nand util: read/write: accept unaligned length
[platform/kernel/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2  * drivers/mtd/nand/nand_util.c
3  *
4  * Copyright (C) 2006 by Weiss-Electronic GmbH.
5  * All rights reserved.
6  *
7  * @author:     Guido Classen <clagix@gmail.com>
8  * @descr:      NAND Flash support
9  * @references: borrowed heavily from Linux mtd-utils code:
10  *              flash_eraseall.c by Arcom Control System Ltd
11  *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12  *                             and Thomas Gleixner (tglx@linutronix.de)
13  *
14  * See file CREDITS for list of people who contributed to this
15  * project.
16  *
17  * This program is free software; you can redistribute it and/or
18  * modify it under the terms of the GNU General Public License version
19  * 2 as published by the Free Software Foundation.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29  * MA 02111-1307 USA
30  *
31  * Copyright 2010 Freescale Semiconductor
32  * The portions of this file whose copyright is held by Freescale and which
33  * are not considered a derived work of GPL v2-only code may be distributed
34  * and/or modified under the terms of the GNU General Public License as
35  * published by the Free Software Foundation; either version 2 of the
36  * License, or (at your option) any later version.
37  */
38
39 #include <common.h>
40 #include <command.h>
41 #include <watchdog.h>
42 #include <malloc.h>
43 #include <div64.h>
44
45 #include <asm/errno.h>
46 #include <linux/mtd/mtd.h>
47 #include <nand.h>
48 #include <jffs2/jffs2.h>
49
50 typedef struct erase_info erase_info_t;
51 typedef struct mtd_info   mtd_info_t;
52
53 /* support only for native endian JFFS2 */
54 #define cpu_to_je16(x) (x)
55 #define cpu_to_je32(x) (x)
56
57 /*****************************************************************************/
58 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
59 {
60         return 0;
61 }
62
63 /**
64  * nand_erase_opts: - erase NAND flash with support for various options
65  *                    (jffs2 formating)
66  *
67  * @param meminfo       NAND device to erase
68  * @param opts          options,  @see struct nand_erase_options
69  * @return              0 in case of success
70  *
71  * This code is ported from flash_eraseall.c from Linux mtd utils by
72  * Arcom Control System Ltd.
73  */
74 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
75 {
76         struct jffs2_unknown_node cleanmarker;
77         erase_info_t erase;
78         ulong erase_length;
79         int bbtest = 1;
80         int result;
81         int percent_complete = -1;
82         int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
83         const char *mtd_device = meminfo->name;
84         struct mtd_oob_ops oob_opts;
85         struct nand_chip *chip = meminfo->priv;
86
87         memset(&erase, 0, sizeof(erase));
88         memset(&oob_opts, 0, sizeof(oob_opts));
89
90         erase.mtd = meminfo;
91         erase.len  = meminfo->erasesize;
92         erase.addr = opts->offset;
93         erase_length = opts->length;
94
95         cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
96         cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
97         cleanmarker.totlen = cpu_to_je32(8);
98
99         /* scrub option allows to erase badblock. To prevent internal
100          * check from erase() method, set block check method to dummy
101          * and disable bad block table while erasing.
102          */
103         if (opts->scrub) {
104                 struct nand_chip *priv_nand = meminfo->priv;
105
106                 nand_block_bad_old = priv_nand->block_bad;
107                 priv_nand->block_bad = nand_block_bad_scrub;
108                 /* we don't need the bad block table anymore...
109                  * after scrub, there are no bad blocks left!
110                  */
111                 if (priv_nand->bbt) {
112                         kfree(priv_nand->bbt);
113                 }
114                 priv_nand->bbt = NULL;
115         }
116
117         if (erase_length < meminfo->erasesize) {
118                 printf("Warning: Erase size 0x%08lx smaller than one "  \
119                        "erase block 0x%08x\n",erase_length, meminfo->erasesize);
120                 printf("         Erasing 0x%08x instead\n", meminfo->erasesize);
121                 erase_length = meminfo->erasesize;
122         }
123
124         for (;
125              erase.addr < opts->offset + erase_length;
126              erase.addr += meminfo->erasesize) {
127
128                 WATCHDOG_RESET ();
129
130                 if (!opts->scrub && bbtest) {
131                         int ret = meminfo->block_isbad(meminfo, erase.addr);
132                         if (ret > 0) {
133                                 if (!opts->quiet)
134                                         printf("\rSkipping bad block at  "
135                                                "0x%08llx                 "
136                                                "                         \n",
137                                                erase.addr);
138                                 continue;
139
140                         } else if (ret < 0) {
141                                 printf("\n%s: MTD get bad block failed: %d\n",
142                                        mtd_device,
143                                        ret);
144                                 return -1;
145                         }
146                 }
147
148                 result = meminfo->erase(meminfo, &erase);
149                 if (result != 0) {
150                         printf("\n%s: MTD Erase failure: %d\n",
151                                mtd_device, result);
152                         continue;
