omap: gpmc: 'nandecc sw' can use HAM1 or BCH8
[platform/kernel/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35         { CONFIG_NAND_OMAP_GPMC_WSCFG };
36 #else
37 /* wscfg is preset to zero since its a static variable */
38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39 #endif
40
41 /*
42  * Driver configurations
43  */
44 struct omap_nand_info {
45         struct bch_control *control;
46         enum omap_ecc ecc_scheme;
47         uint8_t cs;
48         uint8_t ws;             /* wait status pin (0,1) */
49 };
50
51 /* We are wasting a bit of memory but al least we are safe */
52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53
54 /*
55  * omap_nand_hwcontrol - Set the address pointers corretly for the
56  *                      following address/data/command operation
57  */
58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59                                 uint32_t ctrl)
60 {
61         register struct nand_chip *this = mtd->priv;
62         struct omap_nand_info *info = this->priv;
63         int cs = info->cs;
64
65         /*
66          * Point the IO_ADDR to DATA and ADDRESS registers instead
67          * of chip address
68          */
69         switch (ctrl) {
70         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
71                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
72                 break;
73         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
74                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
75                 break;
76         case NAND_CTRL_CHANGE | NAND_NCE:
77                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
78                 break;
79         }
80
81         if (cmd != NAND_CMD_NONE)
82                 writeb(cmd, this->IO_ADDR_W);
83 }
84
85 /* Check wait pin as dev ready indicator */
86 static int omap_dev_ready(struct mtd_info *mtd)
87 {
88         register struct nand_chip *this = mtd->priv;
89         struct omap_nand_info *info = this->priv;
90         return gpmc_cfg->status & (1 << (8 + info->ws));
91 }
92
93 /*
94  * gen_true_ecc - This function will generate true ECC value, which
95  * can be used when correcting data read from NAND flash memory core
96  *
97  * @ecc_buf:    buffer to store ecc code
98  *
99  * @return:     re-formatted ECC value
100  */
101 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102 {
103         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104                 ((ecc_buf[2] & 0x0F) << 8);
105 }
106
107 /*
108  * omap_correct_data - Compares the ecc read from nand spare area with ECC
109  * registers values and corrects one bit error if it has occured
110  * Further details can be had from OMAP TRM and the following selected links:
111  * http://en.wikipedia.org/wiki/Hamming_code
112  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113  *
114  * @mtd:                 MTD device structure
115  * @dat:                 page data
116  * @read_ecc:            ecc read from nand flash
117  * @calc_ecc:            ecc read from ECC registers
118  *
119  * @return 0 if data is OK or corrected, else returns -1
120  */
121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
122                                 uint8_t *read_ecc, uint8_t *calc_ecc)
123 {
124         uint32_t orig_ecc, new_ecc, res, hm;
125         uint16_t parity_bits, byte;
126         uint8_t bit;
127
128         /* Regenerate the orginal ECC */
129         orig_ecc = gen_true_ecc(read_ecc);
130         new_ecc = gen_true_ecc(calc_ecc);
131         /* Get the XOR of real ecc */
132         res = orig_ecc ^ new_ecc;
133         if (res) {
134                 /* Get the hamming width */
135                 hm = hweight32(res);
136                 /* Single bit errors can be corrected! */
137                 if (hm == 12) {
138                         /* Correctable data! */
139                         parity_bits = res >> 16;
140                         bit = (parity_bits & 0x7);
141                         byte = (parity_bits >> 3) & 0x1FF;
142                         /* Flip the bit to correct */
143                         dat[byte] ^= (0x1 << bit);
144                 } else if (hm == 1) {
145                         printf("Error: Ecc is wrong\n");
146                         /* ECC itself is corrupted */
147                         return 2;
148                 } else {
149                         /*
150                          * hm distance != parity pairs OR one, could mean 2 bit
151                          * error OR potentially be on a blank page..
152                          * orig_ecc: contains spare area data from nand flash.
153                          * new_ecc: generated ecc while reading data area.
154                          * Note: if the ecc = 0, all data bits from which it was
155                          * generated are 0xFF.
156                          * The 3 byte(24 bits) ecc is generated per 512byte
157                          * chunk of a page. If orig_ecc(from spare area)
158                          * is 0xFF && new_ecc(computed now from data area)=0x0,
159                          * this means that data area is 0xFF and spare area is
160                          * 0xFF. A sure sign of a erased page!
