAMETER_READ ||
1520                         native_cmd == CMD_PARAMETER_CHANGE_COL) {
1521                 /* Copy flash cache word-wise */
1522                 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1523                 int i;
1524
1525                 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1526
1527                 /*
1528                  * Must cache the FLASH_CACHE now, since changes in
1529                  * SECTOR_SIZE_1K may invalidate it
1530                  */
1531                 for (i = 0; i < FC_WORDS; i++)
1532                         /*
1533                          * Flash cache is big endian for parameter pages, at
1534                          * least on STB SoCs
1535                          */
1536                         flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1537
1538                 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1539
1540                 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1541                 if (host->hwcfg.sector_size_1k)
1542                         brcmnand_set_sector_size_1k(host,
1543                                                     host->hwcfg.sector_size_1k);
1544         }
1545
1546         /* Re-enable protection is necessary only after erase */
1547         if (command == NAND_CMD_ERASE1)
1548                 brcmnand_wp(mtd, 1);
1549 }
1550
1551 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1552 {
1553         struct brcmnand_host *host = nand_get_controller_data(chip);
1554         struct brcmnand_controller *ctrl = host->ctrl;
1555         uint8_t ret = 0;
1556         int addr, offs;
1557
1558         switch (host->last_cmd) {
1559         case NAND_CMD_READID:
1560                 if (host->last_byte < 4)
1561                         ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1562                                 (24 - (host->last_byte << 3));
1563                 else if (host->last_byte < 8)
1564                         ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1565                                 (56 - (host->last_byte << 3));
1566                 break;
1567
1568         case NAND_CMD_READOOB:
1569                 ret = oob_reg_read(ctrl, host->last_byte);
1570                 break;
1571
1572         case NAND_CMD_STATUS:
1573                 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1574                                         INTFC_FLASH_STATUS;
1575                 if (wp_on) /* hide WP status */
1576                         ret |= NAND_STATUS_WP;
1577                 break;
1578
1579         case NAND_CMD_PARAM:
1580         case NAND_CMD_RNDOUT:
1581                 addr = host->last_addr + host->last_byte;
1582                 offs = addr & (FC_BYTES - 1);
1583
1584                 /* At FC_BYTES boundary, switch to next column */
1585                 if (host->last_byte > 0 && offs == 0)
1586                         nand_change_read_column_op(chip, addr, NULL, 0, false);
1587
1588                 ret = ctrl->flash_cache[offs];
1589                 break;
1590         case NAND_CMD_GET_FEATURES:
1591                 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1592                         ret = 0;
1593                 } else {
1594                         bool last = host->last_byte ==
1595                                 ONFI_SUBFEATURE_PARAM_LEN - 1;
1596                         brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1597                         ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1598                 }
1599         }
1600
1601         dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1602         host->last_byte++;
1603
1604         return ret;
1605 }
1606
1607 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1608 {
1609         int i;
1610
1611         for (i = 0; i < len; i++, buf++)
1612                 *buf = brcmnand_read_byte(chip);
1613 }
1614
1615 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1616                                int len)
1617 {
1618         int i;
1619         struct brcmnand_host *host = nand_get_controller_data(chip);
1620
1621         switch (host->last_cmd) {
1622         case NAND_CMD_SET_FEATURES:
1623                 for (i = 0; i < len; i++)
1624                         brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1625                                                   (i + 1) == len);
1626                 break;
1627         default:
1628                 BUG();
1629                 break;
1630         }
1631 }
1632
1633 /**
1634  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1635  * following ahead of time:
1636  *  - Is this descriptor the beginning or end of a linked list?
1637  *  - What is the (DMA) address of the next descriptor in the linked list?
