Merge branch 'next/cleanup' into next/pm2
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25
26 #ifdef CONFIG_MTD_NAND_OMAP_BCH
27 #include <linux/bch.h>
28 #endif
29
30 #include <plat-omap/dma-omap.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
32
33 #define DRIVER_NAME     "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS    5000
35
36 #define NAND_Ecc_P1e            (1 << 0)
37 #define NAND_Ecc_P2e            (1 << 1)
38 #define NAND_Ecc_P4e            (1 << 2)
39 #define NAND_Ecc_P8e            (1 << 3)
40 #define NAND_Ecc_P16e           (1 << 4)
41 #define NAND_Ecc_P32e           (1 << 5)
42 #define NAND_Ecc_P64e           (1 << 6)
43 #define NAND_Ecc_P128e          (1 << 7)
44 #define NAND_Ecc_P256e          (1 << 8)
45 #define NAND_Ecc_P512e          (1 << 9)
46 #define NAND_Ecc_P1024e         (1 << 10)
47 #define NAND_Ecc_P2048e         (1 << 11)
48
49 #define NAND_Ecc_P1o            (1 << 16)
50 #define NAND_Ecc_P2o            (1 << 17)
51 #define NAND_Ecc_P4o            (1 << 18)
52 #define NAND_Ecc_P8o            (1 << 19)
53 #define NAND_Ecc_P16o           (1 << 20)
54 #define NAND_Ecc_P32o           (1 << 21)
55 #define NAND_Ecc_P64o           (1 << 22)
56 #define NAND_Ecc_P128o          (1 << 23)
57 #define NAND_Ecc_P256o          (1 << 24)
58 #define NAND_Ecc_P512o          (1 << 25)
59 #define NAND_Ecc_P1024o         (1 << 26)
60 #define NAND_Ecc_P2048o         (1 << 27)
61
62 #define TF(value)       (value ? 1 : 0)
63
64 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
65 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
66 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
67 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
68 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
69 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
70 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
71 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
72
73 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
74 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
75 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
76 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
77 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
78 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
79 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
80 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
81
82 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
83 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
84 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
85 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
86 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
87 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
88 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
89 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
90
91 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
92 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
93 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
94 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
95 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
96 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
97 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
98 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
99
100 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
101 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
102
103 #define PREFETCH_CONFIG1_CS_SHIFT       24
104 #define ECC_CONFIG_CS_SHIFT             1
105 #define CS_MASK                         0x7
106 #define ENABLE_PREFETCH                 (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT              2
108 #define ECCSIZE0_SHIFT                  12
109 #define ECCSIZE1_SHIFT                  22
110 #define ECC1RESULTSIZE                  0x1
111 #define ECCCLEAR                        0x100
112 #define ECC1                            0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
114 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY               0x00000001
118
119 #define OMAP24XX_DMA_GPMC               4
120
121 /* oob info generated runtime depending on ecc algorithm and layout selected */
122 static struct nand_ecclayout omap_oobinfo;
123 /* Define some generic bad / good block scan pattern which are used
124  * while scanning a device for factory marked good / bad blocks
125  */
126 static uint8_t scan_ff_pattern[] = { 0xff };
127 static struct nand_bbt_descr bb_descrip_flashbased = {
128         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
129         .offs = 0,
130         .len = 1,
131         .pattern = scan_ff_pattern,
132 };
133
134
135 struct omap_nand_info {
136         struct nand_hw_control          controller;
137         struct omap_nand_platform_data  *pdata;
138         struct mtd_info                 mtd;
139         struct nand_chip                nand;
140         struct platform_device          *pdev;
141
142         int                             gpmc_cs;
143         unsigned long                   phys_base;
144         unsigned long                   mem_size;
145         struct completion               comp;
146         struct dma_chan                 *dma;
147         int                             gpmc_irq_fifo;
148         int                             gpmc_irq_count;
149         enum {
150                 OMAP_NAND_IO_READ = 0,  /* read */
151                 OMAP_NAND_IO_WRITE,     /* write */
152         } iomode;
153         u_char                          *buf;
154         int                                     buf_len;
155         struct gpmc_nand_regs           reg;
156
157 #ifdef CONFIG_MTD_NAND_OMAP_BCH
158         struct bch_control             *bch;
159         struct nand_ecclayout           ecclayout;
160 #endif
161 };
162
163 /**
164  * omap_prefetch_enable - configures and starts prefetch transfer
165  * @cs: cs (chip select) number
166  * @fifo_th: fifo threshold to be used for read/ write
167  * @dma_mode: dma mode enable (1) or disable (0)
168  * @u32_count: number of bytes to be transferred
169  * @is_write: prefetch read(0) or write post(1) mode
170  */
171 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
172         unsigned int u32_count, int is_write, struct omap_nand_info *info)
173 {
174         u32 val;
175
176         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
177                 return -1;
178
179         if (readl(info->reg.gpmc_prefetch_control))
180                 return -EBUSY;
181
182         /* Set the amount of bytes to be prefetched */
183         writel(u32_count, info->reg.gpmc_prefetch_config2);
184
185         /* Set dma/mpu mode, the prefetch read / post write and
186          * enable the engine. Set which cs is has requested for.
187          */
188         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
189                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
190                 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
191         writel(val, info->reg.gpmc_prefetch_config1);
192
193         /*  Start the prefetch engine */
194         writel(0x1, info->reg.gpmc_prefetch_control);
195
196         return 0;
197 }
198
199 /**
200  * omap_prefetch_reset - disables and stops the prefetch engine
201  */
202 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
203 {
204         u32 config1;
205
206         /* check if the same module/cs is trying to reset */
207         config1 = readl(info->reg.gpmc_prefetch_config1);
208         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
209                 return -EINVAL;
210
211         /* Stop the PFPW engine */
212         writel(0x0, info->reg.gpmc_prefetch_control);
213
214         /* Reset/disable the PFPW engine */
215         writel(0x0, info->reg.gpmc_prefetch_config1);
216
217         return 0;
218 }
219
220 /**
221  * omap_hwcontrol - hardware specific access to control-lines
222  * @mtd: MTD device structure
223  * @cmd: command to device
224  * @ctrl:
225  * NAND_NCE: bit 0 -> don't care
226  * NAND_CLE: bit 1 -> Command Latch
227  * NAND_ALE: bit 2 -> Address Latch
228  *
229  * NOTE: boards may use different bits for these!!