161                          */
162                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163                                 return 0;
164                         printf("Error: Bad compare! failed\n");
165                         /* detected 2 bit error */
166                         return -1;
167                 }
168         }
169         return 0;
170 }
171
172 /*
173  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
174  * @mtd:        MTD device structure
175  * @mode:       Read/Write mode
176  */
177 __maybe_unused
178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
179 {
180         struct nand_chip        *nand   = mtd->priv;
181         struct omap_nand_info   *info   = nand->priv;
182         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183         unsigned int ecc_algo = 0;
184         unsigned int bch_type = 0;
185         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186         u32 ecc_size_config_val = 0;
187         u32 ecc_config_val = 0;
188         int cs = info->cs;
189
190         /* configure GPMC for specific ecc-scheme */
191         switch (info->ecc_scheme) {
192         case OMAP_ECC_HAM1_CODE_SW:
193                 return;
194         case OMAP_ECC_HAM1_CODE_HW:
195                 ecc_algo = 0x0;
196                 bch_type = 0x0;
197                 bch_wrapmode = 0x00;
198                 eccsize0 = 0xFF;
199                 eccsize1 = 0xFF;
200                 break;
201         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202         case OMAP_ECC_BCH8_CODE_HW:
203                 ecc_algo = 0x1;
204                 bch_type = 0x1;
205                 if (mode == NAND_ECC_WRITE) {
206                         bch_wrapmode = 0x01;
207                         eccsize0 = 0;  /* extra bits in nibbles per sector */
208                         eccsize1 = 28; /* OOB bits in nibbles per sector */
209                 } else {
210                         bch_wrapmode = 0x01;
211                         eccsize0 = 26; /* ECC bits in nibbles per sector */
212                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
213                 }
214                 break;
215         case OMAP_ECC_BCH16_CODE_HW:
216                 ecc_algo = 0x1;
217                 bch_type = 0x2;
218                 if (mode == NAND_ECC_WRITE) {
219                         bch_wrapmode = 0x01;
220                         eccsize0 = 0;  /* extra bits in nibbles per sector */
221                         eccsize1 = 52; /* OOB bits in nibbles per sector */
222                 } else {
223                         bch_wrapmode = 0x01;
224                         eccsize0 = 52; /* ECC bits in nibbles per sector */
225                         eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
226                 }
227                 break;
228         default:
229                 return;
230         }
231         /* Clear ecc and enable bits */
232         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233         /* Configure ecc size for BCH */
234         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236
237         /* Configure device details for BCH engine */
238         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
239                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
240                         (bch_wrapmode << 8)     | /* wrap mode */
241                         (dev_width << 7)        | /* bus width */
242                         (0x0 << 4)              | /* number of sectors */
243                         (cs <<  1)              | /* ECC CS */
244                         (0x1));                   /* enable ECC */
245         writel(ecc_config_val, &gpmc_cfg->ecc_config);
246 }
247
248 /*
249  *  omap_calculate_ecc - Read ECC result
250  *  @mtd:       MTD structure
251  *  @dat:       unused
252  *  @ecc_code:  ecc_code buffer
253  *  Using noninverted ECC can be considered ugly since writing a blank
254  *  page ie. padding will clear the ECC bytes. This is no problem as
255  *  long nobody is trying to write data on the seemingly unused page.
256  *  Reading an erased page will produce an ECC mismatch between
257  *  generated and read ECC bytes that has to be dealt with separately.
258  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259  *  is used, the result of read will be 0x0 while the ECC offsets of the
260  *  spare area will be 0xFF which will result in an ECC mismatch.
