dm: core: Create a new header file for 'compat' features
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / atmel_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007-2008
4  * Stelian Pop <stelian@popies.net>
5  * Lead Tech Design <www.leadtechdesign.com>
6  *
7  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
8  *
9  * Add Programmable Multibit ECC support for various AT91 SoC
10  *     (C) Copyright 2012 ATMEL, Hong Xu
11  */
12
13 #include <common.h>
14 #include <asm/gpio.h>
15 #include <asm/arch/gpio.h>
16 #include <dm/device_compat.h>
17 #include <dm/devres.h>
18
19 #include <malloc.h>
20 #include <nand.h>
21 #include <watchdog.h>
22 #include <linux/mtd/nand_ecc.h>
23
24 #ifdef CONFIG_ATMEL_NAND_HWECC
25
26 /* Register access macros */
27 #define ecc_readl(add, reg)                             \
28         readl(add + ATMEL_ECC_##reg)
29 #define ecc_writel(add, reg, value)                     \
30         writel((value), add + ATMEL_ECC_##reg)
31
32 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
33
34 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
35
36 #ifdef CONFIG_SPL_BUILD
37 #undef CONFIG_SYS_NAND_ONFI_DETECTION
38 #endif
39
40 struct atmel_nand_host {
41         struct pmecc_regs __iomem *pmecc;
42         struct pmecc_errloc_regs __iomem *pmerrloc;
43         void __iomem            *pmecc_rom_base;
44
45         u8              pmecc_corr_cap;
46         u16             pmecc_sector_size;
47         u32             pmecc_index_table_offset;
48         u32             pmecc_version;
49
50         int             pmecc_bytes_per_sector;
51         int             pmecc_sector_number;
52         int             pmecc_degree;   /* Degree of remainders */
53         int             pmecc_cw_len;   /* Length of codeword */
54
55         /* lookup table for alpha_to and index_of */
56         void __iomem    *pmecc_alpha_to;
57         void __iomem    *pmecc_index_of;
58
59         /* data for pmecc computation */
60         int16_t *pmecc_smu;
61         int16_t *pmecc_partial_syn;
62         int16_t *pmecc_si;
63         int16_t *pmecc_lmu; /* polynomal order */
64         int     *pmecc_mu;
65         int     *pmecc_dmu;
66         int     *pmecc_delta;
67 };
68
69 static struct atmel_nand_host pmecc_host;
70 static struct nand_ecclayout atmel_pmecc_oobinfo;
71
72 /*
73  * Return number of ecc bytes per sector according to sector size and
74  * correction capability
75  *
76  * Following table shows what at91 PMECC supported:
77  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
78  * =====================        ================        =================
79  *                2-bits                 4-bytes                  4-bytes
80  *                4-bits                 7-bytes                  7-bytes
81  *                8-bits                13-bytes                 14-bytes
82  *               12-bits                20-bytes                 21-bytes
83  *               24-bits                39-bytes                 42-bytes
84  *               32-bits                52-bytes                 56-bytes
85  */
86 static int pmecc_get_ecc_bytes(int cap, int sector_size)
87 {
88         int m = 12 + sector_size / 512;
89         return (m * cap + 7) / 8;
90 }
91
92 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
93         int oobsize, int ecc_len)
94 {
95         int i;
96
97         layout->eccbytes = ecc_len;
98
99         /* ECC will occupy the last ecc_len bytes continuously */
100         for (i = 0; i < ecc_len; i++)
101                 layout->eccpos[i] = oobsize - ecc_len + i;
102
103         layout->oobfree[0].offset = 2;
104         layout->oobfree[0].length =
105                 oobsize - ecc_len - layout->oobfree[0].offset;
106 }
107
108 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
109 {
110         int table_size;
111
112         table_size = host->pmecc_sector_size == 512 ?
113                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
114
115         /* the ALPHA lookup table is right behind the INDEX lookup table. */
116         return host->pmecc_rom_base + host->pmecc_index_table_offset +
117                         table_size * sizeof(int16_t);
118 }
119
120 static void pmecc_data_free(struct atmel_nand_host *host)
121 {
122         free(host->pmecc_partial_syn);
123         free(host->pmecc_si);
124         free(host->pmecc_lmu);
125         free(host->pmecc_smu);
126         free(host->pmecc_mu);
127         free(host->pmecc_dmu);
128         free(host->pmecc_delta);
129 }
130
131 static int pmecc_data_alloc(struct atmel_nand_host *host)
132 {
133         const int cap = host->pmecc_corr_cap;
134         int size;
135
136         size = (2 * cap + 1) * sizeof(int16_t);
137         host->pmecc_partial_syn = malloc(size);
138         host->pmecc_si = malloc(size);
139         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
140         host->pmecc_smu = malloc((cap + 2) * size);
141
142         size = (cap + 1) * sizeof(int);
143         host->pmecc_mu = malloc(size);
144         host->pmecc_dmu = malloc(size);
145         host->pmecc_delta = malloc(size);
146
147         if (host->pmecc_partial_syn &&
148                         host->pmecc_si &&
149                         host->pmecc_lmu &&
150                         host->pmecc_smu &&
151                         host->pmecc_mu &&
152                         host->pmecc_dmu &&
153                         host->pmecc_delta)
154                 return 0;
155
156         /* error happened */
157         pmecc_data_free(host);
158         return -ENOMEM;
159
160 }
161
162 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
163 {
164         struct nand_chip *nand_chip = mtd_to_nand(mtd);
165         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
166         int i;
167         uint32_t value;
168
169         /* Fill odd syndromes */
170         for (i = 0; i < host->pmecc_corr_cap; i++) {
171                 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
172                 if (i & 1)
173                         value >>= 16;
174                 value &= 0xffff;
175                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
176         }
177 }
178
179 static void pmecc_substitute(struct mtd_info *mtd)
180 {
181         struct nand_chip *nand_chip = mtd_to_nand(mtd);
182         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
183         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
184         int16_t __iomem *index_of = host->pmecc_index_of;
185         int16_t *partial_syn = host->pmecc_partial_syn;
186         const int cap = host->pmecc_corr_cap;
187         int16_t *si;
188         int i, j;
189
190         /* si[] is a table that holds the current syndrome value,
191          * an element of that table belongs to the field
192          */
193         si = host->pmecc_si;
194
195         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
196
197         /* Computation 2t syndromes based on S(x) */
198         /* Odd syndromes */
199         for (i = 1; i < 2 * cap; i += 2) {
200                 for (j = 0; j < host->pmecc_degree; j++) {
201                         if (partial_syn[i] & (0x1 << j))
202                                 si[i] = readw(alpha_to + i * j) ^ si[i];
203                 }
204         }
205         /* Even syndrome = (Odd syndrome) ** 2 */
206         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
207                 if (si[j] == 0) {
208                         si[i] = 0;
209                 } else {
210                         int16_t tmp;
211
212                         tmp = readw(index_of + si[j]);
213                         tmp = (tmp * 2) % host->pmecc_cw_len;
214                         si[i] = readw(alpha_to + tmp);
215                 }
216         }
217 }
218
219 /*
220  * This function defines a Berlekamp iterative procedure for
221  * finding the value of the error location polynomial.