230  */
231 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
232 {
233         struct omap_nand_info *info = container_of(mtd,
234                                         struct omap_nand_info, mtd);
235
236         if (cmd != NAND_CMD_NONE) {
237                 if (ctrl & NAND_CLE)
238                         writeb(cmd, info->reg.gpmc_nand_command);
239
240                 else if (ctrl & NAND_ALE)
241                         writeb(cmd, info->reg.gpmc_nand_address);
242
243                 else /* NAND_NCE */
244                         writeb(cmd, info->reg.gpmc_nand_data);
245         }
246 }
247
248 /**
249  * omap_read_buf8 - read data from NAND controller into buffer
250  * @mtd: MTD device structure
251  * @buf: buffer to store date
252  * @len: number of bytes to read
253  */
254 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
255 {
256         struct nand_chip *nand = mtd->priv;
257
258         ioread8_rep(nand->IO_ADDR_R, buf, len);
259 }
260
261 /**
262  * omap_write_buf8 - write buffer to NAND controller
263  * @mtd: MTD device structure
264  * @buf: data buffer
265  * @len: number of bytes to write
266  */
267 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
268 {
269         struct omap_nand_info *info = container_of(mtd,
270                                                 struct omap_nand_info, mtd);
271         u_char *p = (u_char *)buf;
272         u32     status = 0;
273
274         while (len--) {
275                 iowrite8(*p++, info->nand.IO_ADDR_W);
276                 /* wait until buffer is available for write */
277                 do {
278                         status = readl(info->reg.gpmc_status) &
279                                         STATUS_BUFF_EMPTY;
280                 } while (!status);
281         }
282 }
283
284 /**
285  * omap_read_buf16 - read data from NAND controller into buffer
286  * @mtd: MTD device structure
287  * @buf: buffer to store date
288  * @len: number of bytes to read
289  */
290 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
291 {
292         struct nand_chip *nand = mtd->priv;
293
294         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
295 }
296
297 /**
298  * omap_write_buf16 - write buffer to NAND controller
299  * @mtd: MTD device structure
300  * @buf: data buffer
301  * @len: number of bytes to write
302  */
303 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
304 {
305         struct omap_nand_info *info = container_of(mtd,
306                                                 struct omap_nand_info, mtd);
307         u16 *p = (u16 *) buf;
308         u32     status = 0;
309         /* FIXME try bursts of writesw() or DMA ... */
310         len >>= 1;
311
312         while (len--) {
313                 iowrite16(*p++, info->nand.IO_ADDR_W);
314                 /* wait until buffer is available for write */
315                 do {
316                         status = readl(info->reg.gpmc_status) &
317                                         STATUS_BUFF_EMPTY;
318                 } while (!status);
319         }
320 }
321
322 /**
323  * omap_read_buf_pref - read data from NAND controller into buffer
324  * @mtd: MTD device structure
325  * @buf: buffer to store date
326  * @len: number of bytes to read
327  */
328 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
329 {
330         struct omap_nand_info *info = container_of(mtd,
331                                                 struct omap_nand_info, mtd);
332         uint32_t r_count = 0;
333         int ret = 0;
334         u32 *p = (u32 *)buf;
335
336         /* take care of subpage reads */
337         if (len % 4) {
338                 if (info->nand.options & NAND_BUSWIDTH_16)
339                         omap_read_buf16(mtd, buf, len % 4);
340                 else
341                         omap_read_buf8(mtd, buf, len % 4);
342                 p = (u32 *) (buf + len % 4);
343                 len -= len % 4;
344         }
345
346         /* configure and start prefetch transfer */
347         ret = omap_prefetch_enable(info->gpmc_cs,
348                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
349         if (ret) {
350                 /* PFPW engine is busy, use cpu copy method */
351                 if (info->nand.options & NAND_BUSWIDTH_16)
352                         omap_read_buf16(mtd, (u_char *)p, len);
353                 else
354                         omap_read_buf8(mtd, (u_char *)p, len);
355         } else {
356                 do {
357                         r_count = readl(info->reg.gpmc_prefetch_status);
358                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
359                         r_count = r_count >> 2;
360                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
361                         p += r_count;
362                         len -= r_count << 2;
363                 } while (len);
364                 /* disable and stop the PFPW engine */
365                 omap_prefetch_reset(info->gpmc_cs, info);
366         }
367 }
368
369 /**
370  * omap_write_buf_pref - write buffer to NAND controller
371  * @mtd: MTD device structure
372  * @buf: data buffer
373  * @len: number of bytes to write
374  */
375 static void omap_write_buf_pref(struct mtd_info *mtd,
376                                         const u_char *buf, int len)
377 {
378         struct omap_nand_info *info = container_of(mtd,
379                                                 struct omap_nand_info, mtd);
380         uint32_t w_count = 0;
381         int i = 0, ret = 0;
382         u16 *p = (u16 *)buf;
383         unsigned long tim, limit;
384         u32 val;
385
386         /* take care of subpage writes */
387         if (len % 2 != 0) {
388                 writeb(*buf, info->nand.IO_ADDR_W);
389                 p = (u16 *)(buf + 1);
390                 len--;
391         }
392
393         /*  configure and start prefetch transfer */
394         ret = omap_prefetch_enable(info->gpmc_cs,
395                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
396         if (ret) {
397                 /* PFPW engine is busy, use cpu copy method */
398                 if (info->nand.options & NAND_BUSWIDTH_16)
399                         omap_write_buf16(mtd, (u_char *)p, len);
400                 else
401                         omap_write_buf8(mtd, (u_char *)p, len);
402         } else {
403                 while (len) {
404                         w_count = readl(info->reg.gpmc_prefetch_status);
405                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
406                         w_count = w_count >> 1;
407                         for (i = 0; (i < w_count) && len; i++, len -= 2)
408                                 iowrite16(*p++, info->nand.IO_ADDR_W);
409                 }
410                 /* wait for data to flushed-out before reset the prefetch */
411                 tim = 0;
412                 limit = (loops_per_jiffy *
413                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
414                 do {
415                         cpu_relax();
416                         val = readl(info->reg.gpmc_prefetch_status);
417                         val = PREFETCH_STATUS_COUNT(val);
418                 } while (val && (tim++ < limit));
419
420                 /* disable and stop the PFPW engine */
421                 omap_prefetch_reset(info->gpmc_cs, info);
422         }
423 }
424
425 /*
426  * omap_nand_dma_callback: callback on the completion of dma transfer
427  * @data: pointer to completion data structure
428  */
429 static void omap_nand_dma_callback(void *data)
430 {
431         complete((struct completion *) data);
432 }
433
434 /*
435  * omap_nand_dma_transfer: configure and start dma transfer
436  * @mtd: MTD device structure
437  * @addr: virtual address in RAM of source/destination
438  * @len: number of data bytes to be transferred
439  * @is_write: flag for read/write operation
440  */
