Merge tag 'for-v3.8-merged' of git://git.infradead.org/battery-2.6
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME     "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS    5000
34
35 #define NAND_Ecc_P1e            (1 << 0)
36 #define NAND_Ecc_P2e            (1 << 1)
37 #define NAND_Ecc_P4e            (1 << 2)
38 #define NAND_Ecc_P8e            (1 << 3)
39 #define NAND_Ecc_P16e           (1 << 4)
40 #define NAND_Ecc_P32e           (1 << 5)
41 #define NAND_Ecc_P64e           (1 << 6)
42 #define NAND_Ecc_P128e          (1 << 7)
43 #define NAND_Ecc_P256e          (1 << 8)
44 #define NAND_Ecc_P512e          (1 << 9)
45 #define NAND_Ecc_P1024e         (1 << 10)
46 #define NAND_Ecc_P2048e         (1 << 11)
47
48 #define NAND_Ecc_P1o            (1 << 16)
49 #define NAND_Ecc_P2o            (1 << 17)
50 #define NAND_Ecc_P4o            (1 << 18)
51 #define NAND_Ecc_P8o            (1 << 19)
52 #define NAND_Ecc_P16o           (1 << 20)
53 #define NAND_Ecc_P32o           (1 << 21)
54 #define NAND_Ecc_P64o           (1 << 22)
55 #define NAND_Ecc_P128o          (1 << 23)
56 #define NAND_Ecc_P256o          (1 << 24)
57 #define NAND_Ecc_P512o          (1 << 25)
58 #define NAND_Ecc_P1024o         (1 << 26)
59 #define NAND_Ecc_P2048o         (1 << 27)
60
61 #define TF(value)       (value ? 1 : 0)
62
63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
71
72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
80
81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
89
90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
98
99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT       24
103 #define ECC_CONFIG_CS_SHIFT             1
104 #define CS_MASK                         0x7
105 #define ENABLE_PREFETCH                 (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT              2
107 #define ECCSIZE0_SHIFT                  12
108 #define ECCSIZE1_SHIFT                  22
109 #define ECC1RESULTSIZE                  0x1
110 #define ECCCLEAR                        0x100
111 #define ECC1                            0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
113 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY               0x00000001
117
118 #define OMAP24XX_DMA_GPMC               4
119
120 /* oob info generated runtime depending on ecc algorithm and layout selected */
121 static struct nand_ecclayout omap_oobinfo;
122 /* Define some generic bad / good block scan pattern which are used
123  * while scanning a device for factory marked good / bad blocks
124  */
125 static uint8_t scan_ff_pattern[] = { 0xff };
126 static struct nand_bbt_descr bb_descrip_flashbased = {
127         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
128         .offs = 0,
129         .len = 1,
130         .pattern = scan_ff_pattern,
131 };
132
133
134 struct omap_nand_info {
135         struct nand_hw_control          controller;
136         struct omap_nand_platform_data  *pdata;
137         struct mtd_info                 mtd;
138         struct nand_chip                nand;
139         struct platform_device          *pdev;
140
141         int                             gpmc_cs;
142         unsigned long                   phys_base;
143         unsigned long                   mem_size;
144         struct completion               comp;
145         struct dma_chan                 *dma;
146         int                             gpmc_irq_fifo;
147         int                             gpmc_irq_count;
148         enum {
149                 OMAP_NAND_IO_READ = 0,  /* read */
150                 OMAP_NAND_IO_WRITE,     /* write */
151         } iomode;
152         u_char                          *buf;
153         int                                     buf_len;
154         struct gpmc_nand_regs           reg;
155
156 #ifdef CONFIG_MTD_NAND_OMAP_BCH
157         struct bch_control             *bch;
158         struct nand_ecclayout           ecclayout;
159 #endif
160 };
161
162 /**
163  * omap_prefetch_enable - configures and starts prefetch transfer
164  * @cs: cs (chip select) number
165  * @fifo_th: fifo threshold to be used for read/ write
166  * @dma_mode: dma mode enable (1) or disable (0)
167  * @u32_count: number of bytes to be transferred
168  * @is_write: prefetch read(0) or write post(1) mode
169  */
170 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
171         unsigned int u32_count, int is_write, struct omap_nand_info *info)
172 {
173         u32 val;
174
175         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
176                 return -1;
177
178         if (readl(info->reg.gpmc_prefetch_control))
179                 return -EBUSY;
180
181         /* Set the amount of bytes to be prefetched */
182         writel(u32_count, info->reg.gpmc_prefetch_config2);
183
184         /* Set dma/mpu mode, the prefetch read / post write and
185          * enable the engine. Set which cs is has requested for.
186          */
187         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
188                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
189                 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
190         writel(val, info->reg.gpmc_prefetch_config1);
191
192         /*  Start the prefetch engine */
193         writel(0x1, info->reg.gpmc_prefetch_control);
194
195         return 0;
196 }
197
198 /**
199  * omap_prefetch_reset - disables and stops the prefetch engine
200  */
201 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
202 {
203         u32 config1;
204
205         /* check if the same module/cs is trying to reset */
206         config1 = readl(info->reg.gpmc_prefetch_config1);
207         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
208                 return -EINVAL;
209
210         /* Stop the PFPW engine */
211         writel(0x0, info->reg.gpmc_prefetch_control);
212
213         /* Reset/disable the PFPW engine */
214         writel(0x0, info->reg.gpmc_prefetch_config1);
215
216         return 0;
217 }
218
219 /**
220  * omap_hwcontrol - hardware specific access to control-lines
221  * @mtd: MTD device structure
222  * @cmd: command to device
223  * @ctrl:
224  * NAND_NCE: bit 0 -> don't care
225  * NAND_CLE: bit 1 -> Command Latch
226  * NAND_ALE: bit 2 -> Address Latch
227  *
228  * NOTE: boards may use different bits for these!!