222  * The input is si[], initialize by pmecc_substitute().
223  * The output is smu[][].
224  *
225  * This function is written according to chip datasheet Chapter:
226  * Find the Error Location Polynomial Sigma(x) of Section:
227  * Programmable Multibit ECC Control (PMECC).
228  */
229 static void pmecc_get_sigma(struct mtd_info *mtd)
230 {
231         struct nand_chip *nand_chip = mtd_to_nand(mtd);
232         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
233
234         int16_t *lmu = host->pmecc_lmu;
235         int16_t *si = host->pmecc_si;
236         int *mu = host->pmecc_mu;
237         int *dmu = host->pmecc_dmu;     /* Discrepancy */
238         int *delta = host->pmecc_delta; /* Delta order */
239         int cw_len = host->pmecc_cw_len;
240         const int16_t cap = host->pmecc_corr_cap;
241         const int num = 2 * cap + 1;
242         int16_t __iomem *index_of = host->pmecc_index_of;
243         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
244         int i, j, k;
245         uint32_t dmu_0_count, tmp;
246         int16_t *smu = host->pmecc_smu;
247
248         /* index of largest delta */
249         int ro;
250         int largest;
251         int diff;
252
253         /* Init the Sigma(x) */
254         memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
255
256         dmu_0_count = 0;
257
258         /* First Row */
259
260         /* Mu */
261         mu[0] = -1;
262
263         smu[0] = 1;
264
265         /* discrepancy set to 1 */
266         dmu[0] = 1;
267         /* polynom order set to 0 */
268         lmu[0] = 0;
269         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
270         delta[0] = -1;
271
272         /* Second Row */
273
274         /* Mu */
275         mu[1] = 0;
276         /* Sigma(x) set to 1 */
277         smu[num] = 1;
278
279         /* discrepancy set to S1 */
280         dmu[1] = si[1];
281
282         /* polynom order set to 0 */
283         lmu[1] = 0;
284
285         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
286         delta[1] = 0;
287
288         for (i = 1; i <= cap; i++) {
289                 mu[i + 1] = i << 1;
290                 /* Begin Computing Sigma (Mu+1) and L(mu) */
291                 /* check if discrepancy is set to 0 */
292                 if (dmu[i] == 0) {
293                         dmu_0_count++;
294
295                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
296                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
297                                 tmp += 2;
298                         else
299                                 tmp += 1;
300
301                         if (dmu_0_count == tmp) {
302                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
303                                         smu[(cap + 1) * num + j] =
304                                                         smu[i * num + j];
305
306                                 lmu[cap + 1] = lmu[i];
307                                 return;
308                         }
309
310                         /* copy polynom */
311                         for (j = 0; j <= lmu[i] >> 1; j++)
312                                 smu[(i + 1) * num + j] = smu[i * num + j];
313
314                         /* copy previous polynom order to the next */
315                         lmu[i + 1] = lmu[i];
316                 } else {
317                         ro = 0;
318                         largest = -1;
319                         /* find largest delta with dmu != 0 */
320                         for (j = 0; j < i; j++) {
321                                 if ((dmu[j]) && (delta[j] > largest)) {
322                                         largest = delta[j];
323                                         ro = j;
324                                 }
325                         }
326
327                         /* compute difference */
328                         diff = (mu[i] - mu[ro]);
329
330                         /* Compute degree of the new smu polynomial */
331                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
332                                 lmu[i + 1] = lmu[i];
333                         else
334                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
335
336                         /* Init smu[i+1] with 0 */
337                         for (k = 0; k < num; k++)
338                                 smu[(i + 1) * num + k] = 0;
339
340                         /* Compute smu[i+1] */
341                         for (k = 0; k <= lmu[ro] >> 1; k++) {
342                                 int16_t a, b, c;
343
344                                 if (!(smu[ro * num + k] && dmu[i]))
345                                         continue;
346                                 a = readw(index_of + dmu[i]);
347                                 b = readw(index_of + dmu[ro]);
348                                 c = readw(index_of + smu[ro * num + k]);
349                                 tmp = a + (cw_len - b) + c;
350                                 a = readw(alpha_to + tmp % cw_len);
351                                 smu[(i + 1) * num + (k + diff)] = a;
352                         }
353
354                         for (k = 0; k <= lmu[i] >> 1; k++)
355                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
356                 }
357
358                 /* End Computing Sigma (Mu+1) and L(mu) */
359                 /* In either case compute delta */
360                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
361
362                 /* Do not compute discrepancy for the last iteration */
363                 if (i >= cap)
364                         continue;
365
366                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
367                         tmp = 2 * (i - 1);
368                         if (k == 0) {
369                                 dmu[i + 1] = si[tmp + 3];
370                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
371                                 int16_t a, b, c;
372                                 a = readw(index_of +
373                                                 smu[(i + 1) * num + k]);
374                                 b = si[2 * (i - 1) + 3 - k];
375                                 c = readw(index_of + b);
376                                 tmp = a + c;
377                                 tmp %= cw_len;
378                                 dmu[i + 1] = readw(alpha_to + tmp) ^
379                                         dmu[i + 1];
380                         }
381                 }
382         }
383 }
384
385 static int pmecc_err_location(struct mtd_info *mtd)
386 {
387         struct nand_chip *nand_chip = mtd_to_nand(mtd);
388         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
389         const int cap = host->pmecc_corr_cap;
390         const int num = 2 * cap + 1;
391         int sector_size = host->pmecc_sector_size;
392         int err_nbr = 0;        /* number of error */
393         int roots_nbr;          /* number of roots */
394         int i;
395         uint32_t val;
396         int16_t *smu = host->pmecc_smu;
397         int timeout = PMECC_MAX_TIMEOUT_US;
398
399         pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
400
401         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