441 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
442                                         unsigned int len, int is_write)
443 {
444         struct omap_nand_info *info = container_of(mtd,
445                                         struct omap_nand_info, mtd);
446         struct dma_async_tx_descriptor *tx;
447         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
448                                                         DMA_FROM_DEVICE;
449         struct scatterlist sg;
450         unsigned long tim, limit;
451         unsigned n;
452         int ret;
453         u32 val;
454
455         if (addr >= high_memory) {
456                 struct page *p1;
457
458                 if (((size_t)addr & PAGE_MASK) !=
459                         ((size_t)(addr + len - 1) & PAGE_MASK))
460                         goto out_copy;
461                 p1 = vmalloc_to_page(addr);
462                 if (!p1)
463                         goto out_copy;
464                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
465         }
466
467         sg_init_one(&sg, addr, len);
468         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
469         if (n == 0) {
470                 dev_err(&info->pdev->dev,
471                         "Couldn't DMA map a %d byte buffer\n", len);
472                 goto out_copy;
473         }
474
475         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
476                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
477                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
478         if (!tx)
479                 goto out_copy_unmap;
480
481         tx->callback = omap_nand_dma_callback;
482         tx->callback_param = &info->comp;
483         dmaengine_submit(tx);
484
485         /*  configure and start prefetch transfer */
486         ret = omap_prefetch_enable(info->gpmc_cs,
487                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
488         if (ret)
489                 /* PFPW engine is busy, use cpu copy method */
490                 goto out_copy_unmap;
491
492         init_completion(&info->comp);
493         dma_async_issue_pending(info->dma);
494
495         /* setup and start DMA using dma_addr */
496         wait_for_completion(&info->comp);
497         tim = 0;
498         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
499
500         do {
501                 cpu_relax();
502                 val = readl(info->reg.gpmc_prefetch_status);
503                 val = PREFETCH_STATUS_COUNT(val);
504         } while (val && (tim++ < limit));
505
506         /* disable and stop the PFPW engine */
507         omap_prefetch_reset(info->gpmc_cs, info);
508
509         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
510         return 0;
511
512 out_copy_unmap:
513         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
514 out_copy:
515         if (info->nand.options & NAND_BUSWIDTH_16)
516                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
517                         : omap_write_buf16(mtd, (u_char *) addr, len);
518         else
519                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
520                         : omap_write_buf8(mtd, (u_char *) addr, len);
521         return 0;
522 }
523
524 /**
525  * omap_read_buf_dma_pref - read data from NAND controller into buffer
526  * @mtd: MTD device structure
527  * @buf: buffer to store date
528  * @len: number of bytes to read
529  */
530 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
531 {
532         if (len <= mtd->oobsize)
533                 omap_read_buf_pref(mtd, buf, len);
534         else
535                 /* start transfer in DMA mode */
536                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
537 }
538
539 /**
540  * omap_write_buf_dma_pref - write buffer to NAND controller
541  * @mtd: MTD device structure
542  * @buf: data buffer
543  * @len: number of bytes to write
544  */
545 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
546                                         const u_char *buf, int len)
547 {
548         if (len <= mtd->oobsize)
549                 omap_write_buf_pref(mtd, buf, len);
550         else
551                 /* start transfer in DMA mode */
552                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
553 }
554
555 /*
556  * omap_nand_irq - GPMC irq handler
557  * @this_irq: gpmc irq number
558  * @dev: omap_nand_info structure pointer is passed here
559  */
560 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
561 {
562         struct omap_nand_info *info = (struct omap_nand_info *) dev;
563         u32 bytes;
564
565         bytes = readl(info->reg.gpmc_prefetch_status);
566         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
567         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
568         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
569                 if (this_irq == info->gpmc_irq_count)
570                         goto done;
571
572                 if (info->buf_len && (info->buf_len < bytes))
573                         bytes = info->buf_len;
574                 else if (!info->buf_len)
575                         bytes = 0;
576                 iowrite32_rep(info->nand.IO_ADDR_W,
577                                                 (u32 *)info->buf, bytes >> 2);
578                 info->buf = info->buf + bytes;
579                 info->buf_len -= bytes;
580
581         } else {
582                 ioread32_rep(info->nand.IO_ADDR_R,
583                                                 (u32 *)info->buf, bytes >> 2);
584                 info->buf = info->buf + bytes;
585
586                 if (this_irq == info->gpmc_irq_count)
587                         goto done;
588         }
589
590         return IRQ_HANDLED;
591
592 done:
593         complete(&info->comp);
594
595         disable_irq_nosync(info->gpmc_irq_fifo);
596         disable_irq_nosync(info->gpmc_irq_count);
597
598         return IRQ_HANDLED;
599 }
600
601 /*
602  * omap_read_buf_irq_pref - read data from NAND controller into buffer
603  * @mtd: MTD device structure
604  * @buf: buffer to store date
605  * @len: number of bytes to read
606  */
607 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
608 {
609         struct omap_nand_info *info = container_of(mtd,
610                                                 struct omap_nand_info, mtd);
611         int ret = 0;
612
613         if (len <= mtd->oobsize) {
614                 omap_read_buf_pref(mtd, buf, len);
615                 return;
616         }
617
618         info->iomode = OMAP_NAND_IO_READ;
619         info->buf = buf;
620         init_completion(&info->comp);
621
622         /*  configure and start prefetch transfer */
623         ret = omap_prefetch_enable(info->gpmc_cs,
624                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
625         if (ret)
626                 /* PFPW engine is busy, use cpu copy method */
627                 goto out_copy;
628
629         info->buf_len = len;
630
631         enable_irq(info->gpmc_irq_count);
632         enable_irq(info->gpmc_irq_fifo);
633
634         /* waiting for read to complete */
635         wait_for_completion(&info->comp);
636
637         /* disable and stop the PFPW engine */
638         omap_prefetch_reset(info->gpmc_cs, info);
639         return;
640
641 out_copy:
642         if (info->nand.options & NAND_BUSWIDTH_16)
643                 omap_read_buf16(mtd, buf, len);
644         else
645                 omap_read_buf8(mtd, buf, len);
646 }
647
648 /*
649  * omap_write_buf_irq_pref - write buffer to NAND controller
650  * @mtd: MTD device structure
651  * @buf: data buffer
652  * @len: number of bytes to write
653  */
654 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
655                                         const u_char *buf, int len)
656 {
657         struct omap_nand_info *info = container_of(mtd,
658                                                 struct omap_nand_info, mtd);