229  */
230 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
231 {
232         struct omap_nand_info *info = container_of(mtd,
233                                         struct omap_nand_info, mtd);
234
235         if (cmd != NAND_CMD_NONE) {
236                 if (ctrl & NAND_CLE)
237                         writeb(cmd, info->reg.gpmc_nand_command);
238
239                 else if (ctrl & NAND_ALE)
240                         writeb(cmd, info->reg.gpmc_nand_address);
241
242                 else /* NAND_NCE */
243                         writeb(cmd, info->reg.gpmc_nand_data);
244         }
245 }
246
247 /**
248  * omap_read_buf8 - read data from NAND controller into buffer
249  * @mtd: MTD device structure
250  * @buf: buffer to store date
251  * @len: number of bytes to read
252  */
253 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
254 {
255         struct nand_chip *nand = mtd->priv;
256
257         ioread8_rep(nand->IO_ADDR_R, buf, len);
258 }
259
260 /**
261  * omap_write_buf8 - write buffer to NAND controller
262  * @mtd: MTD device structure
263  * @buf: data buffer
264  * @len: number of bytes to write
265  */
266 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
267 {
268         struct omap_nand_info *info = container_of(mtd,
269                                                 struct omap_nand_info, mtd);
270         u_char *p = (u_char *)buf;
271         u32     status = 0;
272
273         while (len--) {
274                 iowrite8(*p++, info->nand.IO_ADDR_W);
275                 /* wait until buffer is available for write */
276                 do {
277                         status = readl(info->reg.gpmc_status) &
278                                         STATUS_BUFF_EMPTY;
279                 } while (!status);
280         }
281 }
282
283 /**
284  * omap_read_buf16 - read data from NAND controller into buffer
285  * @mtd: MTD device structure
286  * @buf: buffer to store date
287  * @len: number of bytes to read
288  */
289 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
290 {
291         struct nand_chip *nand = mtd->priv;
292
293         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
294 }
295
296 /**
297  * omap_write_buf16 - write buffer to NAND controller
298  * @mtd: MTD device structure
299  * @buf: data buffer
300  * @len: number of bytes to write
301  */
302 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
303 {
304         struct omap_nand_info *info = container_of(mtd,
305                                                 struct omap_nand_info, mtd);
306         u16 *p = (u16 *) buf;
307         u32     status = 0;
308         /* FIXME try bursts of writesw() or DMA ... */
309         len >>= 1;
310
311         while (len--) {
312                 iowrite16(*p++, info->nand.IO_ADDR_W);
313                 /* wait until buffer is available for write */
314                 do {
315                         status = readl(info->reg.gpmc_status) &
316                                         STATUS_BUFF_EMPTY;
317                 } while (!status);
318         }
319 }
320
321 /**
322  * omap_read_buf_pref - read data from NAND controller into buffer
323  * @mtd: MTD device structure
324  * @buf: buffer to store date
325  * @len: number of bytes to read
326  */
327 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
328 {
329         struct omap_nand_info *info = container_of(mtd,
330                                                 struct omap_nand_info, mtd);
331         uint32_t r_count = 0;
332         int ret = 0;
333         u32 *p = (u32 *)buf;
334
335         /* take care of subpage reads */
336         if (len % 4) {
337                 if (info->nand.options & NAND_BUSWIDTH_16)
338                         omap_read_buf16(mtd, buf, len % 4);
339                 else
340                         omap_read_buf8(mtd, buf, len % 4);
341                 p = (u32 *) (buf + len % 4);
342                 len -= len % 4;
343         }
344
345         /* configure and start prefetch transfer */
346         ret = omap_prefetch_enable(info->gpmc_cs,
347                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
348         if (ret) {
349                 /* PFPW engine is busy, use cpu copy method */
350                 if (info->nand.options & NAND_BUSWIDTH_16)
351                         omap_read_buf16(mtd, (u_char *)p, len);
352                 else
353                         omap_read_buf8(mtd, (u_char *)p, len);
354         } else {
355                 do {
356                         r_count = readl(info->reg.gpmc_prefetch_status);
357                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
358                         r_count = r_count >> 2;
359                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
360                         p += r_count;
361                         len -= r_count << 2;
362                 } while (len);
363                 /* disable and stop the PFPW engine */
364                 omap_prefetch_reset(info->gpmc_cs, info);
365         }
366 }
367
368 /**
369  * omap_write_buf_pref - write buffer to NAND controller
370  * @mtd: MTD device structure
371  * @buf: data buffer
372  * @len: number of bytes to write
373  */
374 static void omap_write_buf_pref(struct mtd_info *mtd,
375                                         const u_char *buf, int len)
376 {
377         struct omap_nand_info *info = container_of(mtd,
378                                                 struct omap_nand_info, mtd);
379         uint32_t w_count = 0;
380         int i = 0, ret = 0;
381         u16 *p = (u16 *)buf;
382         unsigned long tim, limit;
383         u32 val;
384
385         /* take care of subpage writes */
386         if (len % 2 != 0) {
387                 writeb(*buf, info->nand.IO_ADDR_W);
388                 p = (u16 *)(buf + 1);
389                 len--;
390         }
391
392         /*  configure and start prefetch transfer */
393         ret = omap_prefetch_enable(info->gpmc_cs,
394                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
395         if (ret) {
396                 /* PFPW engine is busy, use cpu copy method */
397                 if (info->nand.options & NAND_BUSWIDTH_16)
398                         omap_write_buf16(mtd, (u_char *)p, len);
399                 else
400                         omap_write_buf8(mtd, (u_char *)p, len);
401         } else {
402                 while (len) {
403                         w_count = readl(info->reg.gpmc_prefetch_status);
404                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
405                         w_count = w_count >> 1;
406                         for (i = 0; (i < w_count) && len; i++, len -= 2)
407                                 iowrite16(*p++, info->nand.IO_ADDR_W);
408                 }
409                 /* wait for data to flushed-out before reset the prefetch */
410                 tim = 0;
411                 limit = (loops_per_jiffy *
412                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
413                 do {
414                         cpu_relax();
415                         val = readl(info->reg.gpmc_prefetch_status);
416                         val = PREFETCH_STATUS_COUNT(val);
417                 } while (val && (tim++ < limit));
418
419                 /* disable and stop the PFPW engine */
420                 omap_prefetch_reset(info->gpmc_cs, info);
421         }
422 }
423
424 /*
425  * omap_nand_dma_callback: callback on the completion of dma transfer
426  * @data: pointer to completion data structure
427  */
428 static void omap_nand_dma_callback(void *data)
429 {
430         complete((struct completion *) data);
431 }
432
433 /*
434  * omap_nand_dma_transfer: configure and start dma transfer
435  * @mtd: MTD device structure
436  * @addr: virtual address in RAM of source/destination
437  * @len: number of data bytes to be transferred
438  * @is_write: flag for read/write operation
439  */