402                 pmecc_writel(host->pmerrloc, sigma[i],
403                              smu[(cap + 1) * num + i]);
404                 err_nbr++;
405         }
406
407         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
408         if (sector_size == 1024)
409                 val |= PMERRLOC_ELCFG_SECTOR_1024;
410
411         pmecc_writel(host->pmerrloc, elcfg, val);
412         pmecc_writel(host->pmerrloc, elen,
413                      sector_size * 8 + host->pmecc_degree * cap);
414
415         while (--timeout) {
416                 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
417                         break;
418                 WATCHDOG_RESET();
419                 udelay(1);
420         }
421
422         if (!timeout) {
423                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
424                 return -1;
425         }
426
427         roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
428                         >> 8;
429         /* Number of roots == degree of smu hence <= cap */
430         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
431                 return err_nbr - 1;
432
433         /* Number of roots does not match the degree of smu
434          * unable to correct error */
435         return -1;
436 }
437
438 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
439                 int sector_num, int extra_bytes, int err_nbr)
440 {
441         struct nand_chip *nand_chip = mtd_to_nand(mtd);
442         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
443         int i = 0;
444         int byte_pos, bit_pos, sector_size, pos;
445         uint32_t tmp;
446         uint8_t err_byte;
447
448         sector_size = host->pmecc_sector_size;
449
450         while (err_nbr) {
451                 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
452                 byte_pos = tmp / 8;
453                 bit_pos  = tmp % 8;
454
455                 if (byte_pos >= (sector_size + extra_bytes))
456                         BUG();  /* should never happen */
457
458                 if (byte_pos < sector_size) {
459                         err_byte = *(buf + byte_pos);
460                         *(buf + byte_pos) ^= (1 << bit_pos);
461
462                         pos = sector_num * host->pmecc_sector_size + byte_pos;
463                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
464                                 pos, bit_pos, err_byte, *(buf + byte_pos));
465                 } else {
466                         /* Bit flip in OOB area */
467                         tmp = sector_num * host->pmecc_bytes_per_sector
468                                         + (byte_pos - sector_size);
469                         err_byte = ecc[tmp];
470                         ecc[tmp] ^= (1 << bit_pos);
471
472                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
473                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
474                                 pos, bit_pos, err_byte, ecc[tmp]);
475                 }
476
477                 i++;
478                 err_nbr--;
479         }
480
481         return;
482 }
483
484 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
485         u8 *ecc)
486 {
487         struct nand_chip *nand_chip = mtd_to_nand(mtd);
488         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
489         int i, err_nbr, eccbytes;
490         uint8_t *buf_pos;
491
492         /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
493         if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
494                 goto normal_check;
495
496         eccbytes = nand_chip->ecc.bytes;
497         for (i = 0; i < eccbytes; i++)
498                 if (ecc[i] != 0xff)
499                         goto normal_check;
500         /* Erased page, return OK */
501         return 0;
502
503 normal_check:
504         for (i = 0; i < host->pmecc_sector_number; i++) {
505                 err_nbr = 0;
506                 if (pmecc_stat & 0x1) {
507                         buf_pos = buf + i * host->pmecc_sector_size;
508
509                         pmecc_gen_syndrome(mtd, i);
510                         pmecc_substitute(mtd);
511                         pmecc_get_sigma(mtd);
512
513                         err_nbr = pmecc_err_location(mtd);
514                         if (err_nbr == -1) {
515                                 dev_err(host->dev, "PMECC: Too many errors\n");
516                                 mtd->ecc_stats.failed++;
517                                 return -EBADMSG;
518                         } else {
519                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
520                                         host->pmecc_bytes_per_sector, err_nbr);
521                                 mtd->ecc_stats.corrected += err_nbr;
522                         }
523                 }
524                 pmecc_stat >>= 1;
525         }
526
527         return 0;
528 }
529
530 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
531         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
532 {
533         struct atmel_nand_host *host = nand_get_controller_data(chip);
534         int eccsize = chip->ecc.size;
535         uint8_t *oob = chip->oob_poi;
536         uint32_t *eccpos = chip->ecc.layout->eccpos;
537         uint32_t stat;
538         int timeout = PMECC_MAX_TIMEOUT_US;
539
540         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
541         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
542         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
543                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
544
545         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
546         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
547
548         chip->read_buf(mtd, buf, eccsize);
549         chip->read_buf(mtd, oob, mtd->oobsize);
550
551         while (--timeout) {
552                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
553                         break;
554                 WATCHDOG_RESET();
555                 udelay(1);
556         }
557
558         if (!timeout) {
559                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
560                 return -1;
561         }
562
563         stat = pmecc_readl(host->pmecc, isr);
564         if (stat != 0)
565                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
566                         return -EBADMSG;
567
568         return 0;
569 }
570
571 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
572                 struct nand_chip *chip, const uint8_t *buf,
573                 int oob_required, int page)
574 {
575         struct atmel_nand_host *host = nand_get_controller_data(chip);
576         uint32_t *eccpos = chip->ecc.layout->eccpos;
577         int i, j;
578         int timeout = PMECC_MAX_TIMEOUT_US;
579
580         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
581         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
582
583         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
584                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
585
586         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
587         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
588
589         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