659         int ret = 0;
660         unsigned long tim, limit;
661         u32 val;
662
663         if (len <= mtd->oobsize) {
664                 omap_write_buf_pref(mtd, buf, len);
665                 return;
666         }
667
668         info->iomode = OMAP_NAND_IO_WRITE;
669         info->buf = (u_char *) buf;
670         init_completion(&info->comp);
671
672         /* configure and start prefetch transfer : size=24 */
673         ret = omap_prefetch_enable(info->gpmc_cs,
674                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
675         if (ret)
676                 /* PFPW engine is busy, use cpu copy method */
677                 goto out_copy;
678
679         info->buf_len = len;
680
681         enable_irq(info->gpmc_irq_count);
682         enable_irq(info->gpmc_irq_fifo);
683
684         /* waiting for write to complete */
685         wait_for_completion(&info->comp);
686
687         /* wait for data to flushed-out before reset the prefetch */
688         tim = 0;
689         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
690         do {
691                 val = readl(info->reg.gpmc_prefetch_status);
692                 val = PREFETCH_STATUS_COUNT(val);
693                 cpu_relax();
694         } while (val && (tim++ < limit));
695
696         /* disable and stop the PFPW engine */
697         omap_prefetch_reset(info->gpmc_cs, info);
698         return;
699
700 out_copy:
701         if (info->nand.options & NAND_BUSWIDTH_16)
702                 omap_write_buf16(mtd, buf, len);
703         else
704                 omap_write_buf8(mtd, buf, len);
705 }
706
707 /**
708  * gen_true_ecc - This function will generate true ECC value
709  * @ecc_buf: buffer to store ecc code
710  *
711  * This generated true ECC value can be used when correcting
712  * data read from NAND flash memory core
713  */
714 static void gen_true_ecc(u8 *ecc_buf)
715 {
716         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
717                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
718
719         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
720                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
721         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
722                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
723         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
724                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
725 }
726
727 /**
728  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
729  * @ecc_data1:  ecc code from nand spare area
730  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
731  * @page_data:  page data
732  *
733  * This function compares two ECC's and indicates if there is an error.
734  * If the error can be corrected it will be corrected to the buffer.
735  * If there is no error, %0 is returned. If there is an error but it
736  * was corrected, %1 is returned. Otherwise, %-1 is returned.
737  */
738 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
739                             u8 *ecc_data2,      /* read from register */
740                             u8 *page_data)
741 {
742         uint    i;
743         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
744         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
745         u8      ecc_bit[24];
746         u8      ecc_sum = 0;
747         u8      find_bit = 0;
748         uint    find_byte = 0;
749         int     isEccFF;
750
751         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
752
753         gen_true_ecc(ecc_data1);
754         gen_true_ecc(ecc_data2);
755
756         for (i = 0; i <= 2; i++) {
757                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
758                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
759         }
760
761         for (i = 0; i < 8; i++) {
762                 tmp0_bit[i]     = *ecc_data1 % 2;
763                 *ecc_data1      = *ecc_data1 / 2;
764         }
765
766         for (i = 0; i < 8; i++) {
767                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
768                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
769         }
770
771         for (i = 0; i < 8; i++) {
772                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
773                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
774         }
775
776         for (i = 0; i < 8; i++) {
777                 comp0_bit[i]     = *ecc_data2 % 2;
778                 *ecc_data2       = *ecc_data2 / 2;
779         }
780
781         for (i = 0; i < 8; i++) {
782                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
783                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
784         }
785
786         for (i = 0; i < 8; i++) {
787                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
788                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
789         }
790
791         for (i = 0; i < 6; i++)
792                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
793
794         for (i = 0; i < 8; i++)
795                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
796
797         for (i = 0; i < 8; i++)
798                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
799
800         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
801         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
802
803         for (i = 0; i < 24; i++)
804                 ecc_sum += ecc_bit[i];
805
806         switch (ecc_sum) {
807         case 0:
808                 /* Not reached because this function is not called if
809                  *  ECC values are equal
810                  */
811                 return 0;
812
813         case 1:
814                 /* Uncorrectable error */
815                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
816                 return -1;
817
818         case 11:
819                 /* UN-Correctable error */
820                 pr_debug("ECC UNCORRECTED_ERROR B\n");
821                 return -1;
822
823         case 12:
824                 /* Correctable error */
825                 find_byte = (ecc_bit[23] << 8) +
826                             (ecc_bit[21] << 7) +
827                             (ecc_bit[19] << 6) +
828                             (ecc_bit[17] << 5) +
829                             (ecc_bit[15] << 4) +
830                             (ecc_bit[13] << 3) +
831                             (ecc_bit[11] << 2) +
832                             (ecc_bit[9]  << 1) +
833                             ecc_bit[7];
834
835                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
836
837                 pr_debug("Correcting single bit ECC error at offset: "
838                                 "%d, bit: %d\n", find_byte, find_bit);
839
840                 page_data[find_byte] ^= (1 << find_bit);
841
842                 return 1;
843         default:
844                 if (isEccFF) {
845                         if (ecc_data2[0] == 0 &&
846                             ecc_data2[1] == 0 &&
847                             ecc_data2[2] == 0)
848                                 return 0;
849                 }
850                 pr_debug("UNCORRECTED_ERROR default\n");
851                 return -1;
852         }
853 }
854
855 /**
856  * omap_correct_data - Compares the ECC read with HW generated ECC
857  * @mtd: MTD device structure
858  * @dat: page data
859  * @read_ecc: ecc read from nand flash
860  * @calc_ecc: ecc read from HW ECC registers
861  *
862  * Compares the ecc read from nand spare area with ECC registers values
863  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
864  * detection and correction. If there are no errors, %0 is returned. If
865  * there were errors and all of the errors were corrected, the number of
866  * corrected errors is returned. If uncorrectable errors exist, %-1 is
867  * returned.