261  */
262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
263                                 uint8_t *ecc_code)
264 {
265         struct nand_chip *chip = mtd->priv;
266         struct omap_nand_info *info = chip->priv;
267         uint32_t *ptr, val = 0;
268         int8_t i = 0, j;
269
270         switch (info->ecc_scheme) {
271         case OMAP_ECC_HAM1_CODE_HW:
272                 val = readl(&gpmc_cfg->ecc1_result);
273                 ecc_code[0] = val & 0xFF;
274                 ecc_code[1] = (val >> 16) & 0xFF;
275                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
276                 break;
277 #ifdef CONFIG_BCH
278         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
279 #endif
280         case OMAP_ECC_BCH8_CODE_HW:
281                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
282                 val = readl(ptr);
283                 ecc_code[i++] = (val >>  0) & 0xFF;
284                 ptr--;
285                 for (j = 0; j < 3; j++) {
286                         val = readl(ptr);
287                         ecc_code[i++] = (val >> 24) & 0xFF;
288                         ecc_code[i++] = (val >> 16) & 0xFF;
289                         ecc_code[i++] = (val >>  8) & 0xFF;
290                         ecc_code[i++] = (val >>  0) & 0xFF;
291                         ptr--;
292                 }
293                 break;
294         case OMAP_ECC_BCH16_CODE_HW:
295                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
296                 ecc_code[i++] = (val >>  8) & 0xFF;
297                 ecc_code[i++] = (val >>  0) & 0xFF;
298                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
299                 ecc_code[i++] = (val >> 24) & 0xFF;
300                 ecc_code[i++] = (val >> 16) & 0xFF;
301                 ecc_code[i++] = (val >>  8) & 0xFF;
302                 ecc_code[i++] = (val >>  0) & 0xFF;
303                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
304                 ecc_code[i++] = (val >> 24) & 0xFF;
305                 ecc_code[i++] = (val >> 16) & 0xFF;
306                 ecc_code[i++] = (val >>  8) & 0xFF;
307                 ecc_code[i++] = (val >>  0) & 0xFF;
308                 for (j = 3; j >= 0; j--) {
309                         val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
310                                                                         );
311                         ecc_code[i++] = (val >> 24) & 0xFF;
312                         ecc_code[i++] = (val >> 16) & 0xFF;
313                         ecc_code[i++] = (val >>  8) & 0xFF;
314                         ecc_code[i++] = (val >>  0) & 0xFF;
315                 }
316                 break;
317         default:
318                 return -EINVAL;
319         }
320         /* ECC scheme specific syndrome customizations */
321         switch (info->ecc_scheme) {
322         case OMAP_ECC_HAM1_CODE_HW:
323                 break;
324 #ifdef CONFIG_BCH
325         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
326
327                 for (i = 0; i < chip->ecc.bytes; i++)
328                         *(ecc_code + i) = *(ecc_code + i) ^
329                                                 bch8_polynomial[i];
330                 break;
331 #endif
332         case OMAP_ECC_BCH8_CODE_HW:
333                 ecc_code[chip->ecc.bytes - 1] = 0x00;
334                 break;
335         case OMAP_ECC_BCH16_CODE_HW:
336                 break;
337         default:
338                 return -EINVAL;
339         }
340         return 0;
341 }
342
343 #ifdef CONFIG_NAND_OMAP_ELM
344 /*
345  * omap_reverse_list - re-orders list elements in reverse order [internal]
346  * @list:       pointer to start of list
347  * @length:     length of list
348 */
349 static void omap_reverse_list(u8 *list, unsigned int length)
350 {
351         unsigned int i, j;
352         unsigned int half_length = length / 2;
353         u8 tmp;
354         for (i = 0, j = length - 1; i < half_length; i++, j--) {
355                 tmp = list[i];
356                 list[i] = list[j];
357                 list[j] = tmp;
358         }
359 }
360
361 /*
362  * omap_correct_data_bch - Compares the ecc read from nand spare area
363  * with ECC registers values and corrects one bit error if it has occured
364  *
365  * @mtd:        MTD device structure
366  * @dat:        page data
367  * @read_ecc:   ecc read from nand flash (ignored)
368  * @calc_ecc:   ecc read from ECC registers
369  *
370  * @return 0 if data is OK or corrected, else returns -1
371  */
372 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
373                                 uint8_t *read_ecc, uint8_t *calc_ecc)
374 {
375         struct nand_chip *chip = mtd->priv;
376         struct omap_nand_info *info = chip->priv;
377         struct nand_ecc_ctrl *ecc = &chip->ecc;
378         uint32_t error_count = 0, error_max;
379         uint32_t error_loc[ELM_MAX_ERROR_COUNT];
380         enum bch_level bch_type;
381         uint32_t i, ecc_flag = 0;
382         uint8_t count;
383         uint32_t byte_pos, bit_pos;
384         int err = 0;
385
386         /* check calculated ecc */
387         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
388                 if (calc_ecc[i] != 0x00)
389                         ecc_flag = 1;
390         }
391         if (!ecc_flag)
392                 return 0;
393
394         /* check for whether its a erased-page */
395         ecc_flag = 0;
396         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
397                 if (read_ecc[i] != 0xff)
398                         ecc_flag = 1;
399         }
400         if (!ecc_flag)
401                 return 0;
402
403         /*
404          * while reading ECC result we read it in big endian.
