Merge tag 'u-boot-atmel-fixes-2020.07-a' of https://gitlab.denx.de/u-boot/custodians...
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / atmel_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007-2008
4  * Stelian Pop <stelian@popies.net>
5  * Lead Tech Design <www.leadtechdesign.com>
6  *
7  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
8  *
9  * Add Programmable Multibit ECC support for various AT91 SoC
10  *     (C) Copyright 2012 ATMEL, Hong Xu
11  */
12
13 #include <common.h>
14 #include <log.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17 #include <dm/device_compat.h>
18 #include <dm/devres.h>
19 #include <linux/bitops.h>
20 #include <linux/bug.h>
21 #include <linux/delay.h>
22
23 #include <malloc.h>
24 #include <nand.h>
25 #include <watchdog.h>
26 #include <linux/mtd/nand_ecc.h>
27
28 #ifdef CONFIG_ATMEL_NAND_HWECC
29
30 /* Register access macros */
31 #define ecc_readl(add, reg)                             \
32         readl(add + ATMEL_ECC_##reg)
33 #define ecc_writel(add, reg, value)                     \
34         writel((value), add + ATMEL_ECC_##reg)
35
36 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
37
38 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
39
40 #ifdef CONFIG_SPL_BUILD
41 #undef CONFIG_SYS_NAND_ONFI_DETECTION
42 #endif
43
44 struct atmel_nand_host {
45         struct pmecc_regs __iomem *pmecc;
46         struct pmecc_errloc_regs __iomem *pmerrloc;
47         void __iomem            *pmecc_rom_base;
48
49         u8              pmecc_corr_cap;
50         u16             pmecc_sector_size;
51         u32             pmecc_index_table_offset;
52         u32             pmecc_version;
53
54         int             pmecc_bytes_per_sector;
55         int             pmecc_sector_number;
56         int             pmecc_degree;   /* Degree of remainders */
57         int             pmecc_cw_len;   /* Length of codeword */
58
59         /* lookup table for alpha_to and index_of */
60         void __iomem    *pmecc_alpha_to;
61         void __iomem    *pmecc_index_of;
62
63         /* data for pmecc computation */
64         int16_t *pmecc_smu;
65         int16_t *pmecc_partial_syn;
66         int16_t *pmecc_si;
67         int16_t *pmecc_lmu; /* polynomal order */
68         int     *pmecc_mu;
69         int     *pmecc_dmu;
70         int     *pmecc_delta;
71 };
72
73 static struct atmel_nand_host pmecc_host;
74 static struct nand_ecclayout atmel_pmecc_oobinfo;
75
76 /*
77  * Return number of ecc bytes per sector according to sector size and
78  * correction capability
79  *
80  * Following table shows what at91 PMECC supported:
81  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
82  * =====================        ================        =================
83  *                2-bits                 4-bytes                  4-bytes
84  *                4-bits                 7-bytes                  7-bytes
85  *                8-bits                13-bytes                 14-bytes
86  *               12-bits                20-bytes                 21-bytes
87  *               24-bits                39-bytes                 42-bytes
88  *               32-bits                52-bytes                 56-bytes
89  */
90 static int pmecc_get_ecc_bytes(int cap, int sector_size)
91 {
92         int m = 12 + sector_size / 512;
93         return (m * cap + 7) / 8;
94 }
95
96 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
97         int oobsize, int ecc_len)
98 {
99         int i;
100
101         layout->eccbytes = ecc_len;
102
103         /* ECC will occupy the last ecc_len bytes continuously */
104         for (i = 0; i < ecc_len; i++)
105                 layout->eccpos[i] = oobsize - ecc_len + i;
106
107         layout->oobfree[0].offset = 2;
108         layout->oobfree[0].length =
109                 oobsize - ecc_len - layout->oobfree[0].offset;
110 }
111
112 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
113 {
114         int table_size;
115
116         table_size = host->pmecc_sector_size == 512 ?
117                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
118
119         /* the ALPHA lookup table is right behind the INDEX lookup table. */
120         return host->pmecc_rom_base + host->pmecc_index_table_offset +
121                         table_size * sizeof(int16_t);
122 }
123
124 static void pmecc_data_free(struct atmel_nand_host *host)
125 {
126         free(host->pmecc_partial_syn);
127         free(host->pmecc_si);
128         free(host->pmecc_lmu);
129         free(host->pmecc_smu);
130         free(host->pmecc_mu);
131         free(host->pmecc_dmu);
132         free(host->pmecc_delta);
133 }
134
135 static int pmecc_data_alloc(struct atmel_nand_host *host)
136 {
137         const int cap = host->pmecc_corr_cap;
138         int size;
139
140         size = (2 * cap + 1) * sizeof(int16_t);
141         host->pmecc_partial_syn = malloc(size);
142         host->pmecc_si = malloc(size);
143         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
144         host->pmecc_smu = malloc((cap + 2) * size);
145
146         size = (cap + 1) * sizeof(int);
147         host->pmecc_mu = malloc(size);
148         host->pmecc_dmu = malloc(size);
149         host->pmecc_delta = malloc(size);
150
151         if (host->pmecc_partial_syn &&
152                         host->pmecc_si &&
153                         host->pmecc_lmu &&
154                         host->pmecc_smu &&
155                         host->pmecc_mu &&
156                         host->pmecc_dmu &&
157                         host->pmecc_delta)
158                 return 0;
159
160         /* error happened */
161         pmecc_data_free(host);
162         return -ENOMEM;
163
164 }
165
166 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
167 {
168         struct nand_chip *nand_chip = mtd_to_nand(mtd);
169         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
170         int i;
171         uint32_t value;
172
173         /* Fill odd syndromes */
174         for (i = 0; i < host->pmecc_corr_cap; i++) {
175                 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
176                 if (i & 1)
177                         value >>= 16;
178                 value &= 0xffff;
179                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
180         }
181 }
182
183 static void pmecc_substitute(struct mtd_info *mtd)
184 {
185         struct nand_chip *nand_chip = mtd_to_nand(mtd);
186         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
187         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
188         int16_t __iomem *index_of = host->pmecc_index_of;
189         int16_t *partial_syn = host->pmecc_partial_syn;
190         const int cap = host->pmecc_corr_cap;
191         int16_t *si;
192         int i, j;
193
194         /* si[] is a table that holds the current syndrome value,
195          * an element of that table belongs to the field
196          */
197         si = host->pmecc_si;
198
199         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
200
201         /* Computation 2t syndromes based on S(x) */
202         /* Odd syndromes */
203         for (i = 1; i < 2 * cap; i += 2) {
204                 for (j = 0; j < host->pmecc_degree; j++) {
205                         if (partial_syn[i] & (0x1 << j))
206                                 si[i] = readw(alpha_to + i * j) ^ si[i];
207                 }
208         }
209         /* Even syndrome = (Odd syndrome) ** 2 */
210         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
211                 if (si[j] == 0) {
212                         si[i] = 0;
213                 } else {
214                         int16_t tmp;
215
216                         tmp = readw(index_of + si[j]);
217                         tmp = (tmp * 2) % host->pmecc_cw_len;
218                         si[i] = readw(alpha_to + tmp);
219                 }
220         }
221 }
222
223 /*
224  * This function defines a Berlekamp iterative procedure for
225  * finding the value of the error location polynomial.
