2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
5 * See file CREDITS for list of people who contributed to this
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
26 #include <asm/errno.h>
27 #include <asm/arch/mem.h>
28 #include <asm/arch/omap_gpmc.h>
29 #include <linux/mtd/nand_ecc.h>
30 #include <linux/compiler.h>
34 static __maybe_unused struct nand_ecclayout hw_nand_oob =
35 GPMC_NAND_HW_ECC_LAYOUT;
38 * omap_nand_hwcontrol - Set the address pointers corretly for the
39 * following address/data/command operation
41 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
44 register struct nand_chip *this = mtd->priv;
47 * Point the IO_ADDR to DATA and ADDRESS registers instead
51 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
52 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
54 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
55 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
57 case NAND_CTRL_CHANGE | NAND_NCE:
58 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
62 if (cmd != NAND_CMD_NONE)
63 writeb(cmd, this->IO_ADDR_W);
66 #ifdef CONFIG_SPL_BUILD
67 /* Check wait pin as dev ready indicator */
68 int omap_spl_dev_ready(struct mtd_info *mtd)
70 return gpmc_cfg->status & (1 << 8);
75 * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
77 * @mtd: MTD device structure
80 static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
83 * Init ECC Control Register
84 * Clear all ECC | Enable Reg1
86 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
87 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
91 * gen_true_ecc - This function will generate true ECC value, which
92 * can be used when correcting data read from NAND flash memory core
94 * @ecc_buf: buffer to store ecc code
96 * @return: re-formatted ECC value
98 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
100 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
101 ((ecc_buf[2] & 0x0F) << 8);
105 * omap_correct_data - Compares the ecc read from nand spare area with ECC
106 * registers values and corrects one bit error if it has occured
107 * Further details can be had from OMAP TRM and the following selected links:
108 * http://en.wikipedia.org/wiki/Hamming_code
109 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
111 * @mtd: MTD device structure
113 * @read_ecc: ecc read from nand flash
114 * @calc_ecc: ecc read from ECC registers
116 * @return 0 if data is OK or corrected, else returns -1
118 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
119 uint8_t *read_ecc, uint8_t *calc_ecc)
121 uint32_t orig_ecc, new_ecc, res, hm;
122 uint16_t parity_bits, byte;
125 /* Regenerate the orginal ECC */
126 orig_ecc = gen_true_ecc(read_ecc);
127 new_ecc = gen_true_ecc(calc_ecc);
128 /* Get the XOR of real ecc */
129 res = orig_ecc ^ new_ecc;
131 /* Get the hamming width */
133 /* Single bit errors can be corrected! */
135 /* Correctable data! */
136 parity_bits = res >> 16;
137 bit = (parity_bits & 0x7);
138 byte = (parity_bits >> 3) & 0x1FF;
139 /* Flip the bit to correct */
140 dat[byte] ^= (0x1 << bit);
141 } else if (hm == 1) {
142 printf("Error: Ecc is wrong\n");
143 /* ECC itself is corrupted */
147 * hm distance != parity pairs OR one, could mean 2 bit
148 * error OR potentially be on a blank page..
149 * orig_ecc: contains spare area data from nand flash.
150 * new_ecc: generated ecc while reading data area.
151 * Note: if the ecc = 0, all data bits from which it was
152 * generated are 0xFF.
153 * The 3 byte(24 bits) ecc is generated per 512byte
154 * chunk of a page. If orig_ecc(from spare area)
155 * is 0xFF && new_ecc(computed now from data area)=0x0,
156 * this means that data area is 0xFF and spare area is
157 * 0xFF. A sure sign of a erased page!
159 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
161 printf("Error: Bad compare! failed\n");
162 /* detected 2 bit error */
170 * omap_calculate_ecc - Generate non-inverted ECC bytes.
172 * Using noninverted ECC can be considered ugly since writing a blank
173 * page ie. padding will clear the ECC bytes. This is no problem as
174 * long nobody is trying to write data on the seemingly unused page.
175 * Reading an erased page will produce an ECC mismatch between
176 * generated and read ECC bytes that has to be dealt with separately.
177 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
178 * is used, the result of read will be 0x0 while the ECC offsets of the
179 * spare area will be 0xFF which will result in an ECC mismatch.