1638  */
1639 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1640                                   struct brcm_nand_dma_desc *desc, u64 addr,
1641                                   dma_addr_t buf, u32 len, u8 dma_cmd,
1642                                   bool begin, bool end,
1643                                   dma_addr_t next_desc)
1644 {
1645         memset(desc, 0, sizeof(*desc));
1646         /* Descriptors are written in native byte order (wordwise) */
1647         desc->next_desc = lower_32_bits(next_desc);
1648         desc->next_desc_ext = upper_32_bits(next_desc);
1649         desc->cmd_irq = (dma_cmd << 24) |
1650                 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1651                 (!!begin) | ((!!end) << 1); /* head, tail */
1652 #ifdef CONFIG_CPU_BIG_ENDIAN
1653         desc->cmd_irq |= 0x01 << 12;
1654 #endif
1655         desc->dram_addr = lower_32_bits(buf);
1656         desc->dram_addr_ext = upper_32_bits(buf);
1657         desc->tfr_len = len;
1658         desc->total_len = len;
1659         desc->flash_addr = lower_32_bits(addr);
1660         desc->flash_addr_ext = upper_32_bits(addr);
1661         desc->cs = host->cs;
1662         desc->status_valid = 0x01;
1663         return 0;
1664 }
1665
1666 /**
1667  * Kick the FLASH_DMA engine, with a given DMA descriptor
1668  */
1669 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1670 {
1671         struct brcmnand_controller *ctrl = host->ctrl;
1672         unsigned long timeo = msecs_to_jiffies(100);
1673
1674         flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1675         (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1676         flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1677         (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1678
1679         /* Start FLASH_DMA engine */
1680         ctrl->dma_pending = true;
1681         mb(); /* flush previous writes */
1682         flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1683
1684         if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1685                 dev_err(ctrl->dev,
1686                                 "timeout waiting for DMA; status %#x, error status %#x\n",
1687                                 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1688                                 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1689         }
1690         ctrl->dma_pending = false;
1691         flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1692 }
1693
1694 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1695                               u32 len, u8 dma_cmd)
1696 {
1697         struct brcmnand_controller *ctrl = host->ctrl;
1698         dma_addr_t buf_pa;
1699         int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1700
1701         buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1702         if (dma_mapping_error(ctrl->dev, buf_pa)) {
1703                 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1704                 return -ENOMEM;
1705         }
1706
1707         brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1708                                    dma_cmd, true, true, 0);
1709
1710         brcmnand_dma_run(host, ctrl->dma_pa);
1711
1712         dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1713
1714         if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1715                 return -EBADMSG;
1716         else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1717                 return -EUCLEAN;
1718
1719         return 0;
1720 }
1721
1722 /*
1723  * Assumes proper CS is already set
1724  */
1725 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1726                                 u64 addr, unsigned int trans, u32 *buf,
1727                                 u8 *oob, u64 *err_addr)
1728 {
1729         struct brcmnand_host *host = nand_get_controller_data(chip);
1730         struct brcmnand_controller *ctrl = host->ctrl;
1731         int i, j, ret = 0;
1732
1733         brcmnand_clear_ecc_addr(ctrl);
1734
1735         for (i = 0; i < trans; i++, addr += FC_BYTES) {
1736                 brcmnand_set_cmd_addr(mtd, addr);
1737                 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1738                 brcmnand_send_cmd(host, CMD_PAGE_READ);
1739                 brcmnand_waitfunc(chip);
1740
1741                 if (likely(buf)) {
1742                         brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1743
1744                         for (j = 0; j < FC_WORDS; j++, buf++)
1745                                 *buf = brcmnand_read_fc(ctrl, j);
1746
1747                         brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1748                 }
1749
1750                 if (oob)
1751                         oob += read_oob_from_regs(ctrl, i, oob,
1752                                         mtd->oobsize / trans,
1753                                         host->hwcfg.sector_size_1k);
1754
1755                 if (!ret) {
1756                         *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1757
1758                         if (*err_addr)
1759                                 ret = -EBADMSG;
1760                 }
1761
1762                 if (!ret) {
1763                         *err_addr = brcmnand_get_correcc_addr(ctrl);
1764
1765                         if (*err_addr)
1766                                 ret = -EUCLEAN;
1767                 }
1768         }
1769
1770         return ret;
1771 }
1772
1773 /*
1774  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1775  * error
1776  *
1777  * Because the HW ECC signals an ECC error if an erase paged has even a single
1778  * bitflip, we must check each ECC error to see if it is actually an erased
1779  * page with bitflips, not a truly corrupted page.
1780  *
1781  * On a real error, return a negative error code (-EBADMSG for ECC error), and
1782  * buf will contain raw data.
1783  * Otherwise, buf gets filled with 0xffs and return the maximum number of
1784  * bitflips-per-ECC-sector to the caller.
1785  *
1786  */
1787 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1788                   struct nand_chip *chip, void *buf, u64 addr)
1789 {
1790         int i, sas;
1791         void *oob = chip->oob_poi;
1792         int bitflips = 0;
1793         int page = addr >> chip->page_shift;
1794         int ret;
1795
1796         if (!buf)
1797                 buf = nand_get_data_buf(chip);
1798
1799         sas = mtd->oobsize / chip->ecc.steps;
1800
1801         /* read without ecc for verification */
1802         ret = chip->ecc.read_page_raw(chip, buf, true, page);
1803         if (ret)
1804                 return ret;
1805
1806         for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1807                 ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1808                                                   oob, sas, NULL, 0,
1809                                                   chip->ecc.strength);
1810                 if (ret < 0)
1811                         return ret;
1812
1813                 bitflips = max(bitflips, ret);
1814         }
1815
1816         return bitflips;
1817 }
1818
1819 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1820                          u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1821 {
1822         struct brcmnand_host *host = nand_get_controller_data(chip);
1823         struct brcmnand_controller *ctrl = host->ctrl;
1824         u64 err_addr = 0;
1825         int err;
1826         bool retry = true;
1827
1828         dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1829
1830 try_dmaread:
1831         brcmnand_clear_ecc_addr(ctrl);
1832