226  * The input is si[], initialize by pmecc_substitute().
227  * The output is smu[][].
228  *
229  * This function is written according to chip datasheet Chapter:
230  * Find the Error Location Polynomial Sigma(x) of Section:
231  * Programmable Multibit ECC Control (PMECC).
232  */
233 static void pmecc_get_sigma(struct mtd_info *mtd)
234 {
235         struct nand_chip *nand_chip = mtd_to_nand(mtd);
236         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
237
238         int16_t *lmu = host->pmecc_lmu;
239         int16_t *si = host->pmecc_si;
240         int *mu = host->pmecc_mu;
241         int *dmu = host->pmecc_dmu;     /* Discrepancy */
242         int *delta = host->pmecc_delta; /* Delta order */
243         int cw_len = host->pmecc_cw_len;
244         const int16_t cap = host->pmecc_corr_cap;
245         const int num = 2 * cap + 1;
246         int16_t __iomem *index_of = host->pmecc_index_of;
247         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
248         int i, j, k;
249         uint32_t dmu_0_count, tmp;
250         int16_t *smu = host->pmecc_smu;
251
252         /* index of largest delta */
253         int ro;
254         int largest;
255         int diff;
256
257         /* Init the Sigma(x) */
258         memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
259
260         dmu_0_count = 0;
261
262         /* First Row */
263
264         /* Mu */
265         mu[0] = -1;
266
267         smu[0] = 1;
268
269         /* discrepancy set to 1 */
270         dmu[0] = 1;
271         /* polynom order set to 0 */
272         lmu[0] = 0;
273         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
274         delta[0] = -1;
275
276         /* Second Row */
277
278         /* Mu */
279         mu[1] = 0;
280         /* Sigma(x) set to 1 */
281         smu[num] = 1;
282
283         /* discrepancy set to S1 */
284         dmu[1] = si[1];
285
286         /* polynom order set to 0 */
287         lmu[1] = 0;
288
289         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
290         delta[1] = 0;
291
292         for (i = 1; i <= cap; i++) {
293                 mu[i + 1] = i << 1;
294                 /* Begin Computing Sigma (Mu+1) and L(mu) */
295                 /* check if discrepancy is set to 0 */
296                 if (dmu[i] == 0) {
297                         dmu_0_count++;
298
299                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
300                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
301                                 tmp += 2;
302                         else
303                                 tmp += 1;
304
305                         if (dmu_0_count == tmp) {
306                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
307                                         smu[(cap + 1) * num + j] =
308                                                         smu[i * num + j];
309
310                                 lmu[cap + 1] = lmu[i];
311                                 return;
312                         }
313
314                         /* copy polynom */
315                         for (j = 0; j <= lmu[i] >> 1; j++)
316                                 smu[(i + 1) * num + j] = smu[i * num + j];
317
318                         /* copy previous polynom order to the next */
319                         lmu[i + 1] = lmu[i];
320                 } else {
321                         ro = 0;
322                         largest = -1;
323                         /* find largest delta with dmu != 0 */
324                         for (j = 0; j < i; j++) {
325                                 if ((dmu[j]) && (delta[j] > largest)) {
326                                         largest = delta[j];
327                                         ro = j;
328                                 }
329                         }
330
331                         /* compute difference */
332                         diff = (mu[i] - mu[ro]);
333
334                         /* Compute degree of the new smu polynomial */
335                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
336                                 lmu[i + 1] = lmu[i];
337                         else
338                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
339
340                         /* Init smu[i+1] with 0 */
341                         for (k = 0; k < num; k++)
342                                 smu[(i + 1) * num + k] = 0;
343
344                         /* Compute smu[i+1] */
345                         for (k = 0; k <= lmu[ro] >> 1; k++) {
346                                 int16_t a, b, c;
347
348                                 if (!(smu[ro * num + k] && dmu[i]))
349                                         continue;
350                                 a = readw(index_of + dmu[i]);
351                                 b = readw(index_of + dmu[ro]);
352                                 c = readw(index_of + smu[ro * num + k]);
353                                 tmp = a + (cw_len - b) + c;
354                                 a = readw(alpha_to + tmp % cw_len);
355                                 smu[(i + 1) * num + (k + diff)] = a;
356                         }
357
358                         for (k = 0; k <= lmu[i] >> 1; k++)
359                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
360                 }
361
362                 /* End Computing Sigma (Mu+1) and L(mu) */
363                 /* In either case compute delta */
364                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
365
366                 /* Do not compute discrepancy for the last iteration */
367                 if (i >= cap)
368                         continue;
369
370                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
371                         tmp = 2 * (i - 1);
372                         if (k == 0) {
373                                 dmu[i + 1] = si[tmp + 3];
374                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
375                                 int16_t a, b, c;
376                                 a = readw(index_of +
377                                                 smu[(i + 1) * num + k]);
378                                 b = si[2 * (i - 1) + 3 - k];
379                                 c = readw(index_of + b);
380                                 tmp = a + c;
381                                 tmp %= cw_len;
382                                 dmu[i + 1] = readw(alpha_to + tmp) ^
383                                         dmu[i + 1];
384                         }
385                 }
386         }
387 }
388
389 static int pmecc_err_location(struct mtd_info *mtd)
390 {
391         struct nand_chip *nand_chip = mtd_to_nand(mtd);
392         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
393         const int cap = host->pmecc_corr_cap;
394         const int num = 2 * cap + 1;
395         int sector_size = host->pmecc_sector_size;
396         int err_nbr = 0;        /* number of error */
397         int roots_nbr;          /* number of roots */
398         int i;
399         uint32_t val;
400         int16_t *smu = host->pmecc_smu;
401         int timeout = PMECC_MAX_TIMEOUT_US;
402
403         pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
404
405         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