868  */
869 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
870                                 u_char *read_ecc, u_char *calc_ecc)
871 {
872         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
873                                                         mtd);
874         int blockCnt = 0, i = 0, ret = 0;
875         int stat = 0;
876
877         /* Ex NAND_ECC_HW12_2048 */
878         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
879                         (info->nand.ecc.size  == 2048))
880                 blockCnt = 4;
881         else
882                 blockCnt = 1;
883
884         for (i = 0; i < blockCnt; i++) {
885                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
886                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
887                         if (ret < 0)
888                                 return ret;
889                         /* keep track of the number of corrected errors */
890                         stat += ret;
891                 }
892                 read_ecc += 3;
893                 calc_ecc += 3;
894                 dat      += 512;
895         }
896         return stat;
897 }
898
899 /**
900  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
901  * @mtd: MTD device structure
902  * @dat: The pointer to data on which ecc is computed
903  * @ecc_code: The ecc_code buffer
904  *
905  * Using noninverted ECC can be considered ugly since writing a blank
906  * page ie. padding will clear the ECC bytes. This is no problem as long
907  * nobody is trying to write data on the seemingly unused page. Reading
908  * an erased page will produce an ECC mismatch between generated and read
909  * ECC bytes that has to be dealt with separately.
910  */
911 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
912                                 u_char *ecc_code)
913 {
914         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
915                                                         mtd);
916         u32 val;
917
918         val = readl(info->reg.gpmc_ecc_config);
919         if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
920                 return -EINVAL;
921
922         /* read ecc result */
923         val = readl(info->reg.gpmc_ecc1_result);
924         *ecc_code++ = val;          /* P128e, ..., P1e */
925         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
926         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
927         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
928
929         return 0;
930 }
931
932 /**
933  * omap_enable_hwecc - This function enables the hardware ecc functionality
934  * @mtd: MTD device structure
935  * @mode: Read/Write mode
936  */
937 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
938 {
939         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
940                                                         mtd);
941         struct nand_chip *chip = mtd->priv;
942         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
943         u32 val;
944
945         /* clear ecc and enable bits */
946         val = ECCCLEAR | ECC1;
947         writel(val, info->reg.gpmc_ecc_control);
948
949         /* program ecc and result sizes */
950         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
951                          ECC1RESULTSIZE);
952         writel(val, info->reg.gpmc_ecc_size_config);
953
954         switch (mode) {
955         case NAND_ECC_READ:
956         case NAND_ECC_WRITE:
957                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
958                 break;
959         case NAND_ECC_READSYN:
960                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
961                 break;
962         default:
963                 dev_info(&info->pdev->dev,
964                         "error: unrecognized Mode[%d]!\n", mode);
965                 break;
966         }
967
968         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
969         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
970         writel(val, info->reg.gpmc_ecc_config);
971 }
972
973 /**
974  * omap_wait - wait until the command is done
975  * @mtd: MTD device structure
976  * @chip: NAND Chip structure
977  *
978  * Wait function is called during Program and erase operations and
979  * the way it is called from MTD layer, we should wait till the NAND
980  * chip is ready after the programming/erase operation has completed.
981  *
982  * Erase can take up to 400ms and program up to 20ms according to
983  * general NAND and SmartMedia specs
984  */
985 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
986 {
987         struct nand_chip *this = mtd->priv;
988         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
989                                                         mtd);
990         unsigned long timeo = jiffies;
991         int status, state = this->state;
992
993         if (state == FL_ERASING)
994                 timeo += (HZ * 400) / 1000;
995         else
996                 timeo += (HZ * 20) / 1000;
997
998         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
999         while (time_before(jiffies, timeo)) {
1000                 status = readb(info->reg.gpmc_nand_data);
1001                 if (status & NAND_STATUS_READY)
1002                         break;
1003                 cond_resched();
1004         }
1005
1006         status = readb(info->reg.gpmc_nand_data);
1007         return status;
1008 }
1009
1010 /**
1011  * omap_dev_ready - calls the platform specific dev_ready function
1012  * @mtd: MTD device structure
1013  */
1014 static int omap_dev_ready(struct mtd_info *mtd)
1015 {
1016         unsigned int val = 0;
1017         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1018                                                         mtd);
1019
1020         val = readl(info->reg.gpmc_status);
1021
1022         if ((val & 0x100) == 0x100) {
1023                 return 1;
1024         } else {
1025                 return 0;
1026         }
1027 }
1028
1029 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1030
1031 /**
1032  * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1033  * @mtd: MTD device structure
1034  * @mode: Read/Write mode
1035  */
1036 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1037 {
1038         int nerrors;
1039         unsigned int dev_width, nsectors;
1040         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1041                                                    mtd);
1042         struct nand_chip *chip = mtd->priv;
1043         u32 val;
1044
1045         nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
1046         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1047         nsectors = 1;
1048         /*
1049          * Program GPMC to perform correction on one 512-byte sector at a time.