590
591         while (--timeout) {
592                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
593                         break;
594                 WATCHDOG_RESET();
595                 udelay(1);
596         }
597
598         if (!timeout) {
599                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
600                 goto out;
601         }
602
603         for (i = 0; i < host->pmecc_sector_number; i++) {
604                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
605                         int pos;
606
607                         pos = i * host->pmecc_bytes_per_sector + j;
608                         chip->oob_poi[eccpos[pos]] =
609                                 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
610                 }
611         }
612         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
613 out:
614         return 0;
615 }
616
617 static void atmel_pmecc_core_init(struct mtd_info *mtd)
618 {
619         struct nand_chip *nand_chip = mtd_to_nand(mtd);
620         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
621         uint32_t val = 0;
622         struct nand_ecclayout *ecc_layout;
623
624         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
625         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
626
627         switch (host->pmecc_corr_cap) {
628         case 2:
629                 val = PMECC_CFG_BCH_ERR2;
630                 break;
631         case 4:
632                 val = PMECC_CFG_BCH_ERR4;
633                 break;
634         case 8:
635                 val = PMECC_CFG_BCH_ERR8;
636                 break;
637         case 12:
638                 val = PMECC_CFG_BCH_ERR12;
639                 break;
640         case 24:
641                 val = PMECC_CFG_BCH_ERR24;
642                 break;
643         case 32:
644                 val = PMECC_CFG_BCH_ERR32;
645                 break;
646         }
647
648         if (host->pmecc_sector_size == 512)
649                 val |= PMECC_CFG_SECTOR512;
650         else if (host->pmecc_sector_size == 1024)
651                 val |= PMECC_CFG_SECTOR1024;
652
653         switch (host->pmecc_sector_number) {
654         case 1:
655                 val |= PMECC_CFG_PAGE_1SECTOR;
656                 break;
657         case 2:
658                 val |= PMECC_CFG_PAGE_2SECTORS;
659                 break;
660         case 4:
661                 val |= PMECC_CFG_PAGE_4SECTORS;
662                 break;
663         case 8:
664                 val |= PMECC_CFG_PAGE_8SECTORS;
665                 break;
666         }
667
668         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
669                 | PMECC_CFG_AUTO_DISABLE);
670         pmecc_writel(host->pmecc, cfg, val);
671
672         ecc_layout = nand_chip->ecc.layout;
673         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
674         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
675         pmecc_writel(host->pmecc, eaddr,
676                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
677         /* See datasheet about PMECC Clock Control Register */
678         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
679         pmecc_writel(host->pmecc, idr, 0xff);
680         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
681 }
682
683 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
684 /*
685  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
686  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
687  *                    ONFI ECC parameters.
688  * @host: point to an atmel_nand_host structure.
689  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
690  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
691  * @chip: point to an nand_chip structure.
692  * @cap: store the ONFI ECC correct bits capbility
693  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
694  *
695  * Return 0 if success. otherwise return the error code.
696  */
697 static int pmecc_choose_ecc(struct atmel_nand_host *host,
698                 struct nand_chip *chip,
699                 int *cap, int *sector_size)
700 {
701         /* Get ECC requirement from ONFI parameters */
702         *cap = *sector_size = 0;
703         if (chip->onfi_version) {
704                 *cap = chip->ecc_strength_ds;
705                 *sector_size = chip->ecc_step_ds;
706                 pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
707                          *cap, *sector_size);
708         }
709
710         if (*cap == 0 && *sector_size == 0) {
711                 /* Non-ONFI compliant */
712                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
713                 *cap = 2;
714                 *sector_size = 512;
715         }
716
717         /* If head file doesn't specify then use the one in ONFI parameters */
718         if (host->pmecc_corr_cap == 0) {
719                 /* use the most fitable ecc bits (the near bigger one ) */
720                 if (*cap <= 2)
721                         host->pmecc_corr_cap = 2;
722                 else if (*cap <= 4)
723                         host->pmecc_corr_cap = 4;
724                 else if (*cap <= 8)
725                         host->pmecc_corr_cap = 8;
726                 else if (*cap <= 12)
727                         host->pmecc_corr_cap = 12;
728                 else if (*cap <= 24)
729                         host->pmecc_corr_cap = 24;
730                 else
731 #ifdef CONFIG_SAMA5D2
732                         host->pmecc_corr_cap = 32;
733 #else
734                         host->pmecc_corr_cap = 24;
735 #endif
736         }
737         if (host->pmecc_sector_size == 0) {
738                 /* use the most fitable sector size (the near smaller one ) */
739                 if (*sector_size >= 1024)
740                         host->pmecc_sector_size = 1024;
741                 else if (*sector_size >= 512)
742                         host->pmecc_sector_size = 512;
743                 else
744                         return -EINVAL;
745         }
746         return 0;
747 }
748 #endif
749
750 #if defined(NO_GALOIS_TABLE_IN_ROM)
751 static uint16_t *pmecc_galois_table;
752 static inline int deg(unsigned int poly)
753 {
754         /* polynomial degree is the most-significant bit index */
755         return fls(poly) - 1;
756 }
757
758 static int build_gf_tables(int mm, unsigned int poly,
759                            int16_t *index_of, int16_t *alpha_to)
760 {
761         unsigned int i, x = 1;
762         const unsigned int k = 1 << deg(poly);
763         unsigned int nn = (1 << mm) - 1;
764
765         /* primitive polynomial must be of degree m */
766         if (k != (1u << mm))
767                 return -EINVAL;
768
769         for (i = 0; i < nn; i++) {
770                 alpha_to[i] = x;
771                 index_of[x] = i;
772                 if (i && (x == 1))
773                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
774                         return -EINVAL;
775                 x <<= 1;
776                 if (x & k)
777                         x ^= poly;
778         }
779
780         alpha_to[nn] = 1;
781         index_of[0] = 0;
782
783         return 0;
784 }
785
786 static uint16_t *create_lookup_table(int sector_size)
787 {
788         int degree = (sector_size == 512) ?