405          * Hence while loading to ELM we have rotate to get the right endian.
406          */
407         switch (info->ecc_scheme) {
408         case OMAP_ECC_BCH8_CODE_HW:
409                 bch_type = BCH_8_BIT;
410                 omap_reverse_list(calc_ecc, ecc->bytes - 1);
411                 break;
412         case OMAP_ECC_BCH16_CODE_HW:
413                 bch_type = BCH_16_BIT;
414                 omap_reverse_list(calc_ecc, ecc->bytes);
415                 break;
416         default:
417                 return -EINVAL;
418         }
419         /* use elm module to check for errors */
420         elm_config(bch_type);
421         err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
422         if (err)
423                 return err;
424
425         /* correct bch error */
426         for (count = 0; count < error_count; count++) {
427                 switch (info->ecc_scheme) {
428                 case OMAP_ECC_BCH8_CODE_HW:
429                         /* 14th byte in ECC is reserved to match ROM layout */
430                         error_max = SECTOR_BYTES + (ecc->bytes - 1);
431                         break;
432                 case OMAP_ECC_BCH16_CODE_HW:
433                         error_max = SECTOR_BYTES + ecc->bytes;
434                         break;
435                 default:
436                         return -EINVAL;
437                 }
438                 byte_pos = error_max - (error_loc[count] / 8) - 1;
439                 bit_pos  = error_loc[count] % 8;
440                 if (byte_pos < SECTOR_BYTES) {
441                         dat[byte_pos] ^= 1 << bit_pos;
442                         printf("nand: bit-flip corrected @data=%d\n", byte_pos);
443                 } else if (byte_pos < error_max) {
444                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
445                         printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
446                                                                 SECTOR_BYTES);
447                 } else {
448                         err = -EBADMSG;
449                         printf("nand: error: invalid bit-flip location\n");
450                 }
451         }
452         return (err) ? err : error_count;
453 }
454
455 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
456
457 #define PREFETCH_CONFIG1_CS_SHIFT       24
458 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
459 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
460 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
461 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
462 #define ENABLE_PREFETCH                 (1 << 7)
463
464 /**
465  * omap_prefetch_enable - configures and starts prefetch transfer
466  * @fifo_th: fifo threshold to be used for read/ write
467  * @count: number of bytes to be transferred
468  * @is_write: prefetch read(0) or write post(1) mode
469  * @cs: chip select to use
470  */
471 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
472 {
473         uint32_t val;
474
475         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
476                 return -EINVAL;
477
478         if (readl(&gpmc_cfg->prefetch_control))
479                 return -EBUSY;
480
481         /* Set the amount of bytes to be prefetched */
482         writel(count, &gpmc_cfg->prefetch_config2);
483
484         val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
485                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
486         writel(val, &gpmc_cfg->prefetch_config1);
487
488         /*  Start the prefetch engine */
489         writel(1, &gpmc_cfg->prefetch_control);
490
491         return 0;
492 }
493
494 /**
495  * omap_prefetch_reset - disables and stops the prefetch engine
496  */
497 static void omap_prefetch_reset(void)
498 {
499         writel(0, &gpmc_cfg->prefetch_control);
500         writel(0, &gpmc_cfg->prefetch_config1);
501 }
502
503 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
504 {
505         int ret;
506         uint32_t cnt;
507         struct omap_nand_info *info = chip->priv;
508
509         ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
510         if (ret < 0)
511                 return ret;
512
513         do {
514                 int i;
515
516                 cnt = readl(&gpmc_cfg->prefetch_status);
517                 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
518
519                 for (i = 0; i < cnt / 4; i++) {
520                         *buf++ = readl(CONFIG_SYS_NAND_BASE);
521                         len -= 4;
522                 }
523         } while (len);
524
525         omap_prefetch_reset();
526
527         return 0;
528 }
529
530 static void omap_nand_read_prefetch8(struct mtd_info *mtd, uint8_t *buf, int len)
531 {
532         int ret;
533         uint32_t head, tail;
534         struct nand_chip *chip = mtd->priv;
535
536         /*
537          * If the destination buffer is unaligned, start with reading
538          * the overlap byte-wise.