153                 }
154
155                 /* format for JFFS2 ? */
156                 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
157                         chip->ops.ooblen = 8;
158                         chip->ops.datbuf = NULL;
159                         chip->ops.oobbuf = (uint8_t *)&cleanmarker;
160                         chip->ops.ooboffs = 0;
161                         chip->ops.mode = MTD_OOB_AUTO;
162
163                         result = meminfo->write_oob(meminfo,
164                                                     erase.addr,
165                                                     &chip->ops);
166                         if (result != 0) {
167                                 printf("\n%s: MTD writeoob failure: %d\n",
168                                        mtd_device, result);
169                                 continue;
170                         }
171                 }
172
173                 if (!opts->quiet) {
174                         unsigned long long n =(unsigned long long)
175                                 (erase.addr + meminfo->erasesize - opts->offset)
176                                 * 100;
177                         int percent;
178
179                         do_div(n, erase_length);
180                         percent = (int)n;
181
182                         /* output progress message only at whole percent
183                          * steps to reduce the number of messages printed
184                          * on (slow) serial consoles
185                          */
186                         if (percent != percent_complete) {
187                                 percent_complete = percent;
188
189                                 printf("\rErasing at 0x%llx -- %3d%% complete.",
190                                        erase.addr, percent);
191
192                                 if (opts->jffs2 && result == 0)
193                                         printf(" Cleanmarker written at 0x%llx.",
194                                                erase.addr);
195                         }
196                 }
197         }
198         if (!opts->quiet)
199                 printf("\n");
200
201         if (nand_block_bad_old) {
202                 struct nand_chip *priv_nand = meminfo->priv;
203
204                 priv_nand->block_bad = nand_block_bad_old;
205                 priv_nand->scan_bbt(meminfo);
206         }
207
208         return 0;
209 }
210
211 /* XXX U-BOOT XXX */
212 #if 0
213
214 #define MAX_PAGE_SIZE   2048
215 #define MAX_OOB_SIZE    64
216
217 /*
218  * buffer array used for writing data
219  */
220 static unsigned char data_buf[MAX_PAGE_SIZE];
221 static unsigned char oob_buf[MAX_OOB_SIZE];
222
223 /* OOB layouts to pass into the kernel as default */
224 static struct nand_ecclayout none_ecclayout = {
225         .useecc = MTD_NANDECC_OFF,
226 };
227
228 static struct nand_ecclayout jffs2_ecclayout = {
229         .useecc = MTD_NANDECC_PLACE,
230         .eccbytes = 6,
231         .eccpos = { 0, 1, 2, 3, 6, 7 }
232 };
233
234 static struct nand_ecclayout yaffs_ecclayout = {
235         .useecc = MTD_NANDECC_PLACE,
236         .eccbytes = 6,
237         .eccpos = { 8, 9, 10, 13, 14, 15}
238 };
239
240 static struct nand_ecclayout autoplace_ecclayout = {
241         .useecc = MTD_NANDECC_AUTOPLACE
242 };
243 #endif
244
245 /* XXX U-BOOT XXX */
246 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
247
248 /******************************************************************************
249  * Support for locking / unlocking operations of some NAND devices
250  *****************************************************************************/
251
252 #define NAND_CMD_LOCK           0x2a
253 #define NAND_CMD_LOCK_TIGHT     0x2c
254 #define NAND_CMD_UNLOCK1        0x23
255 #define NAND_CMD_UNLOCK2        0x24
256 #define NAND_CMD_LOCK_STATUS    0x7a
257
258 /**
259  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
260  *            state
261  *
262  * @param mtd           nand mtd instance
263  * @param tight         bring device in lock tight mode
264  *
265  * @return              0 on success, -1 in case of error
266  *
267  * The lock / lock-tight command only applies to the whole chip. To get some
268  * parts of the chip lock and others unlocked use the following sequence:
269  *
270  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
271  * - Call nand_unlock() once for each consecutive area to be unlocked
272  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
273  *
274  *   If the device is in lock-tight state software can't change the
275  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
276  *   calls will fail. It is only posible to leave lock-tight state by
277  *   an hardware signal (low pulse on _WP pin) or by power down.
278  */
279 int nand_lock(struct mtd_info *mtd, int tight)
280 {
281         int ret = 0;
282         int status;
283         struct nand_chip *chip = mtd->priv;
284
285         /* select the NAND device */
286         chip->select_chip(mtd, 0);
287
288         chip->cmdfunc(mtd,
289                       (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
290                       -1, -1);
291
292         /* call wait ready function */
293         status = chip->waitfunc(mtd, chip);
294
295         /* see if device thinks it succeeded */
296         if (status & 0x01) {
297                 ret = -1;
298         }
299
300         /* de-select the NAND device */
301         chip->select_chip(mtd, -1);
302         return ret;
303 }
304
305 /**
306  * nand_get_lock_status: - query current lock state from one page of NAND
307  *                         flash
308  *
309  * @param mtd           nand mtd instance
310  * @param offset        page address to query (muss be page aligned!)