789                         PMECC_GF_DIMENSION_13 :
790                         PMECC_GF_DIMENSION_14;
791         unsigned int poly = (sector_size == 512) ?
792                         PMECC_GF_13_PRIMITIVE_POLY :
793                         PMECC_GF_14_PRIMITIVE_POLY;
794         int table_size = (sector_size == 512) ?
795                         PMECC_INDEX_TABLE_SIZE_512 :
796                         PMECC_INDEX_TABLE_SIZE_1024;
797
798         int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
799         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
800                 return NULL;
801
802         return (uint16_t *)addr;
803 }
804 #endif
805
806 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
807                 struct mtd_info *mtd)
808 {
809         struct atmel_nand_host *host;
810         int cap, sector_size;
811
812         host = &pmecc_host;
813         nand_set_controller_data(nand, host);
814
815         nand->ecc.mode = NAND_ECC_HW;
816         nand->ecc.calculate = NULL;
817         nand->ecc.correct = NULL;
818         nand->ecc.hwctl = NULL;
819
820 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
821         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
822
823 #ifdef CONFIG_PMECC_CAP
824         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
825 #endif
826 #ifdef CONFIG_PMECC_SECTOR_SIZE
827         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
828 #endif
829         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
830          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
831          * from ONFI.
832          */
833         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
834                 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
835                         cap, sector_size);
836                 return -EINVAL;
837         }
838
839         if (cap > host->pmecc_corr_cap)
840                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
841                                 host->pmecc_corr_cap, cap);
842         if (sector_size < host->pmecc_sector_size)
843                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
844                                 host->pmecc_sector_size, sector_size);
845 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
846         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
847         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
848 #endif
849
850         cap = host->pmecc_corr_cap;
851         sector_size = host->pmecc_sector_size;
852
853         /* TODO: need check whether cap & sector_size is validate */
854 #if defined(NO_GALOIS_TABLE_IN_ROM)
855         /*
856          * As pmecc_rom_base is the begin of the gallois field table, So the
857          * index offset just set as 0.
858          */
859         host->pmecc_index_table_offset = 0;
860 #else
861         if (host->pmecc_sector_size == 512)
862                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
863         else
864                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
865 #endif
866
867         pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
868                  cap, sector_size);
869
870         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
871         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
872                         ATMEL_BASE_PMERRLOC;
873 #if defined(NO_GALOIS_TABLE_IN_ROM)
874         pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
875         if (!pmecc_galois_table) {
876                 dev_err(host->dev, "out of memory\n");
877                 return -ENOMEM;
878         }
879
880         host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
881 #else
882         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
883 #endif
884
885         /* ECC is calculated for the whole page (1 step) */
886         nand->ecc.size = mtd->writesize;
887
888         /* set ECC page size and oob layout */
889         switch (mtd->writesize) {
890         case 2048:
891         case 4096:
892         case 8192:
893                 host->pmecc_degree = (sector_size == 512) ?