1050          * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
1051          * gives a slight (5%) performance gain (but requires additional code).
1052          */
1053
1054         writel(ECC1, info->reg.gpmc_ecc_control);
1055
1056         /*
1057          * When using BCH, sector size is hardcoded to 512 bytes.
1058          * Here we are using wrapping mode 6 both for reading and writing, with:
1059          *  size0 = 0  (no additional protected byte in spare area)
1060          *  size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1061          */
1062         val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
1063         writel(val, info->reg.gpmc_ecc_size_config);
1064
1065         /* BCH configuration */
1066         val = ((1                        << 16) | /* enable BCH */
1067                (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1068                (0x06                     <<  8) | /* wrap mode = 6 */
1069                (dev_width                <<  7) | /* bus width */
1070                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1071                (info->gpmc_cs            <<  1) | /* ECC CS */
1072                (0x1));                            /* enable ECC */
1073
1074         writel(val, info->reg.gpmc_ecc_config);
1075
1076         /* clear ecc and enable bits */
1077         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1078 }
1079
1080 /**
1081  * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1082  * @mtd: MTD device structure
1083  * @dat: The pointer to data on which ecc is computed
1084  * @ecc_code: The ecc_code buffer
1085  */
1086 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1087                                     u_char *ecc_code)
1088 {
1089         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1090                                                    mtd);
1091         unsigned long nsectors, val1, val2;
1092         int i;
1093
1094         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1095
1096         for (i = 0; i < nsectors; i++) {
1097
1098                 /* Read hw-computed remainder */
1099                 val1 = readl(info->reg.gpmc_bch_result0[i]);
1100                 val2 = readl(info->reg.gpmc_bch_result1[i]);
1101
1102                 /*
1103                  * Add constant polynomial to remainder, in order to get an ecc
1104                  * sequence of 0xFFs for a buffer filled with 0xFFs; and
1105                  * left-justify the resulting polynomial.
1106                  */
1107                 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1108                 *ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF);
1109                 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1110                 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1111                 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1112                 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1113                 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1114         }
1115
1116         return 0;
1117 }
1118
1119 /**
1120  * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1121  * @mtd: MTD device structure
1122  * @dat: The pointer to data on which ecc is computed
1123  * @ecc_code: The ecc_code buffer
1124  */
1125 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1126                                     u_char *ecc_code)
1127 {
1128         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1129                                                    mtd);
1130         unsigned long nsectors, val1, val2, val3, val4;
1131         int i;
1132
1133         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1134
1135         for (i = 0; i < nsectors; i++) {
1136
1137                 /* Read hw-computed remainder */
1138                 val1 = readl(info->reg.gpmc_bch_result0[i]);
1139                 val2 = readl(info->reg.gpmc_bch_result1[i]);
1140                 val3 = readl(info->reg.gpmc_bch_result2[i]);
1141                 val4 = readl(info->reg.gpmc_bch_result3[i]);
1142
1143                 /*
1144                  * Add constant polynomial to remainder, in order to get an ecc
1145                  * sequence of 0xFFs for a buffer filled with 0xFFs.
1146                  */
1147                 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1148                 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1149                 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1150                 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1151                 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1152                 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1153                 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1154                 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1155                 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1156                 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1157                 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1158                 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1159                 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1160         }
1161
1162         return 0;
1163 }
1164
1165 /**
1166  * omap3_correct_data_bch - Decode received data and correct errors
1167  * @mtd: MTD device structure
1168  * @data: page data
1169  * @read_ecc: ecc read from nand flash
1170  * @calc_ecc: ecc read from HW ECC registers
1171  */
1172 static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1173                                   u_char *read_ecc, u_char *calc_ecc)
1174 {
1175         int i, count;
1176         /* cannot correct more than 8 errors */
1177         unsigned int errloc[8];
1178         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1179                                                    mtd);
1180
1181         count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1182                            errloc);
1183         if (count > 0) {
1184                 /* correct errors */
1185                 for (i = 0; i < count; i++) {
1186                         /* correct data only, not ecc bytes */
1187                         if (errloc[i] < 8*512)
1188                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1189                         pr_debug("corrected bitflip %u\n", errloc[i]);
1190                 }
1191         } else if (count < 0) {
1192                 pr_err("ecc unrecoverable error\n");
1193         }
1194         return count;
1195 }
1196
1197 /**
1198  * omap3_free_bch - Release BCH ecc resources
1199  * @mtd: MTD device structure
1200  */
1201 static void omap3_free_bch(struct mtd_info *mtd)
1202 {
1203         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1204                                                    mtd);
1205         if (info->bch) {
1206                 free_bch(info->bch);
1207                 info->bch = NULL;
1208         }
1209 }
1210
1211 /**
1212  * omap3_init_bch - Initialize BCH ECC
1213  * @mtd: MTD device structure
1214  * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1215  */
1216 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1217 {
1218         int max_errors;
1219         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1220                                                    mtd);
1221 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1222         const int hw_errors = 8;
1223 #else
1224         const int hw_errors = 4;
1225 #endif
1226         info->bch = NULL;
1227
1228         max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1229         if (max_errors != hw_errors) {
1230                 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1231                        max_errors, hw_errors);
1232                 goto fail;
1233         }
1234
1235         /* software bch library is only used to detect and locate errors */
1236         info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1237         if (!info->bch)
1238                 goto fail;
1239
1240         info->nand.ecc.size    = 512;
1241         info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
1242         info->nand.ecc.correct = omap3_correct_data_bch;
1243         info->nand.ecc.mode    = NAND_ECC_HW;
1244
1245         /*
1246          * The number of corrected errors in an ecc block that will trigger
1247          * block scrubbing defaults to the ecc strength (4 or 8).
1248          * Set mtd->bitflip_threshold here to define a custom threshold.