539          */
540         head = ((uint32_t) buf) % 4;
541         if (head) {
542                 nand_read_buf(mtd, buf, head);
543                 buf += head;
544                 len -= head;
545         }
546
547         /*
548          * Only transfer multiples of 4 bytes in a pre-fetched fashion.
549          * If there's a residue, care for it byte-wise afterwards.
550          */
551         tail = len % 4;
552
553         ret = __read_prefetch_aligned(chip, (uint32_t *) buf, len - tail);
554         if (ret < 0) {
555                 /* fallback in case the prefetch engine is busy */
556                 nand_read_buf(mtd, buf, len);
557         } else if (tail) {
558                 buf += len - tail;
559                 nand_read_buf(mtd, buf, tail);
560         }
561 }
562 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
563
564 /**
565  * omap_read_page_bch - hardware ecc based page read function
566  * @mtd:        mtd info structure
567  * @chip:       nand chip info structure
568  * @buf:        buffer to store read data
569  * @oob_required: caller expects OOB data read to chip->oob_poi
570  * @page:       page number to read
571  *
572  */
573 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
574                                 uint8_t *buf, int oob_required, int page)
575 {
576         int i, eccsize = chip->ecc.size;
577         int eccbytes = chip->ecc.bytes;
578         int eccsteps = chip->ecc.steps;
579         uint8_t *p = buf;
580         uint8_t *ecc_calc = chip->buffers->ecccalc;
581         uint8_t *ecc_code = chip->buffers->ecccode;
582         uint32_t *eccpos = chip->ecc.layout->eccpos;
583         uint8_t *oob = chip->oob_poi;
584         uint32_t data_pos;
585         uint32_t oob_pos;
586
587         data_pos = 0;
588         /* oob area start */
589         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
590         oob += chip->ecc.layout->eccpos[0];
591
592         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
593                                 oob += eccbytes) {
594                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
595                 /* read data */
596                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
597                 chip->read_buf(mtd, p, eccsize);
598
599                 /* read respective ecc from oob area */
600                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
601                 chip->read_buf(mtd, oob, eccbytes);
602                 /* read syndrome */
603                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
604
605                 data_pos += eccsize;
606                 oob_pos += eccbytes;
607         }
608
609         for (i = 0; i < chip->ecc.total; i++)
610                 ecc_code[i] = chip->oob_poi[eccpos[i]];
611
612         eccsteps = chip->ecc.steps;
613         p = buf;
614
615         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
616                 int stat;
617
618                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
619                 if (stat < 0)
620                         mtd->ecc_stats.failed++;
621                 else
622                         mtd->ecc_stats.corrected += stat;
623         }
624         return 0;
625 }
626 #endif /* CONFIG_NAND_OMAP_ELM */
627
628 /*
629  * OMAP3 BCH8 support (with BCH library)
630  */
631 #ifdef CONFIG_BCH
632 /**
633  * omap_correct_data_bch_sw - Decode received data and correct errors
634  * @mtd: MTD device structure
635  * @data: page data
636  * @read_ecc: ecc read from nand flash
637  * @calc_ecc: ecc read from HW ECC registers
638  */
639 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
640                                  u_char *read_ecc, u_char *calc_ecc)
641 {
642         int i, count;
643         /* cannot correct more than 8 errors */
644         unsigned int errloc[8];
645         struct nand_chip *chip = mtd->priv;
646         struct omap_nand_info *info = chip->priv;
647
648         count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
649                                                         NULL, errloc);
650         if (count > 0) {
651                 /* correct errors */
652                 for (i = 0; i < count; i++) {
653                         /* correct data only, not ecc bytes */
654                         if (errloc[i] < 8*512)
655                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
656                         printf("corrected bitflip %u\n", errloc[i]);
657 #ifdef DEBUG
658                         puts("read_ecc: ");
659                         /*
660                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
661                          * here!