180 * @mtd: MTD structure
182 * @ecc_code: ecc_code buffer
184 static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
185 const uint8_t *dat, uint8_t *ecc_code)
189 /* Start Reading from HW ECC1_Result = 0x200 */
190 val = readl(&gpmc_cfg->ecc1_result);
192 ecc_code[0] = val & 0xFF;
193 ecc_code[1] = (val >> 16) & 0xFF;
194 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
197 * Stop reading anymore ECC vals and clear old results
198 * enable will be called if more reads are required
200 writel(0x000, &gpmc_cfg->ecc_config);
206 * omap_enable_ecc - This function enables the hardware ecc functionality
207 * @mtd: MTD device structure
208 * @mode: Read/Write mode
210 static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
212 struct nand_chip *chip = mtd->priv;
213 uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
218 /* Clear the ecc result registers, select ecc reg as 1 */
219 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
222 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
223 * tell all regs to generate size0 sized regs
224 * we just have a single ECC engine for all CS
226 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
227 &gpmc_cfg->ecc_size_config);
228 val = (dev_width << 7) | (cs << 1) | (0x1);
229 writel(val, &gpmc_cfg->ecc_config);
232 printf("Error: Unrecognized Mode[%d]!\n", mode);
237 #ifndef CONFIG_SPL_BUILD
239 * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
240 * The default is to come up on s/w ecc
242 * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
245 void omap_nand_switch_ecc(int32_t hardware)
247 struct nand_chip *nand;
248 struct mtd_info *mtd;
250 if (nand_curr_device < 0 ||
251 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
252 !nand_info[nand_curr_device].name) {
253 printf("Error: Can't switch ecc, no devices available\n");
257 mtd = &nand_info[nand_curr_device];
260 nand->options |= NAND_OWN_BUFFERS;
262 /* Reset ecc interface */
263 nand->ecc.read_page = NULL;
264 nand->ecc.write_page = NULL;
265 nand->ecc.read_oob = NULL;
266 nand->ecc.write_oob = NULL;
267 nand->ecc.hwctl = NULL;
268 nand->ecc.correct = NULL;
269 nand->ecc.calculate = NULL;
271 /* Setup the ecc configurations again */
273 nand->ecc.mode = NAND_ECC_HW;
274 nand->ecc.layout = &hw_nand_oob;
275 nand->ecc.size = 512;
277 nand->ecc.hwctl = omap_enable_hwecc;
278 nand->ecc.correct = omap_correct_data;
279 nand->ecc.calculate = omap_calculate_ecc;
280 omap_hwecc_init(nand);
281 printf("HW ECC selected\n");
283 nand->ecc.mode = NAND_ECC_SOFT;
284 /* Use mtd default settings */
285 nand->ecc.layout = NULL;
286 printf("SW ECC selected\n");
289 /* Update NAND handling after ECC mode switch */
292 nand->options &= ~NAND_OWN_BUFFERS;
294 #endif /* CONFIG_SPL_BUILD */
297 * Board-specific NAND initialization. The following members of the
298 * argument are board-specific:
299 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
300 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
301 * - cmd_ctrl: hardwarespecific function for accesing control-lines
302 * - waitfunc: hardwarespecific function for accesing device ready/busy line
303 * - ecc.hwctl: function to enable (reset) hardware ecc generator
304 * - ecc.mode: mode of ecc, see defines
305 * - chip_delay: chip dependent delay for transfering data from array to
307 * - options: various chip options. They can partly be set to inform
308 * nand_scan about special functionality. See the defines for further
311 int board_nand_init(struct nand_chip *nand)
313 int32_t gpmc_config = 0;
317 * xloader/Uboot's gpmc configuration would have configured GPMC for
318 * nand type of memory. The following logic scans and latches on to the
319 * first CS with NAND type memory.
320 * TBD: need to make this logic generic to handle multiple CS NAND
323 while (cs < GPMC_MAX_CS) {
324 /* Check if NAND type is set */
325 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
331 if (cs >= GPMC_MAX_CS) {
332 printf("NAND: Unable to find NAND settings in "
333 "GPMC Configuration - quitting\n");
337 gpmc_config = readl(&gpmc_cfg->config);
338 /* Disable Write protect */
340 writel(gpmc_config, &gpmc_cfg->config);
342 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
343 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
345 nand->cmd_ctrl = omap_nand_hwcontrol;
346 nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
347 /* If we are 16 bit dev, our gpmc config tells us that */
348 if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
349 nand->options |= NAND_BUSWIDTH_16;
351 nand->chip_delay = 100;
352 /* Default ECC mode */
353 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
354 nand->ecc.mode = NAND_ECC_SOFT;
356 nand->ecc.mode = NAND_ECC_HW;
357 nand->ecc.layout = &hw_nand_oob;
358 nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
359 nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
360 nand->ecc.hwctl = omap_enable_hwecc;
361 nand->ecc.correct = omap_correct_data;
362 nand->ecc.calculate = omap_calculate_ecc;
363 omap_hwecc_init(nand);
366 #ifdef CONFIG_SPL_BUILD
367 if (nand->options & NAND_BUSWIDTH_16)
368 nand->read_buf = nand_read_buf16;
370 nand->read_buf = nand_read_buf;
371 nand->dev_ready = omap_spl_dev_ready;