1249          */
1250
1251         if (max_errors == 8) {
1252                 info->nand.ecc.strength  = 8;
1253                 info->nand.ecc.bytes     = 13;
1254                 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1255         } else {
1256                 info->nand.ecc.strength  = 4;
1257                 info->nand.ecc.bytes     = 7;
1258                 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1259         }
1260
1261         pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1262         return 0;
1263 fail:
1264         omap3_free_bch(mtd);
1265         return -1;
1266 }
1267
1268 /**
1269  * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1270  * @mtd: MTD device structure
1271  */
1272 static int omap3_init_bch_tail(struct mtd_info *mtd)
1273 {
1274         int i, steps;
1275         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1276                                                    mtd);
1277         struct nand_ecclayout *layout = &info->ecclayout;
1278
1279         /* build oob layout */
1280         steps = mtd->writesize/info->nand.ecc.size;
1281         layout->eccbytes = steps*info->nand.ecc.bytes;
1282
1283         /* do not bother creating special oob layouts for small page devices */
1284         if (mtd->oobsize < 64) {
1285                 pr_err("BCH ecc is not supported on small page devices\n");
1286                 goto fail;
1287         }
1288
1289         /* reserve 2 bytes for bad block marker */
1290         if (layout->eccbytes+2 > mtd->oobsize) {
1291                 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1292                        mtd->oobsize, layout->eccbytes);
1293                 goto fail;
1294         }
1295
1296         /* put ecc bytes at oob tail */
1297         for (i = 0; i < layout->eccbytes; i++)
1298                 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1299
1300         layout->oobfree[0].offset = 2;
1301         layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1302         info->nand.ecc.layout = layout;
1303
1304         if (!(info->nand.options & NAND_BUSWIDTH_16))
1305                 info->nand.badblock_pattern = &bb_descrip_flashbased;
1306         return 0;
1307 fail:
1308         omap3_free_bch(mtd);
1309         return -1;
1310 }
1311
1312 #else
1313 static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1314 {
1315         pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1316         return -1;
1317 }
1318 static int omap3_init_bch_tail(struct mtd_info *mtd)
1319 {
1320         return -1;
1321 }
1322 static void omap3_free_bch(struct mtd_info *mtd)
1323 {
1324 }
1325 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1326
1327 static int __devinit omap_nand_probe(struct platform_device *pdev)
1328 {
1329         struct omap_nand_info           *info;
1330         struct omap_nand_platform_data  *pdata;
1331         int                             err;
1332         int                             i, offset;
1333         dma_cap_mask_t mask;
1334         unsigned sig;
1335         struct resource                 *res;
1336
1337         pdata = pdev->dev.platform_data;
1338         if (pdata == NULL) {
1339                 dev_err(&pdev->dev, "platform data missing\n");
1340                 return -ENODEV;
1341         }
1342
1343         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1344         if (!info)
1345                 return -ENOMEM;
1346
1347         platform_set_drvdata(pdev, info);
1348
1349         spin_lock_init(&info->controller.lock);
1350         init_waitqueue_head(&info->controller.wq);
1351
1352         info->pdev = pdev;
1353
1354         info->gpmc_cs           = pdata->cs;
1355         info->reg               = pdata->reg;
1356
1357         info->mtd.priv          = &info->nand;
1358         info->mtd.name          = dev_name(&pdev->dev);
1359         info->mtd.owner         = THIS_MODULE;
1360
1361         info->nand.options      = pdata->devsize;
1362         info->nand.options      |= NAND_SKIP_BBTSCAN;
1363
1364         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1365         if (res == NULL) {
1366                 err = -EINVAL;
1367                 dev_err(&pdev->dev, "error getting memory resource\n");
1368                 goto out_free_info;
1369         }
1370
1371         info->phys_base = res->start;
1372         info->mem_size = resource_size(res);
1373
1374         if (!request_mem_region(info->phys_base, info->mem_size,
1375                                 pdev->dev.driver->name)) {
1376                 err = -EBUSY;
1377                 goto out_free_info;
1378         }
1379
1380         info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1381         if (!info->nand.IO_ADDR_R) {
1382                 err = -ENOMEM;
1383                 goto out_release_mem_region;
1384         }
1385
1386         info->nand.controller = &info->controller;
1387
1388         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1389         info->nand.cmd_ctrl  = omap_hwcontrol;
1390
1391         /*
1392          * If RDY/BSY line is connected to OMAP then use the omap ready
1393          * function and the generic nand_wait function which reads the status
1394          * register after monitoring the RDY/BSY line. Otherwise use a standard
1395          * chip delay which is slightly more than tR (AC Timing) of the NAND
1396          * device and read status register until you get a failure or success
1397          */
1398         if (pdata->dev_ready) {
1399                 info->nand.dev_ready = omap_dev_ready;
1400                 info->nand.chip_delay = 0;
1401         } else {
1402                 info->nand.waitfunc = omap_wait;
1403                 info->nand.chip_delay = 50;
1404         }
1405
1406         switch (pdata->xfer_type) {
1407         case NAND_OMAP_PREFETCH_POLLED:
1408                 info->nand.read_buf   = omap_read_buf_pref;
1409                 info->nand.write_buf  = omap_write_buf_pref;
1410                 break;
1411
1412         case NAND_OMAP_POLLED:
1413                 if (info->nand.options & NAND_BUSWIDTH_16) {
1414                         info->nand.read_buf   = omap_read_buf16;
1415                         info->nand.write_buf  = omap_write_buf16;
1416                 } else {
1417                         info->nand.read_buf   = omap_read_buf8;
1418                         info->nand.write_buf  = omap_write_buf8;
1419                 }
1420                 break;
1421
1422         case NAND_OMAP_PREFETCH_DMA:
1423                 dma_cap_zero(mask);
1424                 dma_cap_set(DMA_SLAVE, mask);
1425                 sig = OMAP24XX_DMA_GPMC;
1426                 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1427                 if (!info->dma) {
1428                         dev_err(&pdev->dev, "DMA engine request failed\n");
1429                         err = -ENXIO;
1430                         goto out_release_mem_region;
1431                 } else {
1432                         struct dma_slave_config cfg;
1433
1434                         memset(&cfg, 0, sizeof(cfg));
1435                         cfg.src_addr = info->phys_base;
1436                         cfg.dst_addr = info->phys_base;
1437                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1438                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1439                         cfg.src_maxburst = 16;
1440                         cfg.dst_maxburst = 16;
1441                         err = dmaengine_slave_config(info->dma, &cfg);
1442                         if (err) {
1443                                 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1444                                         err);