662                          */
663                         for (i = 0; i < 13; i++)
664                                 printf("%02x ", read_ecc[i]);
665                         puts("\n");
666                         puts("calc_ecc: ");
667                         for (i = 0; i < 13; i++)
668                                 printf("%02x ", calc_ecc[i]);
669                         puts("\n");
670 #endif
671                 }
672         } else if (count < 0) {
673                 puts("ecc unrecoverable error\n");
674         }
675         return count;
676 }
677
678 /**
679  * omap_free_bch - Release BCH ecc resources
680  * @mtd: MTD device structure
681  */
682 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
683 {
684         struct nand_chip *chip = mtd->priv;
685         struct omap_nand_info *info = chip->priv;
686
687         if (info->control) {
688                 free_bch(info->control);
689                 info->control = NULL;
690         }
691 }
692 #endif /* CONFIG_BCH */
693
694 /**
695  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
696  * @nand: NAND chip device structure
697  * @ecc_scheme: ecc scheme to configure
698  * @pagesize: number of main-area bytes per page of NAND device
699  * @oobsize: number of OOB/spare bytes per page of NAND device
700  */
701 static int omap_select_ecc_scheme(struct nand_chip *nand,
702         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
703         struct omap_nand_info   *info           = nand->priv;
704         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
705         int eccsteps = pagesize / SECTOR_BYTES;
706         int i;
707
708         switch (ecc_scheme) {
709         case OMAP_ECC_HAM1_CODE_SW:
710                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
711                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
712                  * initialized in nand_scan_tail(), so just set ecc.mode */
713                 info->control           = NULL;
714                 nand->ecc.mode          = NAND_ECC_SOFT;
715                 nand->ecc.layout        = NULL;
716                 nand->ecc.size          = 0;
717                 break;
718
719         case OMAP_ECC_HAM1_CODE_HW:
720                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
721                 /* check ecc-scheme requirements before updating ecc info */
722                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
723                         printf("nand: error: insufficient OOB: require=%d\n", (
724                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
725                         return -EINVAL;
726                 }
727                 info->control           = NULL;
728                 /* populate ecc specific fields */
729                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
730                 nand->ecc.mode          = NAND_ECC_HW;
731                 nand->ecc.strength      = 1;
732                 nand->ecc.size          = SECTOR_BYTES;
733                 nand->ecc.bytes         = 3;
734                 nand->ecc.hwctl         = omap_enable_hwecc;
735                 nand->ecc.correct       = omap_correct_data;
736                 nand->ecc.calculate     = omap_calculate_ecc;
737                 /* define ecc-layout */
738                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
739                 for (i = 0; i < ecclayout->eccbytes; i++) {
740                         if (nand->options & NAND_BUSWIDTH_16)
741                                 ecclayout->eccpos[i] = i + 2;
742                         else
743                                 ecclayout->eccpos[i] = i + 1;
744                 }
745                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
746                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
747                                                 BADBLOCK_MARKER_LENGTH;
748                 break;
749
750         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
751 #ifdef CONFIG_BCH
752                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
753                 /* check ecc-scheme requirements before updating ecc info */
754                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
755                         printf("nand: error: insufficient OOB: require=%d\n", (
756                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
757                         return -EINVAL;
758                 }
759                 /* check if BCH S/W library can be used for error detection */
760                 info->control = init_bch(13, 8, 0x201b);
761                 if (!info->control) {
762                         printf("nand: error: could not init_bch()\n");
763                         return -ENODEV;
764                 }
765                 /* populate ecc specific fields */
766                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
767                 nand->ecc.mode          = NAND_ECC_HW;
768                 nand->ecc.strength      = 8;
769                 nand->ecc.size          = SECTOR_BYTES;
770                 nand->ecc.bytes         = 13;
771                 nand->ecc.hwctl         = omap_enable_hwecc;
772                 nand->ecc.correct       = omap_correct_data_bch_sw;
773                 nand->ecc.calculate     = omap_calculate_ecc;
774                 /* define ecc-layout */
775                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
776                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
777                 for (i = 1; i < ecclayout->eccbytes; i++) {
778                         if (i % nand->ecc.bytes)
779                                 ecclayout->eccpos[i] =