1833         if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1834                 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1835                                              CMD_PAGE_READ);
1836                 if (err) {
1837                         if (mtd_is_bitflip_or_eccerr(err))
1838                                 err_addr = addr;
1839                         else
1840                                 return -EIO;
1841                 }
1842         } else {
1843                 if (oob)
1844                         memset(oob, 0x99, mtd->oobsize);
1845
1846                 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1847                                                oob, &err_addr);
1848         }
1849
1850         if (mtd_is_eccerr(err)) {
1851                 /*
1852                  * On controller version and 7.0, 7.1 , DMA read after a
1853                  * prior PIO read that reported uncorrectable error,
1854                  * the DMA engine captures this error following DMA read
1855                  * cleared only on subsequent DMA read, so just retry once
1856                  * to clear a possible false error reported for current DMA
1857                  * read
1858                  */
1859                 if ((ctrl->nand_version == 0x0700) ||
1860                     (ctrl->nand_version == 0x0701)) {
1861                         if (retry) {
1862                                 retry = false;
1863                                 goto try_dmaread;
1864                         }
1865                 }
1866
1867                 /*
1868                  * Controller version 7.2 has hw encoder to detect erased page
1869                  * bitflips, apply sw verification for older controllers only
1870                  */
1871                 if (ctrl->nand_version < 0x0702) {
1872                         err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1873                                                               addr);
1874                         /* erased page bitflips corrected */
1875                         if (err >= 0)
1876                                 return err;
1877                 }
1878
1879                 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1880                         (unsigned long long)err_addr);
1881                 mtd->ecc_stats.failed++;
1882                 /* NAND layer expects zero on ECC errors */
1883                 return 0;
1884         }
1885
1886         if (mtd_is_bitflip(err)) {
1887                 unsigned int corrected = brcmnand_count_corrected(ctrl);
1888
1889                 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1890                         (unsigned long long)err_addr);
1891                 mtd->ecc_stats.corrected += corrected;
1892                 /* Always exceed the software-imposed threshold */
1893                 return max(mtd->bitflip_threshold, corrected);
1894         }
1895
1896         return 0;
1897 }
1898
1899 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
1900                               int oob_required, int page)
1901 {
1902         struct mtd_info *mtd = nand_to_mtd(chip);
1903         struct brcmnand_host *host = nand_get_controller_data(chip);
1904         u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1905
1906         nand_read_page_op(chip, page, 0, NULL, 0);
1907
1908         return brcmnand_read(mtd, chip, host->last_addr,
1909                         mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1910 }
1911
1912 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1913                                   int oob_required, int page)
1914 {
1915         struct brcmnand_host *host = nand_get_controller_data(chip);
1916         struct mtd_info *mtd = nand_to_mtd(chip);
1917         u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1918         int ret;
1919
1920         nand_read_page_op(chip, page, 0, NULL, 0);
1921
1922         brcmnand_set_ecc_enabled(host, 0);
1923         ret = brcmnand_read(mtd, chip, host->last_addr,
1924                         mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1925         brcmnand_set_ecc_enabled(host, 1);
1926         return ret;
1927 }
1928
1929 static int brcmnand_read_oob(struct nand_chip *chip, int page)
1930 {
1931         struct mtd_info *mtd = nand_to_mtd(chip);
1932
1933         return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1934                         mtd->writesize >> FC_SHIFT,
1935                         NULL, (u8 *)chip->oob_poi);
1936 }
1937
1938 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
1939 {
1940         struct mtd_info *mtd = nand_to_mtd(chip);
1941         struct brcmnand_host *host = nand_get_controller_data(chip);
1942
1943         brcmnand_set_ecc_enabled(host, 0);
1944         brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1945                 mtd->writesize >> FC_SHIFT,
1946                 NULL, (u8 *)chip->oob_poi);
1947         brcmnand_set_ecc_enabled(host, 1);
1948         return 0;
1949 }
1950
1951 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1952                           u64 addr, const u32 *buf, u8 *oob)
1953 {
1954         struct brcmnand_host *host = nand_get_controller_data(chip);
1955         struct brcmnand_controller *ctrl = host->ctrl;
1956         unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1957         int status, ret = 0;
1958
1959         dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1960
1961         if (unlikely((unsigned long)buf & 0x03)) {
1962                 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1963                 buf = (u32 *)((unsigned long)buf & ~0x03);
1964         }
1965
1966         brcmnand_wp(mtd, 0);
1967
1968         for (i = 0; i < ctrl->max_oob; i += 4)
1969                 oob_reg_write(ctrl, i, 0xffffffff);
1970
1971         if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1972                 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1973                                         mtd->writesize, CMD_PROGRAM_PAGE))
1974                         ret = -EIO;
1975                 goto out;
1976         }
1977
1978         for (i = 0; i < trans; i++, addr += FC_BYTES) {
1979                 /* full address MUST be set before populating FC */
1980                 brcmnand_set_cmd_addr(mtd, addr);
1981
1982                 if (buf) {
1983                         brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1984
1985                         for (j = 0; j < FC_WORDS; j++, buf++)
1986                                 brcmnand_write_fc(ctrl, j, *buf);
1987
1988                         brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1989                 } else if (oob) {
1990                         for (j = 0; j < FC_WORDS; j++)
1991                                 brcmnand_write_fc(ctrl, j, 0xffffffff);
1992                 }
1993
1994                 if (oob) {
1995                         oob += write_oob_to_regs(ctrl, i, oob,
1996                                         mtd->oobsize / trans,
1997                                         host->hwcfg.sector_size_1k);
1998                 }
1999
2000                 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2001                 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2002                 status = brcmnand_waitfunc(chip);
2003
2004                 if (status & NAND_STATUS_FAIL) {
2005                         dev_info(ctrl->dev, "program failed at %llx\n",
2006                                 (unsigned long long)addr);
2007                         ret = -EIO;
2008                         goto out;
2009                 }
2010         }
2011 out:
2012         brcmnand_wp(mtd, 1);
2013         return ret;
2014 }
2015