894                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
895                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
896                 host->pmecc_sector_number = mtd->writesize / sector_size;
897                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
898                         cap, sector_size);
899                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
900                 host->pmecc_index_of = host->pmecc_rom_base +
901                         host->pmecc_index_table_offset;
902
903                 nand->ecc.steps = 1;
904                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
905                                        host->pmecc_sector_number;
906
907                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
908                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
909                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
910                         return -EINVAL;
911                 }
912
913                 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
914                         dev_err(host->dev, "No room for ECC bytes\n");
915                         return -EINVAL;
916                 }
917                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
918                                         mtd->oobsize,
919                                         nand->ecc.bytes);
920                 nand->ecc.layout = &atmel_pmecc_oobinfo;
921                 break;
922         case 512:
923         case 1024:
924                 /* TODO */
925                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
926         default:
927                 /* page size not handled by HW ECC */
928                 /* switching back to soft ECC */
929                 nand->ecc.mode = NAND_ECC_SOFT;
930                 nand->ecc.read_page = NULL;
931                 nand->ecc.postpad = 0;
932                 nand->ecc.prepad = 0;
933                 nand->ecc.bytes = 0;
934                 return 0;
935         }
936
937         /* Allocate data for PMECC computation */
938         if (pmecc_data_alloc(host)) {
939                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
940                 return -ENOMEM;
941         }
942
943         nand->options |= NAND_NO_SUBPAGE_WRITE;
944         nand->ecc.read_page = atmel_nand_pmecc_read_page;
945         nand->ecc.write_page = atmel_nand_pmecc_write_page;
946         nand->ecc.strength = cap;
947
948         /* Check the PMECC ip version */
949         host->pmecc_version = pmecc_readl(host->pmerrloc, version);
950         dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
951
952         atmel_pmecc_core_init(mtd);
953
954         return 0;
955 }
956
957 #else
958
959 /* oob layout for large page size
960  * bad block info is on bytes 0 and 1
961  * the bytes have to be consecutives to avoid
962  * several NAND_CMD_RNDOUT during read
963  */
964 static struct nand_ecclayout atmel_oobinfo_large = {
965         .eccbytes = 4,
966         .eccpos = {60, 61, 62, 63},
967         .oobfree = {
968                 {2, 58}
969         },
970 };
971
972 /* oob layout for small page size
973  * bad block info is on bytes 4 and 5
974  * the bytes have to be consecutives to avoid
975  * several NAND_CMD_RNDOUT during read
976  */
977 static struct nand_ecclayout atmel_oobinfo_small = {
978         .eccbytes = 4,
979         .eccpos = {0, 1, 2, 3},
980         .oobfree = {
981                 {6, 10}
982         },
983 };
984
985 /*
986  * Calculate HW ECC
987  *
988  * function called after a write
989  *
990  * mtd:        MTD block structure
991  * dat:        raw data (unused)
992  * ecc_code:   buffer for ECC
993  */
994 static int atmel_nand_calculate(struct mtd_info *mtd,
995                 const u_char *dat, unsigned char *ecc_code)
996 {
997         unsigned int ecc_value;
998
999         /* get the first 2 ECC bytes */
1000         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1001
1002         ecc_code[0] = ecc_value & 0xFF;
1003         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1004
1005         /* get the last 2 ECC bytes */
1006         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1007
1008         ecc_code[2] = ecc_value & 0xFF;
1009         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1010
1011         return 0;
1012 }
1013
1014 /*
1015  * HW ECC read page function
1016  *
1017  * mtd:        mtd info structure
1018  * chip:       nand chip info structure
1019  * buf:        buffer to store read data
1020  * oob_required:    caller expects OOB data read to chip->oob_poi
1021  */
1022 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1023                                 uint8_t *buf, int oob_required, int page)
1024 {
1025         int eccsize = chip->ecc.size;
1026         int eccbytes = chip->ecc.bytes;
1027         uint32_t *eccpos = chip->ecc.layout->eccpos;
1028         uint8_t *p = buf;
1029         uint8_t *oob = chip->oob_poi;
1030         uint8_t *ecc_pos;
1031         int stat;
1032
1033         /* read the page */
1034         chip->read_buf(mtd, p, eccsize);
1035
1036         /* move to ECC position if needed */
1037         if (eccpos[0] != 0) {
1038                 /* This only works on large pages
1039                  * because the ECC controller waits for
1040                  * NAND_CMD_RNDOUTSTART after the
1041                  * NAND_CMD_RNDOUT.
1042                  * anyway, for small pages, the eccpos[0] == 0
1043                  */
1044                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1045                                 mtd->writesize + eccpos[0], -1);
1046         }
1047
1048         /* the ECC controller needs to read the ECC just after the data */
1049         ecc_pos = oob + eccpos[0];
1050         chip->read_buf(mtd, ecc_pos, eccbytes);
1051
1052         /* check if there's an error */
1053         stat = chip->ecc.correct(mtd, p, oob, NULL);
1054
1055         if (stat < 0)
1056                 mtd->ecc_stats.failed++;
1057         else
1058                 mtd->ecc_stats.corrected += stat;
1059
1060         /* get back to oob start (end of page) */
1061         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1062
1063         /* read the oob */
1064         chip->read_buf(mtd, oob, mtd->oobsize);
1065
1066         return 0;
1067 }
1068
1069 /*
1070  * HW ECC Correction
1071  *
1072  * function called after a read
1073  *
1074  * mtd:        MTD block structure
1075  * dat:        raw data read from the chip
1076  * read_ecc:   ECC from the chip (unused)
1077  * isnull:     unused
1078  *
1079  * Detect and correct a 1 bit error for a page
1080  */
1081 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1082                 u_char *read_ecc, u_char *isnull)
1083 {
1084         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1085         unsigned int ecc_status;
1086         unsigned int ecc_word, ecc_bit;
1087
1088         /* get the status from the Status Register */
1089         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1090
1091         /* if there's no error */
1092         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1093                 return 0;
1094
1095         /* get error bit offset (4 bits) */
1096         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1097         /* get word address (12 bits) */
1098         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1099         ecc_word >>= 4;
1100
1101         /* if there are multiple errors */
1102         if (ecc_status & ATMEL_ECC_MULERR) {
1103                 /* check if it is a freshly erased block
1104                  * (filled with 0xff) */
1105                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1106                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1107                         /* the block has just been erased, return OK */
1108                         return 0;
1109                 }
1110                 /* it doesn't seems to be a freshly
1111                  * erased block.
1112                  * We can't correct so many errors */
1113                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1114                                 " Unable to correct.\n");
1115                 return -EBADMSG;
1116         }
1117
1118         /* if there's a single bit error : we can correct it */
1119         if (ecc_status & ATMEL_ECC_ECCERR) {
1120                 /* there's nothing much to do here.
1121                  * the bit error is on the ECC itself.
1122                  */
1123                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1124                                 " Nothing to correct\n");
1125                 return 0;
1126         }
1127
1128         dev_warn(host->dev, "atmel_nand : one bit error on data."