780                                                 ecclayout->eccpos[i - 1] + 1;
781                         else
782                                 ecclayout->eccpos[i] =
783                                                 ecclayout->eccpos[i - 1] + 2;
784                 }
785                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
786                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
787                                                 BADBLOCK_MARKER_LENGTH;
788                 break;
789 #else
790                 printf("nand: error: CONFIG_BCH required for ECC\n");
791                 return -EINVAL;
792 #endif
793
794         case OMAP_ECC_BCH8_CODE_HW:
795 #ifdef CONFIG_NAND_OMAP_ELM
796                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
797                 /* check ecc-scheme requirements before updating ecc info */
798                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
799                         printf("nand: error: insufficient OOB: require=%d\n", (
800                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
801                         return -EINVAL;
802                 }
803                 /* intialize ELM for ECC error detection */
804                 elm_init();
805                 info->control           = NULL;
806                 /* populate ecc specific fields */
807                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
808                 nand->ecc.mode          = NAND_ECC_HW;
809                 nand->ecc.strength      = 8;
810                 nand->ecc.size          = SECTOR_BYTES;
811                 nand->ecc.bytes         = 14;
812                 nand->ecc.hwctl         = omap_enable_hwecc;
813                 nand->ecc.correct       = omap_correct_data_bch;
814                 nand->ecc.calculate     = omap_calculate_ecc;
815                 nand->ecc.read_page     = omap_read_page_bch;
816                 /* define ecc-layout */
817                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
818                 for (i = 0; i < ecclayout->eccbytes; i++)
819                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
820                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
821                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
822                                                 BADBLOCK_MARKER_LENGTH;
823                 break;
824 #else
825                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
826                 return -EINVAL;
827 #endif
828
829         case OMAP_ECC_BCH16_CODE_HW:
830 #ifdef CONFIG_NAND_OMAP_ELM
831                 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
832                 /* check ecc-scheme requirements before updating ecc info */
833                 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
834                         printf("nand: error: insufficient OOB: require=%d\n", (
835                                 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
836                         return -EINVAL;
837                 }
838                 /* intialize ELM for ECC error detection */
839                 elm_init();
840                 /* populate ecc specific fields */
841                 nand->ecc.mode          = NAND_ECC_HW;
842                 nand->ecc.size          = SECTOR_BYTES;
843                 nand->ecc.bytes         = 26;
844                 nand->ecc.strength      = 16;
845                 nand->ecc.hwctl         = omap_enable_hwecc;
846                 nand->ecc.correct       = omap_correct_data_bch;
847                 nand->ecc.calculate     = omap_calculate_ecc;
848                 nand->ecc.read_page     = omap_read_page_bch;
849                 /* define ecc-layout */
850                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
851                 for (i = 0; i < ecclayout->eccbytes; i++)
852                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
853                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
854                 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
855                                                 BADBLOCK_MARKER_LENGTH;
856                 break;
857 #else
858                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
859                 return -EINVAL;
860 #endif
861         default:
862                 debug("nand: error: ecc scheme not enabled or supported\n");
863                 return -EINVAL;
864         }
865
866         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
867         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
868                 nand->ecc.layout = ecclayout;
869
870         info->ecc_scheme = ecc_scheme;
871         return 0;
872 }
873
874 #ifndef CONFIG_SPL_BUILD
875 /*
876  * omap_nand_switch_ecc - switch the ECC operation between different engines
877  * (h/w and s/w) and different algorithms (hamming and BCHx)
878  *
879  * @hardware            - true if one of the HW engines should be used
880  * @eccstrength         - the number of bits that could be corrected
881  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
882  */
883 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
884 {
885         struct nand_chip *nand;
886         struct mtd_info *mtd;
887         int err = 0;
888
889         if (nand_curr_device < 0 ||
890             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
891             !nand_info[nand_curr_device].name) {
892                 printf("nand: error: no NAND devices found\n");
893                 return -ENODEV;
894         }
895
896         mtd = &nand_info[nand_curr_device];
897         nand = mtd->priv;