2016 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2017                                int oob_required, int page)
2018 {
2019         struct mtd_info *mtd = nand_to_mtd(chip);
2020         struct brcmnand_host *host = nand_get_controller_data(chip);
2021         void *oob = oob_required ? chip->oob_poi : NULL;
2022
2023         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2024         brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2025
2026         return nand_prog_page_end_op(chip);
2027 }
2028
2029 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2030                                    int oob_required, int page)
2031 {
2032         struct mtd_info *mtd = nand_to_mtd(chip);
2033         struct brcmnand_host *host = nand_get_controller_data(chip);
2034         void *oob = oob_required ? chip->oob_poi : NULL;
2035
2036         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2037         brcmnand_set_ecc_enabled(host, 0);
2038         brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2039         brcmnand_set_ecc_enabled(host, 1);
2040
2041         return nand_prog_page_end_op(chip);
2042 }
2043
2044 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2045 {
2046         return brcmnand_write(nand_to_mtd(chip), chip,
2047                               (u64)page << chip->page_shift, NULL,
2048                               chip->oob_poi);
2049 }
2050
2051 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2052 {
2053         struct mtd_info *mtd = nand_to_mtd(chip);
2054         struct brcmnand_host *host = nand_get_controller_data(chip);
2055         int ret;
2056
2057         brcmnand_set_ecc_enabled(host, 0);
2058         ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2059                                  (u8 *)chip->oob_poi);
2060         brcmnand_set_ecc_enabled(host, 1);
2061
2062         return ret;
2063 }
2064
2065 /***********************************************************************
2066  * Per-CS setup (1 NAND device)
2067  ***********************************************************************/
2068
2069 static int brcmnand_set_cfg(struct brcmnand_host *host,
2070                             struct brcmnand_cfg *cfg)
2071 {
2072         struct brcmnand_controller *ctrl = host->ctrl;
2073         struct nand_chip *chip = &host->chip;
2074         u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2075         u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2076                         BRCMNAND_CS_CFG_EXT);
2077         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2078                         BRCMNAND_CS_ACC_CONTROL);
2079         u8 block_size = 0, page_size = 0, device_size = 0;
2080         u32 tmp;
2081
2082         if (ctrl->block_sizes) {
2083                 int i, found;
2084
2085                 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2086                         if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2087                                 block_size = i;
2088                                 found = 1;
2089                         }
2090                 if (!found) {
2091                         dev_warn(ctrl->dev, "invalid block size %u\n",
2092                                         cfg->block_size);
2093                         return -EINVAL;
2094                 }
2095         } else {
2096                 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2097         }
2098
2099         if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2100                                 cfg->block_size > ctrl->max_block_size)) {
2101                 dev_warn(ctrl->dev, "invalid block size %u\n",
2102                                 cfg->block_size);
2103                 block_size = 0;
2104         }
2105
2106         if (ctrl->page_sizes) {
2107                 int i, found;
2108
2109                 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2110                         if (ctrl->page_sizes[i] == cfg->page_size) {
2111                                 page_size = i;
2112                                 found = 1;
2113                         }
2114                 if (!found) {
2115                         dev_warn(ctrl->dev, "invalid page size %u\n",
2116                                         cfg->page_size);
2117                         return -EINVAL;
2118                 }
2119         } else {
2120                 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2121         }
2122
2123         if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2124                                 cfg->page_size > ctrl->max_page_size)) {
2125                 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2126                 return -EINVAL;
2127         }
2128
2129         if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2130                 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2131                         (unsigned long long)cfg->device_size);
2132                 return -EINVAL;
2133         }
2134         device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2135
2136         tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2137                 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2138                 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2139                 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2140                 (device_size << CFG_DEVICE_SIZE_SHIFT);
2141         if (cfg_offs == cfg_ext_offs) {
2142                 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2143                        (block_size << CFG_BLK_SIZE_SHIFT);
2144                 nand_writereg(ctrl, cfg_offs, tmp);
2145         } else {
2146                 nand_writereg(ctrl, cfg_offs, tmp);
2147                 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2148                       (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2149                 nand_writereg(ctrl, cfg_ext_offs, tmp);
2150         }
2151
2152         tmp = nand_readreg(ctrl, acc_control_offs);
2153         tmp &= ~brcmnand_ecc_level_mask(ctrl);
2154         tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2155         tmp &= ~brcmnand_spare_area_mask(ctrl);
2156         tmp |= cfg->spare_area_size;
2157         nand_writereg(ctrl, acc_control_offs, tmp);
2158
2159         brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2160
2161         /* threshold = ceil(BCH-level * 0.75) */
2162         brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2163
2164         return 0;
2165 }
2166
2167 static void brcmnand_print_cfg(struct brcmnand_host *host,
2168                                char *buf, struct brcmnand_cfg *cfg)
2169 {
2170         buf += sprintf(buf,
2171                 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2172                 (unsigned long long)cfg->device_size >> 20,
2173                 cfg->block_size >> 10,
2174                 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2175                 cfg->page_size >= 1024 ? "KiB" : "B",
2176                 cfg->spare_area_size, cfg->device_width);
2177
2178         /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2179         if (is_hamming_ecc(host->ctrl, cfg))
2180                 sprintf(buf, ", Hamming ECC");
2181         else if (cfg->sector_size_1k)
2182                 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2183         else
2184                 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2185 }
2186
2187 /*
2188  * Minimum number of bytes to address a page. Calculated as:
2189  *     roundup(log2(size / page-size) / 8)
2190  *
2191  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2192  *     OK because many other things will break if 'size' is irregular...