440 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
441                                         unsigned int len, int is_write)
442 {
443         struct omap_nand_info *info = container_of(mtd,
444                                         struct omap_nand_info, mtd);
445         struct dma_async_tx_descriptor *tx;
446         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
447                                                         DMA_FROM_DEVICE;
448         struct scatterlist sg;
449         unsigned long tim, limit;
450         unsigned n;
451         int ret;
452         u32 val;
453
454         if (addr >= high_memory) {
455                 struct page *p1;
456
457                 if (((size_t)addr & PAGE_MASK) !=
458                         ((size_t)(addr + len - 1) & PAGE_MASK))
459                         goto out_copy;
460                 p1 = vmalloc_to_page(addr);
461                 if (!p1)
462                         goto out_copy;
463                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
464         }
465
466         sg_init_one(&sg, addr, len);
467         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
468         if (n == 0) {
469                 dev_err(&info->pdev->dev,
470                         "Couldn't DMA map a %d byte buffer\n", len);
471                 goto out_copy;
472         }
473
474         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
475                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
476                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
477         if (!tx)
478                 goto out_copy_unmap;
479
480         tx->callback = omap_nand_dma_callback;
481         tx->callback_param = &info->comp;
482         dmaengine_submit(tx);
483
484         /*  configure and start prefetch transfer */
485         ret = omap_prefetch_enable(info->gpmc_cs,
486                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
487         if (ret)
488                 /* PFPW engine is busy, use cpu copy method */
489                 goto out_copy_unmap;
490
491         init_completion(&info->comp);
492         dma_async_issue_pending(info->dma);
493
494         /* setup and start DMA using dma_addr */
495         wait_for_completion(&info->comp);
496         tim = 0;
497         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
498
499         do {
500                 cpu_relax();
501                 val = readl(info->reg.gpmc_prefetch_status);
502                 val = PREFETCH_STATUS_COUNT(val);
503         } while (val && (tim++ < limit));
504
505         /* disable and stop the PFPW engine */
506         omap_prefetch_reset(info->gpmc_cs, info);
507
508         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
509         return 0;
510
511 out_copy_unmap:
512         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
513 out_copy:
514         if (info->nand.options & NAND_BUSWIDTH_16)
515                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
516                         : omap_write_buf16(mtd, (u_char *) addr, len);
517         else
518                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
519                         : omap_write_buf8(mtd, (u_char *) addr, len);
520         return 0;
521 }
522
523 /**
524  * omap_read_buf_dma_pref - read data from NAND controller into buffer
525  * @mtd: MTD device structure
526  * @buf: buffer to store date
527  * @len: number of bytes to read
528  */
529 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
530 {
531         if (len <= mtd->oobsize)
532                 omap_read_buf_pref(mtd, buf, len);
533         else
534                 /* start transfer in DMA mode */
535                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
536 }
537
538 /**
539  * omap_write_buf_dma_pref - write buffer to NAND controller
540  * @mtd: MTD device structure
541  * @buf: data buffer
542  * @len: number of bytes to write
543  */
544 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
545                                         const u_char *buf, int len)
546 {
547         if (len <= mtd->oobsize)
548                 omap_write_buf_pref(mtd, buf, len);
549         else
550                 /* start transfer in DMA mode */
551                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
552 }
553
554 /*
555  * omap_nand_irq - GPMC irq handler
556  * @this_irq: gpmc irq number
557  * @dev: omap_nand_info structure pointer is passed here
558  */
559 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
560 {
561         struct omap_nand_info *info = (struct omap_nand_info *) dev;
562         u32 bytes;
563
564         bytes = readl(info->reg.gpmc_prefetch_status);
565         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
566         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
567         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
568                 if (this_irq == info->gpmc_irq_count)
569                         goto done;
570
571                 if (info->buf_len && (info->buf_len < bytes))
572                         bytes = info->buf_len;
573                 else if (!info->buf_len)
574                         bytes = 0;
575                 iowrite32_rep(info->nand.IO_ADDR_W,
576                                                 (u32 *)info->buf, bytes >> 2);
577                 info->buf = info->buf + bytes;
578                 info->buf_len -= bytes;
579
580         } else {
581                 ioread32_rep(info->nand.IO_ADDR_R,
582                                                 (u32 *)info->buf, bytes >> 2);
583                 info->buf = info->buf + bytes;
584
585                 if (this_irq == info->gpmc_irq_count)
586                         goto done;
587         }
588
589         return IRQ_HANDLED;
590
591 done:
592         complete(&info->comp);
593
594         disable_irq_nosync(info->gpmc_irq_fifo);
595         disable_irq_nosync(info->gpmc_irq_count);
596
597         return IRQ_HANDLED;
598 }
599
600 /*
601  * omap_read_buf_irq_pref - read data from NAND controller into buffer
602  * @mtd: MTD device structure
603  * @buf: buffer to store date
604  * @len: number of bytes to read
605  */
606 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
607 {
608         struct omap_nand_info *info = container_of(mtd,
609                                                 struct omap_nand_info, mtd);
610         int ret = 0;
611
612         if (len <= mtd->oobsize) {
613                 omap_read_buf_pref(mtd, buf, len);
614                 return;
615         }
616
617         info->iomode = OMAP_NAND_IO_READ;
618         info->buf = buf;
619         init_completion(&info->comp);
620
621         /*  configure and start prefetch transfer */
622         ret = omap_prefetch_enable(info->gpmc_cs,
623                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
624         if (ret)
625                 /* PFPW engine is busy, use cpu copy method */
626                 goto out_copy;
627
628         info->buf_len = len;
629
630         enable_irq(info->gpmc_irq_count);
631         enable_irq(info->gpmc_irq_fifo);
632
633         /* waiting for read to complete */
634         wait_for_completion(&info->comp);
635
636         /* disable and stop the PFPW engine */
637         omap_prefetch_reset(info->gpmc_cs, info);
638         return;
639
640 out_copy:
641         if (info->nand.options & NAND_BUSWIDTH_16)
642                 omap_read_buf16(mtd, buf, len);
643         else
644                 omap_read_buf8(mtd, buf, len);
645 }
646
647 /*
648  * omap_write_buf_irq_pref - write buffer to NAND controller
649  * @mtd: MTD device structure
650  * @buf: data buffer
651  * @len: number of bytes to write
652  */
653 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
654                                         const u_char *buf, int len)
655 {
656         struct omap_nand_info *info = container_of(mtd,
657                                                 struct omap_nand_info, mtd);