406                 pmecc_writel(host->pmerrloc, sigma[i],
407                              smu[(cap + 1) * num + i]);
408                 err_nbr++;
409         }
410
411         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
412         if (sector_size == 1024)
413                 val |= PMERRLOC_ELCFG_SECTOR_1024;
414
415         pmecc_writel(host->pmerrloc, elcfg, val);
416         pmecc_writel(host->pmerrloc, elen,
417                      sector_size * 8 + host->pmecc_degree * cap);
418
419         while (--timeout) {
420                 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
421                         break;
422                 WATCHDOG_RESET();
423                 udelay(1);
424         }
425
426         if (!timeout) {
427                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
428                 return -1;
429         }
430
431         roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
432                         >> 8;
433         /* Number of roots == degree of smu hence <= cap */
434         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
435                 return err_nbr - 1;
436
437         /* Number of roots does not match the degree of smu
438          * unable to correct error */
439         return -1;
440 }
441
442 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
443                 int sector_num, int extra_bytes, int err_nbr)
444 {
445         struct nand_chip *nand_chip = mtd_to_nand(mtd);
446         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
447         int i = 0;
448         int byte_pos, bit_pos, sector_size, pos;
449         uint32_t tmp;
450         uint8_t err_byte;
451
452         sector_size = host->pmecc_sector_size;
453
454         while (err_nbr) {
455                 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
456                 byte_pos = tmp / 8;
457                 bit_pos  = tmp % 8;
458
459                 if (byte_pos >= (sector_size + extra_bytes))
460                         BUG();  /* should never happen */
461
462                 if (byte_pos < sector_size) {
463                         err_byte = *(buf + byte_pos);
464                         *(buf + byte_pos) ^= (1 << bit_pos);
465
466                         pos = sector_num * host->pmecc_sector_size + byte_pos;
467                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
468                                 pos, bit_pos, err_byte, *(buf + byte_pos));
469                 } else {
470                         /* Bit flip in OOB area */
471                         tmp = sector_num * host->pmecc_bytes_per_sector
472                                         + (byte_pos - sector_size);
473                         err_byte = ecc[tmp];
474                         ecc[tmp] ^= (1 << bit_pos);
475
476                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
477                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
478                                 pos, bit_pos, err_byte, ecc[tmp]);
479                 }
480
481                 i++;
482                 err_nbr--;
483         }
484
485         return;
486 }
487
488 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
489         u8 *ecc)
490 {
491         struct nand_chip *nand_chip = mtd_to_nand(mtd);
492         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
493         int i, err_nbr, eccbytes;
494         uint8_t *buf_pos;
495
496         /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
497         if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
498                 goto normal_check;
499
500         eccbytes = nand_chip->ecc.bytes;
501         for (i = 0; i < eccbytes; i++)
502                 if (ecc[i] != 0xff)
503                         goto normal_check;
504         /* Erased page, return OK */
505         return 0;
506
507 normal_check:
508         for (i = 0; i < host->pmecc_sector_number; i++) {
509                 err_nbr = 0;
510                 if (pmecc_stat & 0x1) {
511                         buf_pos = buf + i * host->pmecc_sector_size;
512
513                         pmecc_gen_syndrome(mtd, i);
514                         pmecc_substitute(mtd);
515                         pmecc_get_sigma(mtd);
516
517                         err_nbr = pmecc_err_location(mtd);
518                         if (err_nbr == -1) {
519                                 dev_err(host->dev, "PMECC: Too many errors\n");
520                                 mtd->ecc_stats.failed++;
521                                 return -EBADMSG;
522                         } else {
523                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
524                                         host->pmecc_bytes_per_sector, err_nbr);
525                                 mtd->ecc_stats.corrected += err_nbr;
526                         }
527                 }
528                 pmecc_stat >>= 1;
529         }
530
531         return 0;
532 }
533
534 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
535         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
536 {
537         struct atmel_nand_host *host = nand_get_controller_data(chip);
538         int eccsize = chip->ecc.size;
539         uint8_t *oob = chip->oob_poi;
540         uint32_t *eccpos = chip->ecc.layout->eccpos;
541         uint32_t stat;
542         int timeout = PMECC_MAX_TIMEOUT_US;
543
544         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
545         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
546         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
547                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
548
549         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
550         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
551
552         chip->read_buf(mtd, buf, eccsize);
553         chip->read_buf(mtd, oob, mtd->oobsize);
554
555         while (--timeout) {
556                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
557                         break;
558                 WATCHDOG_RESET();
559                 udelay(1);
560         }
561
562         if (!timeout) {
563                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
564                 return -1;
565         }
566
567         stat = pmecc_readl(host->pmecc, isr);
568         if (stat != 0)
569                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
570                         return -EBADMSG;
571
572         return 0;
573 }
574
575 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
576                 struct nand_chip *chip, const uint8_t *buf,
577                 int oob_required, int page)
578 {
579         struct atmel_nand_host *host = nand_get_controller_data(chip);
580         uint32_t *eccpos = chip->ecc.layout->eccpos;
581         int i, j;
582         int timeout = PMECC_MAX_TIMEOUT_US;
583
584         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
585         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
586
587         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
588                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
589
590         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
591         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
592
593         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