898         nand->options |= NAND_OWN_BUFFERS;
899         nand->options &= ~NAND_SUBPAGE_READ;
900         /* Setup the ecc configurations again */
901         if (hardware) {
902                 if (eccstrength == 1) {
903                         err = omap_select_ecc_scheme(nand,
904                                         OMAP_ECC_HAM1_CODE_HW,
905                                         mtd->writesize, mtd->oobsize);
906                 } else if (eccstrength == 8) {
907                         err = omap_select_ecc_scheme(nand,
908                                         OMAP_ECC_BCH8_CODE_HW,
909                                         mtd->writesize, mtd->oobsize);
910                 } else {
911                         printf("nand: error: unsupported ECC scheme\n");
912                         return -EINVAL;
913                 }
914         } else {
915                 if (eccstrength == 1) {
916                         err = omap_select_ecc_scheme(nand,
917                                         OMAP_ECC_HAM1_CODE_SW,
918                                         mtd->writesize, mtd->oobsize);
919                 } else if (eccstrength == 8) {
920                         err = omap_select_ecc_scheme(nand,
921                                         OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
922                                         mtd->writesize, mtd->oobsize);
923                 } else {
924                         printf("nand: error: unsupported ECC scheme\n");
925                         return -EINVAL;
926                 }
927         }
928
929         /* Update NAND handling after ECC mode switch */
930         if (!err)
931                 err = nand_scan_tail(mtd);
932         return err;
933 }
934 #endif /* CONFIG_SPL_BUILD */
935
936 /*
937  * Board-specific NAND initialization. The following members of the
938  * argument are board-specific:
939  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
940  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
941  * - cmd_ctrl: hardwarespecific function for accesing control-lines
942  * - waitfunc: hardwarespecific function for accesing device ready/busy line
943  * - ecc.hwctl: function to enable (reset) hardware ecc generator
944  * - ecc.mode: mode of ecc, see defines
945  * - chip_delay: chip dependent delay for transfering data from array to
946  *   read regs (tR)
947  * - options: various chip options. They can partly be set to inform
948  *   nand_scan about special functionality. See the defines for further
949  *   explanation
950  */
951 int board_nand_init(struct nand_chip *nand)
952 {
953         int32_t gpmc_config = 0;
954         int cs = cs_next++;
955         int err = 0;
956         /*
957          * xloader/Uboot's gpmc configuration would have configured GPMC for
958          * nand type of memory. The following logic scans and latches on to the
959          * first CS with NAND type memory.
960          * TBD: need to make this logic generic to handle multiple CS NAND
961          * devices.
962          */
963         while (cs < GPMC_MAX_CS) {
964                 /* Check if NAND type is set */
965                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
966                         /* Found it!! */
967                         break;
968                 }
969                 cs++;
970         }
971         if (cs >= GPMC_MAX_CS) {
972                 printf("nand: error: Unable to find NAND settings in "
973                         "GPMC Configuration - quitting\n");
974                 return -ENODEV;
975         }
976
977         gpmc_config = readl(&gpmc_cfg->config);
978         /* Disable Write protect */
979         gpmc_config |= 0x10;
980         writel(gpmc_config, &gpmc_cfg->config);
981
982         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
983         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
984         omap_nand_info[cs].control = NULL;
985         omap_nand_info[cs].cs = cs;
986         omap_nand_info[cs].ws = wscfg[cs];
987         nand->priv      = &omap_nand_info[cs];
988         nand->cmd_ctrl  = omap_nand_hwcontrol;
989         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
990         nand->chip_delay = 100;
991         nand->ecc.layout = &omap_ecclayout;
992
993         /* configure driver and controller based on NAND device bus-width */
994         gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
995 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
996         nand->options |= NAND_BUSWIDTH_16;
997         writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
998 #else
999         nand->options &= ~NAND_BUSWIDTH_16;
1000         writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1001 #endif
1002         /* select ECC scheme */
1003 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1004         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1005                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1006 #else
1007         /* pagesize and oobsize are not required to configure sw ecc-scheme */
1008         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1009                         0, 0);
1010 #endif
1011         if (err)
1012                 return err;
1013
1014         /* TODO: Implement for 16-bit bus width */
1015         if (nand->options & NAND_BUSWIDTH_16)
1016                 nand->read_buf = nand_read_buf16;
1017 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1018         else
1019                 nand->read_buf = omap_nand_read_prefetch8;
1020 #else
1021         else
1022                 nand->read_buf = nand_read_buf;
1023 #endif
1024
1025         nand->dev_ready = omap_dev_ready;
1026
1027         return 0;
1028 }