1445                                 goto out_release_mem_region;
1446                         }
1447                         info->nand.read_buf   = omap_read_buf_dma_pref;
1448                         info->nand.write_buf  = omap_write_buf_dma_pref;
1449                 }
1450                 break;
1451
1452         case NAND_OMAP_PREFETCH_IRQ:
1453                 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1454                 if (info->gpmc_irq_fifo <= 0) {
1455                         dev_err(&pdev->dev, "error getting fifo irq\n");
1456                         err = -ENODEV;
1457                         goto out_release_mem_region;
1458                 }
1459                 err = request_irq(info->gpmc_irq_fifo,  omap_nand_irq,
1460                                         IRQF_SHARED, "gpmc-nand-fifo", info);
1461                 if (err) {
1462                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1463                                                 info->gpmc_irq_fifo, err);
1464                         info->gpmc_irq_fifo = 0;
1465                         goto out_release_mem_region;
1466                 }
1467
1468                 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1469                 if (info->gpmc_irq_count <= 0) {
1470                         dev_err(&pdev->dev, "error getting count irq\n");
1471                         err = -ENODEV;
1472                         goto out_release_mem_region;
1473                 }
1474                 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1475                                         IRQF_SHARED, "gpmc-nand-count", info);
1476                 if (err) {
1477                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1478                                                 info->gpmc_irq_count, err);
1479                         info->gpmc_irq_count = 0;
1480                         goto out_release_mem_region;
1481                 }
1482
1483                 info->nand.read_buf  = omap_read_buf_irq_pref;
1484                 info->nand.write_buf = omap_write_buf_irq_pref;
1485
1486                 break;
1487
1488         default:
1489                 dev_err(&pdev->dev,
1490                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1491                 err = -EINVAL;
1492                 goto out_release_mem_region;
1493         }
1494
1495         /* select the ecc type */
1496         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1497                 info->nand.ecc.mode = NAND_ECC_SOFT;
1498         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1499                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1500                 info->nand.ecc.bytes            = 3;
1501                 info->nand.ecc.size             = 512;
1502                 info->nand.ecc.strength         = 1;
1503                 info->nand.ecc.calculate        = omap_calculate_ecc;
1504                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1505                 info->nand.ecc.correct          = omap_correct_data;
1506                 info->nand.ecc.mode             = NAND_ECC_HW;
1507         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1508                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1509                 err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1510                 if (err) {
1511                         err = -EINVAL;
1512                         goto out_release_mem_region;
1513                 }
1514         }
1515
1516         /* DIP switches on some boards change between 8 and 16 bit
1517          * bus widths for flash.  Try the other width if the first try fails.
1518          */
1519         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1520                 info->nand.options ^= NAND_BUSWIDTH_16;
1521                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1522                         err = -ENXIO;
1523                         goto out_release_mem_region;
1524                 }
1525         }
1526
1527         /* rom code layout */
1528         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1529
1530                 if (info->nand.options & NAND_BUSWIDTH_16)
1531                         offset = 2;
1532                 else {
1533                         offset = 1;
1534                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1535                 }
1536                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1537                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1538                         omap_oobinfo.eccpos[i] = i+offset;
1539
1540                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1541                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1542                                         (offset + omap_oobinfo.eccbytes);
1543
1544                 info->nand.ecc.layout = &omap_oobinfo;
1545         } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1546                    (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1547                 /* build OOB layout for BCH ECC correction */
1548                 err = omap3_init_bch_tail(&info->mtd);
1549                 if (err) {
1550                         err = -EINVAL;
1551                         goto out_release_mem_region;
1552                 }
1553         }
1554
1555         /* second phase scan */
1556         if (nand_scan_tail(&info->mtd)) {
1557                 err = -ENXIO;
1558                 goto out_release_mem_region;
1559         }
1560
1561         mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1562                                   pdata->nr_parts);
1563
1564         platform_set_drvdata(pdev, &info->mtd);
1565
1566         return 0;
1567
1568 out_release_mem_region:
1569         if (info->dma)
1570                 dma_release_channel(info->dma);
1571         if (info->gpmc_irq_count > 0)
1572                 free_irq(info->gpmc_irq_count, info);
1573         if (info->gpmc_irq_fifo > 0)
1574                 free_irq(info->gpmc_irq_fifo, info);
1575         release_mem_region(info->phys_base, info->mem_size);
1576 out_free_info:
1577         kfree(info);
1578
1579         return err;
1580 }
1581
1582 static int omap_nand_remove(struct platform_device *pdev)
1583 {
1584         struct mtd_info *mtd = platform_get_drvdata(pdev);
1585         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1586                                                         mtd);
1587         omap3_free_bch(&info->mtd);
1588
1589         platform_set_drvdata(pdev, NULL);
1590         if (info->dma)
1591                 dma_release_channel(info->dma);
1592
1593         if (info->gpmc_irq_count > 0)
1594                 free_irq(info->gpmc_irq_count, info);
1595         if (info->gpmc_irq_fifo > 0)
1596                 free_irq(info->gpmc_irq_fifo, info);
1597
1598         /* Release NAND device, its internal structures and partitions */
1599         nand_release(&info->mtd);
1600         iounmap(info->nand.IO_ADDR_R);
1601         release_mem_region(info->phys_base, info->mem_size);
1602         kfree(info);
1603         return 0;
1604 }
1605
1606 static struct platform_driver omap_nand_driver = {
1607         .probe          = omap_nand_probe,
1608         .remove         = omap_nand_remove,
1609         .driver         = {
1610                 .name   = DRIVER_NAME,
1611                 .owner  = THIS_MODULE,
1612         },
1613 };
1614
1615 module_platform_driver(omap_nand_driver);
1616
1617 MODULE_ALIAS("platform:" DRIVER_NAME);
1618 MODULE_LICENSE("GPL");
1619 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");