594
595         while (--timeout) {
596                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
597                         break;
598                 WATCHDOG_RESET();
599                 udelay(1);
600         }
601
602         if (!timeout) {
603                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
604                 goto out;
605         }
606
607         for (i = 0; i < host->pmecc_sector_number; i++) {
608                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
609                         int pos;
610
611                         pos = i * host->pmecc_bytes_per_sector + j;
612                         chip->oob_poi[eccpos[pos]] =
613                                 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
614                 }
615         }
616         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
617 out:
618         return 0;
619 }
620
621 static void atmel_pmecc_core_init(struct mtd_info *mtd)
622 {
623         struct nand_chip *nand_chip = mtd_to_nand(mtd);
624         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
625         uint32_t val = 0;
626         struct nand_ecclayout *ecc_layout;
627
628         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
629         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
630
631         switch (host->pmecc_corr_cap) {
632         case 2:
633                 val = PMECC_CFG_BCH_ERR2;
634                 break;
635         case 4:
636                 val = PMECC_CFG_BCH_ERR4;
637                 break;
638         case 8:
639                 val = PMECC_CFG_BCH_ERR8;
640                 break;
641         case 12:
642                 val = PMECC_CFG_BCH_ERR12;
643                 break;
644         case 24:
645                 val = PMECC_CFG_BCH_ERR24;
646                 break;
647         case 32:
648                 val = PMECC_CFG_BCH_ERR32;
649                 break;
650         }
651
652         if (host->pmecc_sector_size == 512)
653                 val |= PMECC_CFG_SECTOR512;
654         else if (host->pmecc_sector_size == 1024)
655                 val |= PMECC_CFG_SECTOR1024;
656
657         switch (host->pmecc_sector_number) {
658         case 1:
659                 val |= PMECC_CFG_PAGE_1SECTOR;
660                 break;
661         case 2:
662                 val |= PMECC_CFG_PAGE_2SECTORS;
663                 break;
664         case 4:
665                 val |= PMECC_CFG_PAGE_4SECTORS;
666                 break;
667         case 8:
668                 val |= PMECC_CFG_PAGE_8SECTORS;
669                 break;
670         }
671
672         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
673                 | PMECC_CFG_AUTO_DISABLE);
674         pmecc_writel(host->pmecc, cfg, val);
675
676         ecc_layout = nand_chip->ecc.layout;
677         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
678         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
679         pmecc_writel(host->pmecc, eaddr,
680                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
681         /* See datasheet about PMECC Clock Control Register */
682         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
683         pmecc_writel(host->pmecc, idr, 0xff);
684         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
685 }
686
687 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
688 /*
689  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
690  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
691  *                    ONFI ECC parameters.
692  * @host: point to an atmel_nand_host structure.
693  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
694  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
695  * @chip: point to an nand_chip structure.
696  * @cap: store the ONFI ECC correct bits capbility
697  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
698  *
699  * Return 0 if success. otherwise return the error code.
700  */
701 static int pmecc_choose_ecc(struct atmel_nand_host *host,
702                 struct nand_chip *chip,
703                 int *cap, int *sector_size)
704 {
705         /* Get ECC requirement from ONFI parameters */
706         *cap = *sector_size = 0;
707         if (chip->onfi_version) {
708                 *cap = chip->ecc_strength_ds;
709                 *sector_size = chip->ecc_step_ds;
710                 pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
711                          *cap, *sector_size);
712         }
713
714         if (*cap == 0 && *sector_size == 0) {
715                 /* Non-ONFI compliant */
716                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
717                 *cap = 2;
718                 *sector_size = 512;
719         }
720
721         /* If head file doesn't specify then use the one in ONFI parameters */
722         if (host->pmecc_corr_cap == 0) {
723                 /* use the most fitable ecc bits (the near bigger one ) */
724                 if (*cap <= 2)
725                         host->pmecc_corr_cap = 2;
726                 else if (*cap <= 4)
727                         host->pmecc_corr_cap = 4;
728                 else if (*cap <= 8)
729                         host->pmecc_corr_cap = 8;
730                 else if (*cap <= 12)
731                         host->pmecc_corr_cap = 12;
732                 else if (*cap <= 24)
733                         host->pmecc_corr_cap = 24;
734                 else
735 #ifdef CONFIG_SAMA5D2
736                         host->pmecc_corr_cap = 32;
737 #else
738                         host->pmecc_corr_cap = 24;
739 #endif
740         }
741         if (host->pmecc_sector_size == 0) {
742                 /* use the most fitable sector size (the near smaller one ) */
743                 if (*sector_size >= 1024)
744                         host->pmecc_sector_size = 1024;
745                 else if (*sector_size >= 512)
746                         host->pmecc_sector_size = 512;
747                 else
748                         return -EINVAL;
749         }
750         return 0;
751 }
752 #endif
753
754 #if defined(NO_GALOIS_TABLE_IN_ROM)
755 static uint16_t *pmecc_galois_table;
756 static inline int deg(unsigned int poly)
757 {
758         /* polynomial degree is the most-significant bit index */
759         return fls(poly) - 1;
760 }
761
762 static int build_gf_tables(int mm, unsigned int poly,
763                            int16_t *index_of, int16_t *alpha_to)
764 {
765         unsigned int i, x = 1;
766         const unsigned int k = 1 << deg(poly);
767         unsigned int nn = (1 << mm) - 1;
768
769         /* primitive polynomial must be of degree m */
770         if (k != (1u << mm))
771                 return -EINVAL;
772
773         for (i = 0; i < nn; i++) {
774                 alpha_to[i] = x;
775                 index_of[x] = i;
776                 if (i && (x == 1))
777                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
778                         return -EINVAL;
779                 x <<= 1;
780                 if (x & k)
781                         x ^= poly;
782         }
783
784         alpha_to[nn] = 1;
785         index_of[0] = 0;
786
787         return 0;
788 }
789
790 static uint16_t *create_lookup_table(int sector_size)
791 {
792         int degree = (sector_size == 512) ?