1129                         " (word offset in the page :"
1130                         " 0x%x bit offset : 0x%x)\n",
1131                         ecc_word, ecc_bit);
1132         /* correct the error */
1133         if (nand_chip->options & NAND_BUSWIDTH_16) {
1134                 /* 16 bits words */
1135                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1136         } else {
1137                 /* 8 bits words */
1138                 dat[ecc_word] ^= (1 << ecc_bit);
1139         }
1140         dev_warn(host->dev, "atmel_nand : error corrected\n");
1141         return 1;
1142 }
1143
1144 /*
1145  * Enable HW ECC : unused on most chips
1146  */
1147 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1148 {
1149 }
1150
1151 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1152 {
1153         nand->ecc.mode = NAND_ECC_HW;
1154         nand->ecc.calculate = atmel_nand_calculate;
1155         nand->ecc.correct = atmel_nand_correct;
1156         nand->ecc.hwctl = atmel_nand_hwctl;
1157         nand->ecc.read_page = atmel_nand_read_page;
1158         nand->ecc.bytes = 4;
1159         nand->ecc.strength = 4;
1160
1161         if (nand->ecc.mode == NAND_ECC_HW) {
1162                 /* ECC is calculated for the whole page (1 step) */
1163                 nand->ecc.size = mtd->writesize;
1164
1165                 /* set ECC page size and oob layout */
1166                 switch (mtd->writesize) {
1167                 case 512:
1168                         nand->ecc.layout = &atmel_oobinfo_small;
1169                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1170                                         ATMEL_ECC_PAGESIZE_528);
1171                         break;
1172                 case 1024:
1173                         nand->ecc.layout = &atmel_oobinfo_large;
1174                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1175                                         ATMEL_ECC_PAGESIZE_1056);
1176                         break;
1177                 case 2048:
1178                         nand->ecc.layout = &atmel_oobinfo_large;
1179                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1180                                         ATMEL_ECC_PAGESIZE_2112);
1181                         break;
1182                 case 4096:
1183                         nand->ecc.layout = &atmel_oobinfo_large;
1184                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1185                                         ATMEL_ECC_PAGESIZE_4224);
1186                         break;
1187                 default:
1188                         /* page size not handled by HW ECC */
1189                         /* switching back to soft ECC */
1190                         nand->ecc.mode = NAND_ECC_SOFT;
1191                         nand->ecc.calculate = NULL;
1192                         nand->ecc.correct = NULL;
1193                         nand->ecc.hwctl = NULL;
1194                         nand->ecc.read_page = NULL;
1195                         nand->ecc.postpad = 0;
1196                         nand->ecc.prepad = 0;
1197                         nand->ecc.bytes = 0;
1198                         break;
1199                 }
1200         }
1201
1202         return 0;
1203 }
1204
1205 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1206
1207 #endif /* CONFIG_ATMEL_NAND_HWECC */
1208
1209 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1210                                          int cmd, unsigned int ctrl)
1211 {
1212         struct nand_chip *this = mtd_to_nand(mtd);
1213
1214         if (ctrl & NAND_CTRL_CHANGE) {
1215                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1216                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1217                              | CONFIG_SYS_NAND_MASK_CLE);
1218
1219                 if (ctrl & NAND_CLE)
1220                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1221                 if (ctrl & NAND_ALE)
1222                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1223
1224 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1225                 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1226                                     !(ctrl & NAND_NCE));
1227 #endif
1228                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1229         }
1230
1231         if (cmd != NAND_CMD_NONE)
1232                 writeb(cmd, this->IO_ADDR_W);
1233 }
1234
1235 #ifdef CONFIG_SYS_NAND_READY_PIN
1236 static int at91_nand_ready(struct mtd_info *mtd)
1237 {
1238         return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1239 }
1240 #endif
1241
1242 #ifdef CONFIG_SPL_BUILD
1243 /* The following code is for SPL */
1244 static struct mtd_info *mtd;
1245 static struct nand_chip nand_chip;
1246
1247 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1248 {
1249         struct nand_chip *this = mtd_to_nand(mtd);
1250         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1251         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1252                         unsigned int ctrl) = this->cmd_ctrl;
1253
1254         while (!this->dev_ready(mtd))
1255                 ;
1256
1257         if (cmd == NAND_CMD_READOOB) {
1258                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1259                 cmd = NAND_CMD_READ0;
1260         }
1261
1262         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1263
1264         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1265                 offs >>= 1;
1266
1267         hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1268         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1269         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1270         hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1271 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1272         hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1273 #endif
1274         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1275
1276         hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1277         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1278
1279         while (!this->dev_ready(mtd))
1280                 ;
1281
1282         return 0;
1283 }
1284
1285 static int nand_is_bad_block(int block)
1286 {
1287         struct nand_chip *this = mtd_to_nand(mtd);
1288
1289         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1290
1291         if (this->options & NAND_BUSWIDTH_16) {
1292                 if (readw(this->IO_ADDR_R) != 0xffff)
1293                         return 1;
1294         } else {
1295                 if (readb(this->IO_ADDR_R) != 0xff)
1296                         return 1;
1297         }
1298
1299         return 0;
1300 }
1301
1302 #ifdef CONFIG_SPL_NAND_ECC
1303 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1304 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1305                   CONFIG_SYS_NAND_ECCSIZE)