2193  */
2194 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2195 {
2196         return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2197 }
2198
2199 static int brcmnand_setup_dev(struct brcmnand_host *host)
2200 {
2201         struct mtd_info *mtd = nand_to_mtd(&host->chip);
2202         struct nand_chip *chip = &host->chip;
2203         struct brcmnand_controller *ctrl = host->ctrl;
2204         struct brcmnand_cfg *cfg = &host->hwcfg;
2205         char msg[128];
2206         u32 offs, tmp, oob_sector;
2207         int ret;
2208
2209         memset(cfg, 0, sizeof(*cfg));
2210
2211         ret = of_property_read_u32(nand_get_flash_node(chip),
2212                                    "brcm,nand-oob-sector-size",
2213                                    &oob_sector);
2214         if (ret) {
2215                 /* Use detected size */
2216                 cfg->spare_area_size = mtd->oobsize /
2217                                         (mtd->writesize >> FC_SHIFT);
2218         } else {
2219                 cfg->spare_area_size = oob_sector;
2220         }
2221         if (cfg->spare_area_size > ctrl->max_oob)
2222                 cfg->spare_area_size = ctrl->max_oob;
2223         /*
2224          * Set oobsize to be consistent with controller's spare_area_size, as
2225          * the rest is inaccessible.
2226          */
2227         mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2228
2229         cfg->device_size = mtd->size;
2230         cfg->block_size = mtd->erasesize;
2231         cfg->page_size = mtd->writesize;
2232         cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2233         cfg->col_adr_bytes = 2;
2234         cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2235
2236         if (chip->ecc.mode != NAND_ECC_HW) {
2237                 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2238                         chip->ecc.mode);
2239                 return -EINVAL;
2240         }
2241
2242         if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2243                 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2244                         /* Default to Hamming for 1-bit ECC, if unspecified */
2245                         chip->ecc.algo = NAND_ECC_HAMMING;
2246                 else
2247                         /* Otherwise, BCH */
2248                         chip->ecc.algo = NAND_ECC_BCH;
2249         }
2250
2251         if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2252                                                    chip->ecc.size != 512)) {
2253                 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2254                         chip->ecc.strength, chip->ecc.size);
2255                 return -EINVAL;
2256         }
2257
2258         if (chip->ecc.mode != NAND_ECC_NONE &&
2259             (!chip->ecc.size || !chip->ecc.strength)) {
2260                 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2261                         /* use detected ECC parameters */
2262                         chip->ecc.size = chip->base.eccreq.step_size;
2263                         chip->ecc.strength = chip->base.eccreq.strength;
2264                         dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2265                                 chip->ecc.size, chip->ecc.strength);
2266                 }
2267         }
2268
2269         switch (chip->ecc.size) {
2270         case 512:
2271                 if (chip->ecc.algo == NAND_ECC_HAMMING)
2272                         cfg->ecc_level = 15;
2273                 else
2274                         cfg->ecc_level = chip->ecc.strength;
2275                 cfg->sector_size_1k = 0;
2276                 break;
2277         case 1024:
2278                 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2279                         dev_err(ctrl->dev, "1KB sectors not supported\n");
2280                         return -EINVAL;
2281                 }
2282                 if (chip->ecc.strength & 0x1) {
2283                         dev_err(ctrl->dev,
2284                                 "odd ECC not supported with 1KB sectors\n");
2285                         return -EINVAL;
2286                 }
2287
2288                 cfg->ecc_level = chip->ecc.strength >> 1;
2289                 cfg->sector_size_1k = 1;
2290                 break;
2291         default:
2292                 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2293                         chip->ecc.size);
2294                 return -EINVAL;
2295         }
2296
2297         cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2298         if (mtd->writesize > 512)
2299                 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2300         else
2301                 cfg->ful_adr_bytes += 1;
2302
2303         ret = brcmnand_set_cfg(host, cfg);
2304         if (ret)
2305                 return ret;
2306
2307         brcmnand_set_ecc_enabled(host, 1);
2308
2309         brcmnand_print_cfg(host, msg, cfg);
2310         dev_info(ctrl->dev, "detected %s\n", msg);
2311
2312         /* Configure ACC_CONTROL */
2313         offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2314         tmp = nand_readreg(ctrl, offs);
2315         tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2316         tmp &= ~ACC_CONTROL_RD_ERASED;
2317
2318         /* We need to turn on Read from erased paged protected by ECC */
2319         if (ctrl->nand_version >= 0x0702)
2320                 tmp |= ACC_CONTROL_RD_ERASED;
2321         tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2322         if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2323                 tmp &= ~ACC_CONTROL_PREFETCH;
2324
2325         nand_writereg(ctrl, offs, tmp);
2326
2327         return 0;
2328 }
2329
2330 static int brcmnand_attach_chip(struct nand_chip *chip)
2331 {
2332         struct mtd_info *mtd = nand_to_mtd(chip);
2333         struct brcmnand_host *host = nand_get_controller_data(chip);
2334         int ret;
2335
2336         chip->options |= NAND_NO_SUBPAGE_WRITE;
2337         /*
2338          * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2339          * to/from, and have nand_base pass us a bounce buffer instead, as
2340          * needed.