793                         PMECC_GF_DIMENSION_13 :
794                         PMECC_GF_DIMENSION_14;
795         unsigned int poly = (sector_size == 512) ?
796                         PMECC_GF_13_PRIMITIVE_POLY :
797                         PMECC_GF_14_PRIMITIVE_POLY;
798         int table_size = (sector_size == 512) ?
799                         PMECC_INDEX_TABLE_SIZE_512 :
800                         PMECC_INDEX_TABLE_SIZE_1024;
801
802         int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
803         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
804                 return NULL;
805
806         return (uint16_t *)addr;
807 }
808 #endif
809
810 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
811                 struct mtd_info *mtd)
812 {
813         struct atmel_nand_host *host;
814         int cap, sector_size;
815
816         host = &pmecc_host;
817         nand_set_controller_data(nand, host);
818
819         nand->ecc.mode = NAND_ECC_HW;
820         nand->ecc.calculate = NULL;
821         nand->ecc.correct = NULL;
822         nand->ecc.hwctl = NULL;
823
824 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
825         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
826
827 #ifdef CONFIG_PMECC_CAP
828         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
829 #endif
830 #ifdef CONFIG_PMECC_SECTOR_SIZE
831         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
832 #endif
833         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
834          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
835          * from ONFI.
836          */
837         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
838                 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
839                         cap, sector_size);
840                 return -EINVAL;
841         }
842
843         if (cap > host->pmecc_corr_cap)
844                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
845                                 host->pmecc_corr_cap, cap);
846         if (sector_size < host->pmecc_sector_size)
847                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
848                                 host->pmecc_sector_size, sector_size);
849 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
850         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
851         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
852 #endif
853
854         cap = host->pmecc_corr_cap;
855         sector_size = host->pmecc_sector_size;
856
857         /* TODO: need check whether cap & sector_size is validate */
858 #if defined(NO_GALOIS_TABLE_IN_ROM)
859         /*
860          * As pmecc_rom_base is the begin of the gallois field table, So the
861          * index offset just set as 0.
862          */
863         host->pmecc_index_table_offset = 0;
864 #else
865         if (host->pmecc_sector_size == 512)
866                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
867         else
868                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
869 #endif
870
871         pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
872                  cap, sector_size);
873
874         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
875         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
876                         ATMEL_BASE_PMERRLOC;
877 #if defined(NO_GALOIS_TABLE_IN_ROM)
878         pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
879         if (!pmecc_galois_table) {
880                 dev_err(host->dev, "out of memory\n");
881                 return -ENOMEM;
882         }
883
884         host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
885 #else
886         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
887 #endif
888
889         /* ECC is calculated for the whole page (1 step) */
890         nand->ecc.size = mtd->writesize;
891
892         /* set ECC page size and oob layout */
893         switch (mtd->writesize) {
894         case 2048:
895         case 4096:
896         case 8192:
897                 host->pmecc_degree = (sector_size == 512) ?