658         int ret = 0;
659         unsigned long tim, limit;
660         u32 val;
661
662         if (len <= mtd->oobsize) {
663                 omap_write_buf_pref(mtd, buf, len);
664                 return;
665         }
666
667         info->iomode = OMAP_NAND_IO_WRITE;
668         info->buf = (u_char *) buf;
669         init_completion(&info->comp);
670
671         /* configure and start prefetch transfer : size=24 */
672         ret = omap_prefetch_enable(info->gpmc_cs,
673                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
674         if (ret)
675                 /* PFPW engine is busy, use cpu copy method */
676                 goto out_copy;
677
678         info->buf_len = len;
679
680         enable_irq(info->gpmc_irq_count);
681         enable_irq(info->gpmc_irq_fifo);
682
683         /* waiting for write to complete */
684         wait_for_completion(&info->comp);
685
686         /* wait for data to flushed-out before reset the prefetch */
687         tim = 0;
688         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
689         do {
690                 val = readl(info->reg.gpmc_prefetch_status);
691                 val = PREFETCH_STATUS_COUNT(val);
692                 cpu_relax();
693         } while (val && (tim++ < limit));
694
695         /* disable and stop the PFPW engine */
696         omap_prefetch_reset(info->gpmc_cs, info);
697         return;
698
699 out_copy:
700         if (info->nand.options & NAND_BUSWIDTH_16)
701                 omap_write_buf16(mtd, buf, len);
702         else
703                 omap_write_buf8(mtd, buf, len);
704 }
705
706 /**
707  * gen_true_ecc - This function will generate true ECC value
708  * @ecc_buf: buffer to store ecc code
709  *
710  * This generated true ECC value can be used when correcting
711  * data read from NAND flash memory core
712  */
713 static void gen_true_ecc(u8 *ecc_buf)
714 {
715         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
716                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
717
718         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
719                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
720         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
721                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
722         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
723                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
724 }
725
726 /**
727  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
728  * @ecc_data1:  ecc code from nand spare area
729  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
730  * @page_data:  page data
731  *
732  * This function compares two ECC's and indicates if there is an error.
733  * If the error can be corrected it will be corrected to the buffer.
734  * If there is no error, %0 is returned. If there is an error but it
735  * was corrected, %1 is returned. Otherwise, %-1 is returned.
736  */
737 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
738                             u8 *ecc_data2,      /* read from register */
739                             u8 *page_data)
740 {
741         uint    i;
742         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
743         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
744         u8      ecc_bit[24];
745         u8      ecc_sum = 0;
746         u8      find_bit = 0;
747         uint    find_byte = 0;
748         int     isEccFF;
749
750         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
751
752         gen_true_ecc(ecc_data1);
753         gen_true_ecc(ecc_data2);
754
755         for (i = 0; i <= 2; i++) {
756                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
757                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
758         }
759
760         for (i = 0; i < 8; i++) {
761                 tmp0_bit[i]     = *ecc_data1 % 2;
762                 *ecc_data1      = *ecc_data1 / 2;
763         }
764
765         for (i = 0; i < 8; i++) {
766                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
767                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
768         }
769
770         for (i = 0; i < 8; i++) {
771                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
772                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
773         }
774
775         for (i = 0; i < 8; i++) {
776                 comp0_bit[i]     = *ecc_data2 % 2;
777                 *ecc_data2       = *ecc_data2 / 2;
778         }
779
780         for (i = 0; i < 8; i++) {
781                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
782                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
783         }
784
785         for (i = 0; i < 8; i++) {
786                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
787                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
788         }
789
790         for (i = 0; i < 6; i++)
791                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
792
793         for (i = 0; i < 8; i++)
794                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
795
796         for (i = 0; i < 8; i++)
797                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
798
799         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
800         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
801
802         for (i = 0; i < 24; i++)
803                 ecc_sum += ecc_bit[i];
804
805         switch (ecc_sum) {
806         case 0:
807                 /* Not reached because this function is not called if
808                  *  ECC values are equal
809                  */
810                 return 0;
811
812         case 1:
813                 /* Uncorrectable error */
814                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
815                 return -1;
816
817         case 11:
818                 /* UN-Correctable error */
819                 pr_debug("ECC UNCORRECTED_ERROR B\n");
820                 return -1;
821
822         case 12:
823                 /* Correctable error */
824                 find_byte = (ecc_bit[23] << 8) +
825                             (ecc_bit[21] << 7) +
826                             (ecc_bit[19] << 6) +
827                             (ecc_bit[17] << 5) +
828                             (ecc_bit[15] << 4) +
829                             (ecc_bit[13] << 3) +
830                             (ecc_bit[11] << 2) +
831                             (ecc_bit[9]  << 1) +
832                             ecc_bit[7];
833
834                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
835
836                 pr_debug("Correcting single bit ECC error at offset: "
837                                 "%d, bit: %d\n", find_byte, find_bit);
838
839                 page_data[find_byte] ^= (1 << find_bit);
840
841                 return 1;
842         default:
843                 if (isEccFF) {
844                         if (ecc_data2[0] == 0 &&
845                             ecc_data2[1] == 0 &&
846                             ecc_data2[2] == 0)
847                                 return 0;
848                 }
849                 pr_debug("UNCORRECTED_ERROR default\n");
850                 return -1;
851         }
852 }
853
854 /**
855  * omap_correct_data - Compares the ECC read with HW generated ECC
856  * @mtd: MTD device structure
857  * @dat: page data
858  * @read_ecc: ecc read from nand flash
859  * @calc_ecc: ecc read from HW ECC registers
860  *
861  * Compares the ecc read from nand spare area with ECC registers values
862  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
863  * detection and correction. If there are no errors, %0 is returned. If
864  * there were errors and all of the errors were corrected, the number of
865  * corrected errors is returned. If uncorrectable errors exist, %-1 is
866  * returned.