2341          */
2342         chip->options |= NAND_USE_BOUNCE_BUFFER;
2343
2344         if (chip->bbt_options & NAND_BBT_USE_FLASH)
2345                 chip->bbt_options |= NAND_BBT_NO_OOB;
2346
2347         if (brcmnand_setup_dev(host))
2348                 return -ENXIO;
2349
2350         chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2351
2352         /* only use our internal HW threshold */
2353         mtd->bitflip_threshold = 1;
2354
2355         ret = brcmstb_choose_ecc_layout(host);
2356
2357         return ret;
2358 }
2359
2360 static const struct nand_controller_ops brcmnand_controller_ops = {
2361         .attach_chip = brcmnand_attach_chip,
2362 };
2363
2364 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2365 {
2366         struct brcmnand_controller *ctrl = host->ctrl;
2367         struct platform_device *pdev = host->pdev;
2368         struct mtd_info *mtd;
2369         struct nand_chip *chip;
2370         int ret;
2371         u16 cfg_offs;
2372
2373         ret = of_property_read_u32(dn, "reg", &host->cs);
2374         if (ret) {
2375                 dev_err(&pdev->dev, "can't get chip-select\n");
2376                 return -ENXIO;
2377         }
2378
2379         mtd = nand_to_mtd(&host->chip);
2380         chip = &host->chip;
2381
2382         nand_set_flash_node(chip, dn);
2383         nand_set_controller_data(chip, host);
2384         mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2385                                    host->cs);
2386         if (!mtd->name)
2387                 return -ENOMEM;
2388
2389         mtd->owner = THIS_MODULE;
2390         mtd->dev.parent = &pdev->dev;
2391
2392         chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2393         chip->legacy.cmdfunc = brcmnand_cmdfunc;
2394         chip->legacy.waitfunc = brcmnand_waitfunc;
2395         chip->legacy.read_byte = brcmnand_read_byte;
2396         chip->legacy.read_buf = brcmnand_read_buf;
2397         chip->legacy.write_buf = brcmnand_write_buf;
2398
2399         chip->ecc.mode = NAND_ECC_HW;
2400         chip->ecc.read_page = brcmnand_read_page;
2401         chip->ecc.write_page = brcmnand_write_page;
2402         chip->ecc.read_page_raw = brcmnand_read_page_raw;
2403         chip->ecc.write_page_raw = brcmnand_write_page_raw;
2404         chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2405         chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2406         chip->ecc.read_oob = brcmnand_read_oob;
2407         chip->ecc.write_oob = brcmnand_write_oob;
2408
2409         chip->controller = &ctrl->controller;
2410
2411         /*
2412          * The bootloader might have configured 16bit mode but
2413          * NAND READID command only works in 8bit mode. We force
2414          * 8bit mode here to ensure that NAND READID commands works.