898                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
899                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
900                 host->pmecc_sector_number = mtd->writesize / sector_size;
901                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
902                         cap, sector_size);
903                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
904                 host->pmecc_index_of = host->pmecc_rom_base +
905                         host->pmecc_index_table_offset;
906
907                 nand->ecc.steps = 1;
908                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
909                                        host->pmecc_sector_number;
910
911                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
912                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
913                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
914                         return -EINVAL;
915                 }
916
917                 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
918                         dev_err(host->dev, "No room for ECC bytes\n");
919                         return -EINVAL;
920                 }
921                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
922                                         mtd->oobsize,
923                                         nand->ecc.bytes);
924                 nand->ecc.layout = &atmel_pmecc_oobinfo;
925                 break;
926         case 512:
927         case 1024:
928                 /* TODO */
929                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
930         default:
931                 /* page size not handled by HW ECC */
932                 /* switching back to soft ECC */
933                 nand->ecc.mode = NAND_ECC_SOFT;
934                 nand->ecc.read_page = NULL;
935                 nand->ecc.postpad = 0;
936                 nand->ecc.prepad = 0;
937                 nand->ecc.bytes = 0;
938                 return 0;
939         }
940
941         /* Allocate data for PMECC computation */
942         if (pmecc_data_alloc(host)) {
943                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
944                 return -ENOMEM;
945         }
946
947         nand->options |= NAND_NO_SUBPAGE_WRITE;
948         nand->ecc.read_page = atmel_nand_pmecc_read_page;
949         nand->ecc.write_page = atmel_nand_pmecc_write_page;
950         nand->ecc.strength = cap;
951
952         /* Check the PMECC ip version */
953         host->pmecc_version = pmecc_readl(host->pmerrloc, version);
954         dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
955
956         atmel_pmecc_core_init(mtd);
957
958         return 0;
959 }
960
961 #else
962
963 /* oob layout for large page size
964  * bad block info is on bytes 0 and 1
965  * the bytes have to be consecutives to avoid
966  * several NAND_CMD_RNDOUT during read
967  */
968 static struct nand_ecclayout atmel_oobinfo_large = {
969         .eccbytes = 4,
970         .eccpos = {60, 61, 62, 63},
971         .oobfree = {
972                 {2, 58}
973         },
974 };
975
976 /* oob layout for small page size
977  * bad block info is on bytes 4 and 5
978  * the bytes have to be consecutives to avoid
979  * several NAND_CMD_RNDOUT during read
980  */
981 static struct nand_ecclayout atmel_oobinfo_small = {
982         .eccbytes = 4,
983         .eccpos = {0, 1, 2, 3},
984         .oobfree = {
985                 {6, 10}
986         },
987 };
988
989 /*
990  * Calculate HW ECC
991  *
992  * function called after a write
993  *
994  * mtd:        MTD block structure
995  * dat:        raw data (unused)
996  * ecc_code:   buffer for ECC
997  */
998 static int atmel_nand_calculate(struct mtd_info *mtd,
999                 const u_char *dat, unsigned char *ecc_code)
1000 {
1001         unsigned int ecc_value;
1002
1003         /* get the first 2 ECC bytes */
1004         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1005
1006         ecc_code[0] = ecc_value & 0xFF;
1007         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1008
1009         /* get the last 2 ECC bytes */
1010         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1011
1012         ecc_code[2] = ecc_value & 0xFF;
1013         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * HW ECC read page function
1020  *
1021  * mtd:        mtd info structure
1022  * chip:       nand chip info structure
1023  * buf:        buffer to store read data
1024  * oob_required:    caller expects OOB data read to chip->oob_poi
1025  */
1026 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1027                                 uint8_t *buf, int oob_required, int page)
1028 {
1029         int eccsize = chip->ecc.size;
1030         int eccbytes = chip->ecc.bytes;
1031         uint32_t *eccpos = chip->ecc.layout->eccpos;
1032         uint8_t *p = buf;
1033         uint8_t *oob = chip->oob_poi;
1034         uint8_t *ecc_pos;
1035         int stat;
1036
1037         /* read the page */
1038         chip->read_buf(mtd, p, eccsize);
1039
1040         /* move to ECC position if needed */
1041         if (eccpos[0] != 0) {
1042                 /* This only works on large pages
1043                  * because the ECC controller waits for
1044                  * NAND_CMD_RNDOUTSTART after the
1045                  * NAND_CMD_RNDOUT.
1046                  * anyway, for small pages, the eccpos[0] == 0
1047                  */
1048                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1049                                 mtd->writesize + eccpos[0], -1);
1050         }
1051
1052         /* the ECC controller needs to read the ECC just after the data */
1053         ecc_pos = oob + eccpos[0];
1054         chip->read_buf(mtd, ecc_pos, eccbytes);
1055
1056         /* check if there's an error */
1057         stat = chip->ecc.correct(mtd, p, oob, NULL);
1058
1059         if (stat < 0)
1060                 mtd->ecc_stats.failed++;
1061         else
1062                 mtd->ecc_stats.corrected += stat;
1063
1064         /* get back to oob start (end of page) */
1065         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1066
1067         /* read the oob */
1068         chip->read_buf(mtd, oob, mtd->oobsize);
1069
1070         return 0;
1071 }
1072
1073 /*
1074  * HW ECC Correction
1075  *
1076  * function called after a read
1077  *
1078  * mtd:        MTD block structure
1079  * dat:        raw data read from the chip
1080  * read_ecc:   ECC from the chip (unused)
1081  * isnull:     unused
1082  *
1083  * Detect and correct a 1 bit error for a page
1084  */
1085 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1086                 u_char *read_ecc, u_char *isnull)
1087 {
1088         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1089         unsigned int ecc_status;
1090         unsigned int ecc_word, ecc_bit;
1091
1092         /* get the status from the Status Register */
1093         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1094
1095         /* if there's no error */
1096         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1097                 return 0;
1098
1099         /* get error bit offset (4 bits) */
1100         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1101         /* get word address (12 bits) */
1102         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1103         ecc_word >>= 4;
1104
1105         /* if there are multiple errors */
1106         if (ecc_status & ATMEL_ECC_MULERR) {
1107                 /* check if it is a freshly erased block
1108                  * (filled with 0xff) */
1109                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1110                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1111                         /* the block has just been erased, return OK */
1112                         return 0;
1113                 }
1114                 /* it doesn't seems to be a freshly
1115                  * erased block.
1116                  * We can't correct so many errors */
1117                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1118                                 " Unable to correct.\n");
1119                 return -EBADMSG;
1120         }
1121
1122         /* if there's a single bit error : we can correct it */
1123         if (ecc_status & ATMEL_ECC_ECCERR) {
1124                 /* there's nothing much to do here.
1125                  * the bit error is on the ECC itself.
1126                  */
1127                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1128                                 " Nothing to correct\n");
1129                 return 0;
1130         }
1131
1132         dev_warn(host->dev, "atmel_nand : one bit error on data."