867  */
868 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
869                                 u_char *read_ecc, u_char *calc_ecc)
870 {
871         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
872                                                         mtd);
873         int blockCnt = 0, i = 0, ret = 0;
874         int stat = 0;
875
876         /* Ex NAND_ECC_HW12_2048 */
877         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
878                         (info->nand.ecc.size  == 2048))
879                 blockCnt = 4;
880         else
881                 blockCnt = 1;
882
883         for (i = 0; i < blockCnt; i++) {
884                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
885                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
886                         if (ret < 0)
887                                 return ret;
888                         /* keep track of the number of corrected errors */
889                         stat += ret;
890                 }
891                 read_ecc += 3;
892                 calc_ecc += 3;
893                 dat      += 512;
894         }
895         return stat;
896 }
897
898 /**
899  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
900  * @mtd: MTD device structure
901  * @dat: The pointer to data on which ecc is computed
902  * @ecc_code: The ecc_code buffer
903  *
904  * Using noninverted ECC can be considered ugly since writing a blank
905  * page ie. padding will clear the ECC bytes. This is no problem as long
906  * nobody is trying to write data on the seemingly unused page. Reading
907  * an erased page will produce an ECC mismatch between generated and read
908  * ECC bytes that has to be dealt with separately.
909  */
910 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
911                                 u_char *ecc_code)
912 {
913         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
914                                                         mtd);
915         u32 val;
916
917         val = readl(info->reg.gpmc_ecc_config);
918         if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
919                 return -EINVAL;
920
921         /* read ecc result */
922         val = readl(info->reg.gpmc_ecc1_result);
923         *ecc_code++ = val;          /* P128e, ..., P1e */
924         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
925         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
926         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
927
928         return 0;
929 }
930
931 /**
932  * omap_enable_hwecc - This function enables the hardware ecc functionality
933  * @mtd: MTD device structure
934  * @mode: Read/Write mode
935  */
936 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
937 {
938         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
939                                                         mtd);
940         struct nand_chip *chip = mtd->priv;
941         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
942         u32 val;
943
944         /* clear ecc and enable bits */
945         val = ECCCLEAR | ECC1;
946         writel(val, info->reg.gpmc_ecc_control);
947
948         /* program ecc and result sizes */
949         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
950                          ECC1RESULTSIZE);
951         writel(val, info->reg.gpmc_ecc_size_config);
952
953         switch (mode) {
954         case NAND_ECC_READ:
955         case NAND_ECC_WRITE:
956                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
957                 break;
958         case NAND_ECC_READSYN:
959                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
960                 break;
961         default:
962                 dev_info(&info->pdev->dev,
963                         "error: unrecognized Mode[%d]!\n", mode);
964                 break;
965         }
966
967         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
968         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
969         writel(val, info->reg.gpmc_ecc_config);
970 }
971
972 /**
973  * omap_wait - wait until the command is done
974  * @mtd: MTD device structure
975  * @chip: NAND Chip structure
976  *
977  * Wait function is called during Program and erase operations and
978  * the way it is called from MTD layer, we should wait till the NAND
979  * chip is ready after the programming/erase operation has completed.
980  *
981  * Erase can take up to 400ms and program up to 20ms according to
982  * general NAND and SmartMedia specs
983  */
984 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
985 {
986         struct nand_chip *this = mtd->priv;
987         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
988                                                         mtd);
989         unsigned long timeo = jiffies;
990         int status, state = this->state;
991
992         if (state == FL_ERASING)
993                 timeo += (HZ * 400) / 1000;
994         else
995                 timeo += (HZ * 20) / 1000;
996
997         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
998         while (time_before(jiffies, timeo)) {
999                 status = readb(info->reg.gpmc_nand_data);
1000                 if (status & NAND_STATUS_READY)
1001                         break;
1002                 cond_resched();
1003         }
1004
1005         status = readb(info->reg.gpmc_nand_data);
1006         return status;
1007 }
1008
1009 /**
1010  * omap_dev_ready - calls the platform specific dev_ready function
1011  * @mtd: MTD device structure
1012  */
1013 static int omap_dev_ready(struct mtd_info *mtd)
1014 {
1015         unsigned int val = 0;
1016         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1017                                                         mtd);
1018
1019         val = readl(info->reg.gpmc_status);
1020
1021         if ((val & 0x100) == 0x100) {
1022                 return 1;
1023         } else {
1024                 return 0;
1025         }
1026 }
1027
1028 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1029
1030 /**
1031  * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1032  * @mtd: MTD device structure
1033  * @mode: Read/Write mode
1034  */
1035 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1036 {
1037         int nerrors;
1038         unsigned int dev_width, nsectors;
1039         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1040                                                    mtd);
1041         struct nand_chip *chip = mtd->priv;
1042         u32 val;
1043
1044         nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1045         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1046         nsectors = 1;
1047         /*
1048          * Program GPMC to perform correction on one 512-byte sector at a time.
1049          * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1050          * gives a slight (5%) performance gain (but requires additional code).