2415          */
2416         cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2417         nand_writereg(ctrl, cfg_offs,
2418                       nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2419
2420         ret = nand_scan(chip, 1);
2421         if (ret)
2422                 return ret;
2423
2424         ret = mtd_device_register(mtd, NULL, 0);
2425         if (ret)
2426                 nand_cleanup(chip);
2427
2428         return ret;
2429 }
2430
2431 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2432                                             int restore)
2433 {
2434         struct brcmnand_controller *ctrl = host->ctrl;
2435         u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2436         u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2437                         BRCMNAND_CS_CFG_EXT);
2438         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2439                         BRCMNAND_CS_ACC_CONTROL);
2440         u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2441         u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2442
2443         if (restore) {
2444                 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2445                 if (cfg_offs != cfg_ext_offs)
2446                         nand_writereg(ctrl, cfg_ext_offs,
2447                                       host->hwcfg.config_ext);
2448                 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2449                 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2450                 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2451         } else {
2452                 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2453                 if (cfg_offs != cfg_ext_offs)
2454                         host->hwcfg.config_ext =
2455                                 nand_readreg(ctrl, cfg_ext_offs);
2456                 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2457                 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2458                 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2459         }
2460 }
2461
2462 static int brcmnand_suspend(struct device *dev)
2463 {
2464         struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2465         struct brcmnand_host *host;
2466
2467         list_for_each_entry(host, &ctrl->host_list, node)
2468                 brcmnand_save_restore_cs_config(host, 0);
2469
2470         ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2471         ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2472         ctrl->corr_stat_threshold =
2473                 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2474
2475         if (has_flash_dma(ctrl))
2476                 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2477
2478         return 0;
2479 }
2480
2481 static int brcmnand_resume(struct device *dev)
2482 {
2483         struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2484         struct brcmnand_host *host;
2485
2486         if (has_flash_dma(ctrl)) {
2487                 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2488                 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2489         }
2490
2491         brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2492         brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2493         brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2494                         ctrl->corr_stat_threshold);
2495         if (ctrl->soc) {
2496                 /* Clear/re-enable interrupt */
2497                 ctrl->soc->ctlrdy_ack(ctrl->soc);
2498                 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2499         }
2500
2501         list_for_each_entry(host, &ctrl->host_list, node) {
2502                 struct nand_chip *chip = &host->chip;
2503
2504                 brcmnand_save_restore_cs_config(host, 1);
2505
2506                 /* Reset the chip, required by some chips after power-up */
2507                 nand_reset_op(chip);
2508         }
2509
2510         return 0;
2511 }
2512
2513 const struct dev_pm_ops brcmnand_pm_ops = {
2514         .suspend                = brcmnand_suspend,
2515         .resume                 = brcmnand_resume,
2516 };
2517 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2518
2519 static const struct of_device_id brcmnand_of_match[] = {
2520         { .compatible = "brcm,brcmnand-v4.0" },
2521         { .compatible = "brcm,brcmnand-v5.0" },
2522         { .compatible = "brcm,brcmnand-v6.0" },
2523         { .compatible = "brcm,brcmnand-v6.1" },
2524         { .compatible = "brcm,brcmnand-v6.2" },
2525         { .compatible = "brcm,brcmnand-v7.0" },
2526         { .compatible = "brcm,brcmnand-v7.1" },
2527         { .compatible = "brcm,brcmnand-v7.2" },
2528         { .compatible = "brcm,brcmnand-v7.3" },
2529         {},
2530 };
2531 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2532
2533 /***********************************************************************
2534  * Platform driver setup (per controller)
2535  ***********************************************************************/
2536
2537 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2538 {
2539         struct device *dev = &pdev->dev;
2540         struct device_node *dn = dev->of_node, *child;
2541         struct brcmnand_controller *ctrl;
2542         struct resource *res;
2543         int ret;
2544
2545         /* We only support device-tree instantiation */
2546         if (!dn)
2547                 return -ENODEV;
2548
2549         if (!of_match_node(brcmnand_of_match, dn))
2550                 return -ENODEV;
2551
2552         ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2553         if (!ctrl)
2554                 return -ENOMEM;
2555
2556         dev_set_drvdata(dev, ctrl);
2557         ctrl->dev = dev;
2558
2559         init_completion(&ctrl->done);
2560         init_completion(&ctrl->dma_done);
2561         nand_controller_init(&ctrl->controller);
2562         ctrl->controller.ops = &brcmnand_controller_ops;
2563         INIT_LIST_HEAD(&ctrl->host_list);
2564
2565         /* NAND register range */
2566         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2567         ctrl->nand_base = devm_ioremap_resource(dev, res);
2568         if (IS_ERR(ctrl->nand_base))
2569                 return PTR_ERR(ctrl->nand_base);
2570
2571         /* Enable clock before using NAND registers */
2572         ctrl->clk = devm_clk_get(dev, "nand");
2573         if (!IS_ERR(ctrl->clk)) {
2574                 ret = clk_prepare_enable(ctrl->clk);
2575                 if (ret)
2576                         return ret;
2577         } else {
2578                 ret = PTR_ERR(ctrl->clk);
2579                 if (ret == -EPROBE_DEFER)
2580                         return ret;
2581
2582                 ctrl->clk = NULL;
2583         }
2584
2585         /* Initialize NAND revision */
2586         ret = brcmnand_revision_init(ctrl);
2587         if (ret)
2588                 goto err;
2589
2590         /*
2591          * Most chips have this cache at a fixed offset within 'nand' block.
2592          * Some must specify this region separately.