1133                         " (word offset in the page :"
1134                         " 0x%x bit offset : 0x%x)\n",
1135                         ecc_word, ecc_bit);
1136         /* correct the error */
1137         if (nand_chip->options & NAND_BUSWIDTH_16) {
1138                 /* 16 bits words */
1139                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1140         } else {
1141                 /* 8 bits words */
1142                 dat[ecc_word] ^= (1 << ecc_bit);
1143         }
1144         dev_warn(host->dev, "atmel_nand : error corrected\n");
1145         return 1;
1146 }
1147
1148 /*
1149  * Enable HW ECC : unused on most chips
1150  */
1151 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1152 {
1153 }
1154
1155 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1156 {
1157         nand->ecc.mode = NAND_ECC_HW;
1158         nand->ecc.calculate = atmel_nand_calculate;
1159         nand->ecc.correct = atmel_nand_correct;
1160         nand->ecc.hwctl = atmel_nand_hwctl;
1161         nand->ecc.read_page = atmel_nand_read_page;
1162         nand->ecc.bytes = 4;
1163         nand->ecc.strength = 4;
1164
1165         if (nand->ecc.mode == NAND_ECC_HW) {
1166                 /* ECC is calculated for the whole page (1 step) */
1167                 nand->ecc.size = mtd->writesize;
1168
1169                 /* set ECC page size and oob layout */
1170                 switch (mtd->writesize) {
1171                 case 512:
1172                         nand->ecc.layout = &atmel_oobinfo_small;
1173                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1174                                         ATMEL_ECC_PAGESIZE_528);
1175                         break;
1176                 case 1024:
1177                         nand->ecc.layout = &atmel_oobinfo_large;
1178                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1179                                         ATMEL_ECC_PAGESIZE_1056);
1180                         break;
1181                 case 2048:
1182                         nand->ecc.layout = &atmel_oobinfo_large;
1183                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1184                                         ATMEL_ECC_PAGESIZE_2112);
1185                         break;
1186                 case 4096:
1187                         nand->ecc.layout = &atmel_oobinfo_large;
1188                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1189                                         ATMEL_ECC_PAGESIZE_4224);
1190                         break;
1191                 default:
1192                         /* page size not handled by HW ECC */
1193                         /* switching back to soft ECC */
1194                         nand->ecc.mode = NAND_ECC_SOFT;
1195                         nand->ecc.calculate = NULL;
1196                         nand->ecc.correct = NULL;
1197                         nand->ecc.hwctl = NULL;
1198                         nand->ecc.read_page = NULL;
1199                         nand->ecc.postpad = 0;
1200                         nand->ecc.prepad = 0;
1201                         nand->ecc.bytes = 0;
1202                         break;
1203                 }
1204         }
1205
1206         return 0;
1207 }
1208
1209 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1210
1211 #endif /* CONFIG_ATMEL_NAND_HWECC */
1212
1213 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1214                                          int cmd, unsigned int ctrl)
1215 {
1216         struct nand_chip *this = mtd_to_nand(mtd);
1217
1218         if (ctrl & NAND_CTRL_CHANGE) {
1219                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1220                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1221                              | CONFIG_SYS_NAND_MASK_CLE);
1222
1223                 if (ctrl & NAND_CLE)
1224                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1225                 if (ctrl & NAND_ALE)
1226                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1227
1228 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1229                 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1230                                     !(ctrl & NAND_NCE));
1231 #endif
1232                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1233         }
1234
1235         if (cmd != NAND_CMD_NONE)
1236                 writeb(cmd, this->IO_ADDR_W);
1237 }
1238
1239 #ifdef CONFIG_SYS_NAND_READY_PIN
1240 static int at91_nand_ready(struct mtd_info *mtd)
1241 {
1242         return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1243 }
1244 #endif
1245
1246 #ifdef CONFIG_SPL_BUILD
1247 /* The following code is for SPL */
1248 static struct mtd_info *mtd;
1249 static struct nand_chip nand_chip;
1250
1251 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1252 {
1253         struct nand_chip *this = mtd_to_nand(mtd);
1254         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1255         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1256                         unsigned int ctrl) = this->cmd_ctrl;
1257
1258         while (!this->dev_ready(mtd))
1259                 ;
1260
1261         if (cmd == NAND_CMD_READOOB) {
1262                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1263                 cmd = NAND_CMD_READ0;
1264         }
1265
1266         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1267
1268         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1269                 offs >>= 1;
1270
1271         hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1272         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1273         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1274         hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1275 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1276         hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1277 #endif
1278         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1279
1280         hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1281         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1282
1283         while (!this->dev_ready(mtd))
1284                 ;
1285
1286         return 0;
1287 }
1288
1289 static int nand_is_bad_block(int block)
1290 {
1291         struct nand_chip *this = mtd_to_nand(mtd);
1292
1293         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1294
1295         if (this->options & NAND_BUSWIDTH_16) {
1296                 if (readw(this->IO_ADDR_R) != 0xffff)
1297                         return 1;
1298         } else {
1299                 if (readb(this->IO_ADDR_R) != 0xff)
1300                         return 1;
1301         }
1302
1303         return 0;
1304 }
1305
1306 #ifdef CONFIG_SPL_NAND_ECC
1307 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1308 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1309                   CONFIG_SYS_NAND_ECCSIZE)