1051          */
1052
1053         writel(ECC1, info->reg.gpmc_ecc_control);
1054
1055         /*
1056          * When using BCH, sector size is hardcoded to 512 bytes.
1057          * Here we are using wrapping mode 6 both for reading and writing, with:
1058          *  size0 = 0  (no additional protected byte in spare area)
1059          *  size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1060          */
1061         val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
1062         writel(val, info->reg.gpmc_ecc_size_config);
1063
1064         /* BCH configuration */
1065         val = ((1                        << 16) | /* enable BCH */
1066                (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1067                (0x06                     <<  8) | /* wrap mode = 6 */
1068                (dev_width                <<  7) | /* bus width */
1069                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1070                (info->gpmc_cs            <<  1) | /* ECC CS */
1071                (0x1));                            /* enable ECC */
1072
1073         writel(val, info->reg.gpmc_ecc_config);
1074
1075         /* clear ecc and enable bits */
1076         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1077 }
1078
1079 /**
1080  * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1081  * @mtd: MTD device structure
1082  * @dat: The pointer to data on which ecc is computed
1083  * @ecc_code: The ecc_code buffer
1084  */
1085 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1086                                     u_char *ecc_code)
1087 {
1088         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1089                                                    mtd);
1090         unsigned long nsectors, val1, val2;
1091         int i;
1092
1093         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1094
1095         for (i = 0; i < nsectors; i++) {
1096
1097                 /* Read hw-computed remainder */
1098                 val1 = readl(info->reg.gpmc_bch_result0[i]);
1099                 val2 = readl(info->reg.gpmc_bch_result1[i]);
1100
1101                 /*
1102                  * Add constant polynomial to remainder, in order to get an ecc
1103                  * sequence of 0xFFs for a buffer filled with 0xFFs; and
1104                  * left-justify the resulting polynomial.
1105                  */
1106                 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1107                 *ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF);
1108                 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1109                 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1110                 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1111                 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1112                 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1113         }
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1120  * @mtd: MTD device structure
1121  * @dat: The pointer to data on which ecc is computed
1122  * @ecc_code: The ecc_code buffer
1123  */
1124 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1125                                     u_char *ecc_code)
1126 {
1127         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1128                                                    mtd);
1129         unsigned long nsectors, val1, val2, val3, val4;
1130         int i;
1131
1132         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1133
1134         for (i = 0; i < nsectors; i++) {
1135
1136                 /* Read hw-computed remainder */
1137                 val1 = readl(info->reg.gpmc_bch_result0[i]);
1138                 val2 = readl(info->reg.gpmc_bch_result1[i]);
1139                 val3 = readl(info->reg.gpmc_bch_result2[i]);
1140                 val4 = readl(info->reg.gpmc_bch_result3[i]);
1141
1142                 /*
1143                  * Add constant polynomial to remainder, in order to get an ecc
1144                  * sequence of 0xFFs for a buffer filled with 0xFFs.
1145                  */
1146                 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1147                 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1148                 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1149                 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1150                 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1151                 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1152                 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1153                 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1154                 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1155                 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1156                 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1157                 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1158                 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1159         }
1160
1161         return 0;
1162 }
1163
1164 /**
1165  * omap3_correct_data_bch - Decode received data and correct errors
1166  * @mtd: MTD device structure
1167  * @data: page data
1168  * @read_ecc: ecc read from nand flash
1169  * @calc_ecc: ecc read from HW ECC registers
1170  */
1171 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1172                                   u_char *read_ecc, u_char *calc_ecc)
1173 {
1174         int i, count;
1175         /* cannot correct more than 8 errors */
1176         unsigned int errloc[8];
1177         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1178                                                    mtd);
1179
1180         count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1181                            errloc);
1182         if (count > 0) {
1183                 /* correct errors */
1184                 for (i = 0; i < count; i++) {
1185                         /* correct data only, not ecc bytes */
1186                         if (errloc[i] < 8*512)
1187                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1188                         pr_debug("corrected bitflip %u\n", errloc[i]);
1189                 }
1190         } else if (count < 0) {
1191                 pr_err("ecc unrecoverable error\n");
1192         }
1193         return count;
1194 }
1195
1196 /**
1197  * omap3_free_bch - Release BCH ecc resources
1198  * @mtd: MTD device structure
1199  */
1200 static void omap3_free_bch(struct mtd_info *mtd)
1201 {
1202         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1203                                                    mtd);
1204         if (info->bch) {
1205                 free_bch(info->bch);
1206                 info->bch = NULL;
1207         }
1208 }
1209
1210 /**
1211  * omap3_init_bch - Initialize BCH ECC
1212  * @mtd: MTD device structure
1213  * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1214  */
1215 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1216 {
1217         int max_errors;
1218         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1219                                                    mtd);
1220 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1221         const int hw_errors = 8;
1222 #else
1223         const int hw_errors = 4;
1224 #endif
1225         info->bch = NULL;
1226
1227         max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1228         if (max_errors != hw_errors) {
1229                 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1230                        max_errors, hw_errors);
1231                 goto fail;
1232         }
1233
1234         /* software bch library is only used to detect and locate errors */
1235         info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1236         if (!info->bch)
1237                 goto fail;
1238
1239         info->nand.ecc.size    = 512;
1240         info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
1241         info->nand.ecc.correct = omap3_correct_data_bch;
1242         info->nand.ecc.mode    = NAND_ECC_HW;
1243
1244         /*
1245          * The number of corrected errors in an ecc block that will trigger
1246          * block scrubbing defaults to the ecc strength (4 or 8).
1247          * Set mtd->bitflip_threshold here to define a custom threshold.