2593          */
2594         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2595         if (res) {
2596                 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2597                 if (IS_ERR(ctrl->nand_fc)) {
2598                         ret = PTR_ERR(ctrl->nand_fc);
2599                         goto err;
2600                 }
2601         } else {
2602                 ctrl->nand_fc = ctrl->nand_base +
2603                                 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2604         }
2605
2606         /* FLASH_DMA */
2607         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2608         if (res) {
2609                 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2610                 if (IS_ERR(ctrl->flash_dma_base)) {
2611                         ret = PTR_ERR(ctrl->flash_dma_base);
2612                         goto err;
2613                 }
2614
2615                 /* initialize the dma version */
2616                 brcmnand_flash_dma_revision_init(ctrl);
2617
2618                 /* linked-list and stop on error */
2619                 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
2620                 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2621
2622                 /* Allocate descriptor(s) */
2623                 ctrl->dma_desc = dmam_alloc_coherent(dev,
2624                                                      sizeof(*ctrl->dma_desc),
2625                                                      &ctrl->dma_pa, GFP_KERNEL);
2626                 if (!ctrl->dma_desc) {
2627                         ret = -ENOMEM;
2628                         goto err;
2629                 }
2630
2631                 ctrl->dma_irq = platform_get_irq(pdev, 1);
2632                 if ((int)ctrl->dma_irq < 0) {
2633                         dev_err(dev, "missing FLASH_DMA IRQ\n");
2634                         ret = -ENODEV;
2635                         goto err;
2636                 }
2637
2638                 ret = devm_request_irq(dev, ctrl->dma_irq,
2639                                 brcmnand_dma_irq, 0, DRV_NAME,
2640                                 ctrl);
2641                 if (ret < 0) {
2642                         dev_err(dev, "can't allocate IRQ %d: error %d\n",
2643                                         ctrl->dma_irq, ret);
2644                         goto err;
2645                 }
2646
2647                 dev_info(dev, "enabling FLASH_DMA\n");
2648         }
2649
2650         /* Disable automatic device ID config, direct addressing */
2651         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2652                          CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2653         /* Disable XOR addressing */
2654         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2655
2656         if (ctrl->features & BRCMNAND_HAS_WP) {
2657                 /* Permanently disable write protection */
2658                 if (wp_on == 2)
2659                         brcmnand_set_wp(ctrl, false);
2660         } else {
2661                 wp_on = 0;
2662         }
2663
2664         /* IRQ */
2665         ctrl->irq = platform_get_irq(pdev, 0);
2666         if ((int)ctrl->irq < 0) {
2667                 dev_err(dev, "no IRQ defined\n");
2668                 ret = -ENODEV;
2669                 goto err;
2670         }
2671
2672         /*
2673          * Some SoCs integrate this controller (e.g., its interrupt bits) in
2674          * interesting ways
2675          */
2676         if (soc) {
2677                 ctrl->soc = soc;
2678
2679                 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2680                                        DRV_NAME, ctrl);
2681
2682                 /* Enable interrupt */
2683                 ctrl->soc->ctlrdy_ack(ctrl->soc);
2684                 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2685         } else {
2686                 /* Use standard interrupt infrastructure */
2687                 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2688                                        DRV_NAME, ctrl);
2689         }
2690         if (ret < 0) {
2691                 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2692                         ctrl->irq, ret);
2693                 goto err;
2694         }
2695
2696         for_each_available_child_of_node(dn, child) {
2697                 if (of_device_is_compatible(child, "brcm,nandcs")) {
2698                         struct brcmnand_host *host;
2699
2700                         host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2701                         if (!host) {
2702                                 of_node_put(child);
2703                                 ret = -ENOMEM;
2704                                 goto err;
2705                         }
2706                         host->pdev = pdev;
2707                         host->ctrl = ctrl;
2708
2709                         ret = brcmnand_init_cs(host, child);
2710                         if (ret) {
2711                                 devm_kfree(dev, host);
2712                                 continue; /* Try all chip-selects */
2713                         }
2714
2715                         list_add_tail(&host->node, &ctrl->host_list);
2716                 }
2717         }
2718
2719         /* No chip-selects could initialize properly */
2720         if (list_empty(&ctrl->host_list)) {
2721                 ret = -ENODEV;
2722                 goto err;
2723         }
2724
2725         return 0;
2726
2727 err:
2728         clk_disable_unprepare(ctrl->clk);
2729         return ret;
2730
2731 }
2732 EXPORT_SYMBOL_GPL(brcmnand_probe);
2733
2734 int brcmnand_remove(struct platform_device *pdev)
2735 {
2736         struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2737         struct brcmnand_host *host;
2738
2739         list_for_each_entry(host, &ctrl->host_list, node)
2740                 nand_release(&host->chip);
2741
2742         clk_disable_unprepare(ctrl->clk);
2743
2744         dev_set_drvdata(&pdev->dev, NULL);
2745
2746         return 0;
2747 }
2748 EXPORT_SYMBOL_GPL(brcmnand_remove);
2749
2750 MODULE_LICENSE("GPL v2");
2751 MODULE_AUTHOR("Kevin Cernekee");
2752 MODULE_AUTHOR("Brian Norris");
2753 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2754 MODULE_ALIAS("platform:brcmnand");