1306 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1307
1308 static int nand_read_page(int block, int page, void *dst)
1309 {
1310         struct nand_chip *this = mtd_to_nand(mtd);
1311         u_char ecc_calc[ECCTOTAL];
1312         u_char ecc_code[ECCTOTAL];
1313         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1314         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1315         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1316         int eccsteps = ECCSTEPS;
1317         int i;
1318         uint8_t *p = dst;
1319         nand_command(block, page, 0, NAND_CMD_READ0);
1320
1321         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1322                 if (this->ecc.mode != NAND_ECC_SOFT)
1323                         this->ecc.hwctl(mtd, NAND_ECC_READ);
1324                 this->read_buf(mtd, p, eccsize);
1325                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
1326         }
1327         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1328
1329         for (i = 0; i < ECCTOTAL; i++)
1330                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1331
1332         eccsteps = ECCSTEPS;
1333         p = dst;
1334
1335         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1336                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1337
1338         return 0;
1339 }
1340
1341 int spl_nand_erase_one(int block, int page)
1342 {
1343         struct nand_chip *this = mtd_to_nand(mtd);
1344         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1345                         unsigned int ctrl) = this->cmd_ctrl;
1346         int page_addr;
1347
1348         if (nand_chip.select_chip)
1349                 nand_chip.select_chip(mtd, 0);
1350
1351         page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1352         hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1353         /* Row address */
1354         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1355         hwctrl(mtd, ((page_addr >> 8) & 0xff),
1356                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1357 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1358         /* One more address cycle for devices > 128MiB */
1359         hwctrl(mtd, (page_addr >> 16) & 0x0f,
1360                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1361 #endif
1362         hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1363
1364         while (!this->dev_ready(mtd))
1365                 ;
1366
1367         nand_deselect();
1368
1369         return 0;
1370 }
1371 #else
1372 static int nand_read_page(int block, int page, void *dst)
1373 {
1374         struct nand_chip *this = mtd_to_nand(mtd);
1375
1376         nand_command(block, page, 0, NAND_CMD_READ0);
1377         atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1378
1379         return 0;
1380 }
1381 #endif /* CONFIG_SPL_NAND_ECC */
1382
1383 int at91_nand_wait_ready(struct mtd_info *mtd)
1384 {
1385         struct nand_chip *this = mtd_to_nand(mtd);
1386
1387         udelay(this->chip_delay);
1388
1389         return 1;
1390 }
1391
1392 int board_nand_init(struct nand_chip *nand)
1393 {
1394         int ret = 0;
1395
1396         nand->ecc.mode = NAND_ECC_SOFT;
1397 #ifdef CONFIG_SYS_NAND_DBW_16
1398         nand->options = NAND_BUSWIDTH_16;
1399         nand->read_buf = nand_read_buf16;
1400 #else
1401         nand->read_buf = nand_read_buf;
1402 #endif
1403         nand->cmd_ctrl = at91_nand_hwcontrol;
1404 #ifdef CONFIG_SYS_NAND_READY_PIN
1405         nand->dev_ready = at91_nand_ready;
1406 #else
1407         nand->dev_ready = at91_nand_wait_ready;
1408 #endif
1409         nand->chip_delay = 20;
1410 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1411         nand->bbt_options |= NAND_BBT_USE_FLASH;
1412 #endif
1413
1414 #ifdef CONFIG_ATMEL_NAND_HWECC
1415 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1416         ret = atmel_pmecc_nand_init_params(nand, mtd);
1417 #endif
1418 #endif
1419
1420         return ret;
1421 }
1422
1423 void nand_init(void)
1424 {
1425         mtd = nand_to_mtd(&nand_chip);
1426         mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1427         mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1428         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1429         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1430         board_nand_init(&nand_chip);
1431
1432 #ifdef CONFIG_SPL_NAND_ECC
1433         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1434                 nand_chip.ecc.calculate = nand_calculate_ecc;
1435                 nand_chip.ecc.correct = nand_correct_data;
1436         }
1437 #endif
1438
1439         if (nand_chip.select_chip)
1440                 nand_chip.select_chip(mtd, 0);
1441 }
1442
1443 void nand_deselect(void)
1444 {
1445         if (nand_chip.select_chip)
1446                 nand_chip.select_chip(mtd, -1);
1447 }
1448
1449 #include "nand_spl_loaders.c"
1450
1451 #else
1452
1453 #ifndef CONFIG_SYS_NAND_BASE_LIST
1454 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1455 #endif
1456 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1457 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1458
1459 int atmel_nand_chip_init(int devnum, ulong base_addr)
1460 {
1461         int ret;
1462         struct nand_chip *nand = &nand_chip[devnum];
1463         struct mtd_info *mtd = nand_to_mtd(nand);
1464
1465         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1466
1467 #ifdef CONFIG_NAND_ECC_BCH
1468         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1469 #else
1470         nand->ecc.mode = NAND_ECC_SOFT;
1471 #endif
1472 #ifdef CONFIG_SYS_NAND_DBW_16
1473         nand->options = NAND_BUSWIDTH_16;
1474 #endif
1475         nand->cmd_ctrl = at91_nand_hwcontrol;
1476 #ifdef CONFIG_SYS_NAND_READY_PIN
1477         nand->dev_ready = at91_nand_ready;
1478 #endif
1479         nand->chip_delay = 75;
1480 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1481         nand->bbt_options |= NAND_BBT_USE_FLASH;
1482 #endif
1483
1484         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1485         if (ret)
1486                 return ret;
1487
1488 #ifdef CONFIG_ATMEL_NAND_HWECC
1489 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1490         ret = atmel_pmecc_nand_init_params(nand, mtd);
1491 #else
1492         ret = atmel_hwecc_nand_init_param(nand, mtd);
1493 #endif
1494         if (ret)
1495                 return ret;
1496 #endif
1497
1498         ret = nand_scan_tail(mtd);
1499         if (!ret)
1500                 nand_register(devnum, mtd);
1501
1502         return ret;
1503 }
1504
1505 void board_nand_init(void)
1506 {
1507         int i;
1508         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1509                 if (atmel_nand_chip_init(i, base_addr[i]))
1510                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1511                                 i);
1512 }
1513 #endif /* CONFIG_SPL_BUILD */