1248          */
1249
1250         if (max_errors == 8) {
1251                 info->nand.ecc.strength  = 8;
1252                 info->nand.ecc.bytes     = 13;
1253                 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1254         } else {
1255                 info->nand.ecc.strength  = 4;
1256                 info->nand.ecc.bytes     = 7;
1257                 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1258         }
1259
1260         pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1261         return 0;
1262 fail:
1263         omap3_free_bch(mtd);
1264         return -1;
1265 }
1266
1267 /**
1268  * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1269  * @mtd: MTD device structure
1270  */
1271 static int omap3_init_bch_tail(struct mtd_info *mtd)
1272 {
1273         int i, steps;
1274         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1275                                                    mtd);
1276         struct nand_ecclayout *layout = &info->ecclayout;
1277
1278         /* build oob layout */
1279         steps = mtd->writesize/info->nand.ecc.size;
1280         layout->eccbytes = steps*info->nand.ecc.bytes;
1281
1282         /* do not bother creating special oob layouts for small page devices */
1283         if (mtd->oobsize < 64) {
1284                 pr_err("BCH ecc is not supported on small page devices\n");
1285                 goto fail;
1286         }
1287
1288         /* reserve 2 bytes for bad block marker */
1289         if (layout->eccbytes+2 > mtd->oobsize) {
1290                 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1291                        mtd->oobsize, layout->eccbytes);
1292                 goto fail;
1293         }
1294
1295         /* put ecc bytes at oob tail */
1296         for (i = 0; i < layout->eccbytes; i++)
1297                 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1298
1299         layout->oobfree[0].offset = 2;
1300         layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1301         info->nand.ecc.layout = layout;
1302
1303         if (!(info->nand.options & NAND_BUSWIDTH_16))
1304                 info->nand.badblock_pattern = &bb_descrip_flashbased;
1305         return 0;
1306 fail:
1307         omap3_free_bch(mtd);
1308         return -1;
1309 }
1310
1311 #else
1312 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1313 {
1314         pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1315         return -1;
1316 }
1317 static int omap3_init_bch_tail(struct mtd_info *mtd)
1318 {
1319         return -1;
1320 }
1321 static void omap3_free_bch(struct mtd_info *mtd)
1322 {
1323 }
1324 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1325
1326 static int __devinit omap_nand_probe(struct platform_device *pdev)
1327 {
1328         struct omap_nand_info           *info;
1329         struct omap_nand_platform_data  *pdata;
1330         int                             err;
1331         int                             i, offset;
1332         dma_cap_mask_t mask;
1333         unsigned sig;
1334         struct resource                 *res;
1335
1336         pdata = pdev->dev.platform_data;
1337         if (pdata == NULL) {
1338                 dev_err(&pdev->dev, "platform data missing\n");
1339                 return -ENODEV;
1340         }
1341
1342         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1343         if (!info)
1344                 return -ENOMEM;
1345
1346         platform_set_drvdata(pdev, info);
1347
1348         spin_lock_init(&info->controller.lock);
1349         init_waitqueue_head(&info->controller.wq);
1350
1351         info->pdev = pdev;
1352
1353         info->gpmc_cs           = pdata->cs;
1354         info->reg               = pdata->reg;
1355
1356         info->mtd.priv          = &info->nand;
1357         info->mtd.name          = dev_name(&pdev->dev);
1358         info->mtd.owner         = THIS_MODULE;
1359
1360         info->nand.options      = pdata->devsize;
1361         info->nand.options      |= NAND_SKIP_BBTSCAN;
1362
1363         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364         if (res == NULL) {
1365                 err = -EINVAL;
1366                 dev_err(&pdev->dev, "error getting memory resource\n");
1367                 goto out_free_info;
1368         }
1369
1370         info->phys_base = res->start;
1371         info->mem_size = resource_size(res);
1372
1373         if (!request_mem_region(info->phys_base, info->mem_size,
1374                                 pdev->dev.driver->name)) {
1375                 err = -EBUSY;
1376                 goto out_free_info;
1377         }
1378
1379         info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1380         if (!info->nand.IO_ADDR_R) {
1381                 err = -ENOMEM;
1382                 goto out_release_mem_region;
1383         }
1384
1385         info->nand.controller = &info->controller;
1386
1387         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1388         info->nand.cmd_ctrl  = omap_hwcontrol;
1389
1390         /*
1391          * If RDY/BSY line is connected to OMAP then use the omap ready
1392          * function and the generic nand_wait function which reads the status
1393          * register after monitoring the RDY/BSY line. Otherwise use a standard
1394          * chip delay which is slightly more than tR (AC Timing) of the NAND
1395          * device and read status register until you get a failure or success
1396          */
1397         if (pdata->dev_ready) {
1398                 info->nand.dev_ready = omap_dev_ready;
1399                 info->nand.chip_delay = 0;
1400         } else {
1401                 info->nand.waitfunc = omap_wait;
1402                 info->nand.chip_delay = 50;
1403         }
1404
1405         switch (pdata->xfer_type) {
1406         case NAND_OMAP_PREFETCH_POLLED:
1407                 info->nand.read_buf   = omap_read_buf_pref;
1408                 info->nand.write_buf  = omap_write_buf_pref;
1409                 break;
1410
1411         case NAND_OMAP_POLLED:
1412                 if (info->nand.options & NAND_BUSWIDTH_16) {
1413                         info->nand.read_buf   = omap_read_buf16;
1414                         info->nand.write_buf  = omap_write_buf16;
1415                 } else {
1416                         info->nand.read_buf   = omap_read_buf8;
1417                         info->nand.write_buf  = omap_write_buf8;
1418                 }
1419                 break;
1420
1421         case NAND_OMAP_PREFETCH_DMA:
1422                 dma_cap_zero(mask);
1423                 dma_cap_set(DMA_SLAVE, mask);
1424                 sig = OMAP24XX_DMA_GPMC;
1425                 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1426                 if (!info->dma) {
1427                         dev_err(&pdev->dev, "DMA engine request failed\n");
1428                         err = -ENXIO;
1429                         goto out_release_mem_region;
1430                 } else {
1431                         struct dma_slave_config cfg;
1432
1433                         memset(&cfg, 0, sizeof(cfg));
1434                         cfg.src_addr = info->phys_base;
1435                         cfg.dst_addr = info->phys_base;
1436                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1437                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1438                         cfg.src_maxburst = 16;
1439                         cfg.dst_maxburst = 16;
1440                         err = dmaengine_slave_config(info->dma, &cfg);
1441                         if (err) {
1442                                 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1443                                         err);