1310 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1311
1312 static int nand_read_page(int block, int page, void *dst)
1313 {
1314         struct nand_chip *this = mtd_to_nand(mtd);
1315         u_char ecc_calc[ECCTOTAL];
1316         u_char ecc_code[ECCTOTAL];
1317         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1318         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1319         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1320         int eccsteps = ECCSTEPS;
1321         int i;
1322         uint8_t *p = dst;
1323         nand_command(block, page, 0, NAND_CMD_READ0);
1324
1325         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1326                 if (this->ecc.mode != NAND_ECC_SOFT)
1327                         this->ecc.hwctl(mtd, NAND_ECC_READ);
1328                 this->read_buf(mtd, p, eccsize);
1329                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
1330         }
1331         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1332
1333         for (i = 0; i < ECCTOTAL; i++)
1334                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1335
1336         eccsteps = ECCSTEPS;
1337         p = dst;
1338
1339         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1340                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1341
1342         return 0;
1343 }
1344
1345 int spl_nand_erase_one(int block, int page)
1346 {
1347         struct nand_chip *this = mtd_to_nand(mtd);
1348         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1349                         unsigned int ctrl) = this->cmd_ctrl;
1350         int page_addr;
1351
1352         if (nand_chip.select_chip)
1353                 nand_chip.select_chip(mtd, 0);
1354
1355         page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1356         hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1357         /* Row address */
1358         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1359         hwctrl(mtd, ((page_addr >> 8) & 0xff),
1360                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1361 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1362         /* One more address cycle for devices > 128MiB */
1363         hwctrl(mtd, (page_addr >> 16) & 0x0f,
1364                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1365 #endif
1366         hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1367
1368         while (!this->dev_ready(mtd))
1369                 ;
1370
1371         nand_deselect();
1372
1373         return 0;
1374 }
1375 #else
1376 static int nand_read_page(int block, int page, void *dst)
1377 {
1378         struct nand_chip *this = mtd_to_nand(mtd);
1379
1380         nand_command(block, page, 0, NAND_CMD_READ0);
1381         atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1382
1383         return 0;
1384 }
1385 #endif /* CONFIG_SPL_NAND_ECC */
1386
1387 int at91_nand_wait_ready(struct mtd_info *mtd)
1388 {
1389         struct nand_chip *this = mtd_to_nand(mtd);
1390
1391         udelay(this->chip_delay);
1392
1393         return 1;
1394 }
1395
1396 int board_nand_init(struct nand_chip *nand)
1397 {
1398         int ret = 0;
1399
1400         nand->ecc.mode = NAND_ECC_SOFT;
1401 #ifdef CONFIG_SYS_NAND_DBW_16
1402         nand->options = NAND_BUSWIDTH_16;
1403         nand->read_buf = nand_read_buf16;
1404 #else
1405         nand->read_buf = nand_read_buf;
1406 #endif
1407         nand->cmd_ctrl = at91_nand_hwcontrol;
1408 #ifdef CONFIG_SYS_NAND_READY_PIN
1409         nand->dev_ready = at91_nand_ready;
1410 #else
1411         nand->dev_ready = at91_nand_wait_ready;
1412 #endif
1413         nand->chip_delay = 20;
1414 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1415         nand->bbt_options |= NAND_BBT_USE_FLASH;
1416 #endif
1417
1418 #ifdef CONFIG_ATMEL_NAND_HWECC
1419 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1420         ret = atmel_pmecc_nand_init_params(nand, mtd);
1421 #endif
1422 #endif
1423
1424         return ret;
1425 }
1426
1427 void nand_init(void)
1428 {
1429         mtd = nand_to_mtd(&nand_chip);
1430         mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1431         mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1432         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1433         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1434         board_nand_init(&nand_chip);
1435
1436 #ifdef CONFIG_SPL_NAND_ECC
1437         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1438                 nand_chip.ecc.calculate = nand_calculate_ecc;
1439                 nand_chip.ecc.correct = nand_correct_data;
1440         }
1441 #endif
1442
1443         if (nand_chip.select_chip)
1444                 nand_chip.select_chip(mtd, 0);
1445 }
1446
1447 void nand_deselect(void)
1448 {
1449         if (nand_chip.select_chip)
1450                 nand_chip.select_chip(mtd, -1);
1451 }
1452
1453 #include "nand_spl_loaders.c"
1454
1455 #else
1456
1457 #ifndef CONFIG_SYS_NAND_BASE_LIST
1458 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1459 #endif
1460 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1461 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1462
1463 int atmel_nand_chip_init(int devnum, ulong base_addr)
1464 {
1465         int ret;
1466         struct nand_chip *nand = &nand_chip[devnum];
1467         struct mtd_info *mtd = nand_to_mtd(nand);
1468
1469         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1470
1471 #ifdef CONFIG_NAND_ECC_BCH
1472         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1473 #else
1474         nand->ecc.mode = NAND_ECC_SOFT;
1475 #endif
1476 #ifdef CONFIG_SYS_NAND_DBW_16
1477         nand->options = NAND_BUSWIDTH_16;
1478 #endif
1479         nand->cmd_ctrl = at91_nand_hwcontrol;
1480 #ifdef CONFIG_SYS_NAND_READY_PIN
1481         nand->dev_ready = at91_nand_ready;
1482 #endif
1483         nand->chip_delay = 75;
1484 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1485         nand->bbt_options |= NAND_BBT_USE_FLASH;
1486 #endif
1487
1488         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1489         if (ret)
1490                 return ret;
1491
1492 #ifdef CONFIG_ATMEL_NAND_HWECC
1493 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1494         ret = atmel_pmecc_nand_init_params(nand, mtd);
1495 #else
1496         ret = atmel_hwecc_nand_init_param(nand, mtd);
1497 #endif
1498         if (ret)
1499                 return ret;
1500 #endif
1501
1502         ret = nand_scan_tail(mtd);
1503         if (!ret)
1504                 nand_register(devnum, mtd);
1505
1506         return ret;
1507 }
1508
1509 void board_nand_init(void)
1510 {
1511         int i;
1512         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1513                 if (atmel_nand_chip_init(i, base_addr[i]))
1514                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1515                                 i);
1516 }
1517 #endif /* CONFIG_SPL_BUILD */