1444                                 goto out_release_mem_region;
1445                         }
1446                         info->nand.read_buf   = omap_read_buf_dma_pref;
1447                         info->nand.write_buf  = omap_write_buf_dma_pref;
1448                 }
1449                 break;
1450
1451         case NAND_OMAP_PREFETCH_IRQ:
1452                 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1453                 if (info->gpmc_irq_fifo <= 0) {
1454                         dev_err(&pdev->dev, "error getting fifo irq\n");
1455                         err = -ENODEV;
1456                         goto out_release_mem_region;
1457                 }
1458                 err = request_irq(info->gpmc_irq_fifo,  omap_nand_irq,
1459                                         IRQF_SHARED, "gpmc-nand-fifo", info);
1460                 if (err) {
1461                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1462                                                 info->gpmc_irq_fifo, err);
1463                         info->gpmc_irq_fifo = 0;
1464                         goto out_release_mem_region;
1465                 }
1466
1467                 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1468                 if (info->gpmc_irq_count <= 0) {
1469                         dev_err(&pdev->dev, "error getting count irq\n");
1470                         err = -ENODEV;
1471                         goto out_release_mem_region;
1472                 }
1473                 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1474                                         IRQF_SHARED, "gpmc-nand-count", info);
1475                 if (err) {
1476                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1477                                                 info->gpmc_irq_count, err);
1478                         info->gpmc_irq_count = 0;
1479                         goto out_release_mem_region;
1480                 }
1481
1482                 info->nand.read_buf  = omap_read_buf_irq_pref;
1483                 info->nand.write_buf = omap_write_buf_irq_pref;
1484
1485                 break;
1486
1487         default:
1488                 dev_err(&pdev->dev,
1489                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1490                 err = -EINVAL;
1491                 goto out_release_mem_region;
1492         }
1493
1494         /* select the ecc type */
1495         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1496                 info->nand.ecc.mode = NAND_ECC_SOFT;
1497         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1498                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1499                 info->nand.ecc.bytes            = 3;
1500                 info->nand.ecc.size             = 512;
1501                 info->nand.ecc.strength         = 1;
1502                 info->nand.ecc.calculate        = omap_calculate_ecc;
1503                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1504                 info->nand.ecc.correct          = omap_correct_data;
1505                 info->nand.ecc.mode             = NAND_ECC_HW;
1506         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1507                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1508                 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1509                 if (err) {
1510                         err = -EINVAL;
1511                         goto out_release_mem_region;
1512                 }
1513         }
1514
1515         /* DIP switches on some boards change between 8 and 16 bit
1516          * bus widths for flash.  Try the other width if the first try fails.
1517          */
1518         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1519                 info->nand.options ^= NAND_BUSWIDTH_16;
1520                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1521                         err = -ENXIO;
1522                         goto out_release_mem_region;
1523                 }
1524         }
1525
1526         /* rom code layout */
1527         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1528
1529                 if (info->nand.options & NAND_BUSWIDTH_16)
1530                         offset = 2;
1531                 else {
1532                         offset = 1;
1533                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1534                 }
1535                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1536                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1537                         omap_oobinfo.eccpos[i] = i+offset;
1538
1539                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1540                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1541                                         (offset + omap_oobinfo.eccbytes);
1542
1543                 info->nand.ecc.layout = &omap_oobinfo;
1544         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1545                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1546                 /* build OOB layout for BCH ECC correction */
1547                 err = omap3_init_bch_tail(&info->mtd);
1548                 if (err) {
1549                         err = -EINVAL;
1550                         goto out_release_mem_region;
1551                 }
1552         }
1553
1554         /* second phase scan */
1555         if (nand_scan_tail(&info->mtd)) {
1556                 err = -ENXIO;
1557                 goto out_release_mem_region;
1558         }
1559
1560         mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1561                                   pdata->nr_parts);
1562
1563         platform_set_drvdata(pdev, &info->mtd);
1564
1565         return 0;
1566
1567 out_release_mem_region:
1568         if (info->dma)
1569                 dma_release_channel(info->dma);
1570         if (info->gpmc_irq_count > 0)
1571                 free_irq(info->gpmc_irq_count, info);
1572         if (info->gpmc_irq_fifo > 0)
1573                 free_irq(info->gpmc_irq_fifo, info);
1574         release_mem_region(info->phys_base, info->mem_size);
1575 out_free_info:
1576         kfree(info);
1577
1578         return err;
1579 }
1580
1581 static int omap_nand_remove(struct platform_device *pdev)
1582 {
1583         struct mtd_info *mtd = platform_get_drvdata(pdev);
1584         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1585                                                         mtd);
1586         omap3_free_bch(&info->mtd);
1587
1588         platform_set_drvdata(pdev, NULL);
1589         if (info->dma)
1590                 dma_release_channel(info->dma);
1591
1592         if (info->gpmc_irq_count > 0)
1593                 free_irq(info->gpmc_irq_count, info);
1594         if (info->gpmc_irq_fifo > 0)
1595                 free_irq(info->gpmc_irq_fifo, info);
1596
1597         /* Release NAND device, its internal structures and partitions */
1598         nand_release(&info->mtd);
1599         iounmap(info->nand.IO_ADDR_R);
1600         release_mem_region(info->phys_base, info->mem_size);
1601         kfree(info);
1602         return 0;
1603 }
1604
1605 static struct platform_driver omap_nand_driver = {
1606         .probe          = omap_nand_probe,
1607         .remove         = omap_nand_remove,
1608         .driver         = {
1609                 .name   = DRIVER_NAME,
1610                 .owner  = THIS_MODULE,
1611         },
1612 };
1613
1614 module_platform_driver(omap_nand_driver);
1615
1616 MODULE_ALIAS("platform:" DRIVER_NAME);
1617 MODULE_LICENSE("GPL");
1618 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");