311  *
312  * @return              -1 in case of error
313  *                      >0 lock status:
314  *                        bitfield with the following combinations:
315  *                        NAND_LOCK_STATUS_TIGHT: page in tight state
316  *                        NAND_LOCK_STATUS_LOCK:  page locked
317  *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
318  *
319  */
320 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
321 {
322         int ret = 0;
323         int chipnr;
324         int page;
325         struct nand_chip *chip = mtd->priv;
326
327         /* select the NAND device */
328         chipnr = (int)(offset >> chip->chip_shift);
329         chip->select_chip(mtd, chipnr);
330
331
332         if ((offset & (mtd->writesize - 1)) != 0) {
333                 printf ("nand_get_lock_status: "
334                         "Start address must be beginning of "
335                         "nand page!\n");
336                 ret = -1;
337                 goto out;
338         }
339
340         /* check the Lock Status */
341         page = (int)(offset >> chip->page_shift);
342         chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
343
344         ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
345                                           | NAND_LOCK_STATUS_LOCK
346                                           | NAND_LOCK_STATUS_UNLOCK);
347
348  out:
349         /* de-select the NAND device */
350         chip->select_chip(mtd, -1);
351         return ret;
352 }
353
354 /**
355  * nand_unlock: - Unlock area of NAND pages
356  *                only one consecutive area can be unlocked at one time!
357  *
358  * @param mtd           nand mtd instance
359  * @param start         start byte address
360  * @param length        number of bytes to unlock (must be a multiple of
361  *                      page size nand->writesize)
362  *
363  * @return              0 on success, -1 in case of error
364  */
365 int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
366 {
367         int ret = 0;
368         int chipnr;
369         int status;
370         int page;
371         struct nand_chip *chip = mtd->priv;
372         printf ("nand_unlock: start: %08x, length: %d!\n",
373                 (int)start, (int)length);
374
375         /* select the NAND device */
376         chipnr = (int)(start >> chip->chip_shift);
377         chip->select_chip(mtd, chipnr);
378
379         /* check the WP bit */
380         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
381         if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
382                 printf ("nand_unlock: Device is write protected!\n");
383                 ret = -1;
384                 goto out;
385         }
386
387         if ((start & (mtd->erasesize - 1)) != 0) {
388                 printf ("nand_unlock: Start address must be beginning of "
389                         "nand block!\n");
390                 ret = -1;
391                 goto out;
392         }
393
394         if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
395                 printf ("nand_unlock: Length must be a multiple of nand block "
396                         "size %08x!\n", mtd->erasesize);
397                 ret = -1;
398                 goto out;
399         }
400
401         /*
402          * Set length so that the last address is set to the
403          * starting address of the last block
404          */
405         length -= mtd->erasesize;
406
407         /* submit address of first page to unlock */
408         page = (int)(start >> chip->page_shift);
409         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
410
411         /* submit ADDRESS of LAST page to unlock */
412         page += (int)(length >> chip->page_shift);
413         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
414
415         /* call wait ready function */
416         status = chip->waitfunc(mtd, chip);
417         /* see if device thinks it succeeded */
418         if (status & 0x01) {
419                 /* there was an error */
420                 ret = -1;
421                 goto out;
422         }
423
424  out:
425         /* de-select the NAND device */
426         chip->select_chip(mtd, -1);
427         return ret;
428 }
429 #endif
430
431 /**
432  * check_skip_len
433  *
434  * Check if there are any bad blocks, and whether length including bad
435  * blocks fits into device
436  *
437  * @param nand NAND device
438  * @param offset offset in flash
439  * @param length image length
440  * @return 0 if the image fits and there are no bad blocks
441  *         1 if the image fits, but there are bad blocks
442  *        -1 if the image does not fit
443  */
444 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
445 {
446         size_t len_excl_bad = 0;
447         int ret = 0;
448
449         while (len_excl_bad < length) {
450                 size_t block_len, block_off;
451                 loff_t block_start;
452
453                 if (offset >= nand->size)
454                         return -1;
455
456                 block_start = offset & ~(loff_t)(nand->erasesize - 1);
457                 block_off = offset & (nand->erasesize - 1);
458                 block_len = nand->erasesize - block_off;
459
460                 if (!nand_block_isbad(nand, block_start))
461                         len_excl_bad += block_len;
462                 else
463                         ret = 1;
464
465                 offset += block_len;
466         }
467
468         return ret;
469 }
470
471 /**
472  * nand_write_skip_bad:
473  *
474  * Write image to NAND flash.
475  * Blocks that are marked bad are skipped and the is written to the next
476  * block instead as long as the image is short enough to fit even after
477  * skipping the bad blocks.
478  *
479  * @param nand          NAND device
480  * @param offset        offset in flash
481  * @param length        buffer length
482  * @param buf           buffer to read from
483  * @return              0 in case of success
484  */
485 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
486                         u_char *buffer)
487 {
488         int rval;
489         size_t left_to_write = *length;
490         u_char *p_buffer = buffer;
491         int need_skip;
492
493         /*
494          * nand_write() handles unaligned, partial page writes.
495          *
496          * We allow length to be unaligned, for convenience in
497          * using the $filesize variable.
498          *
499          * However, starting at an unaligned offset makes the
500          * semantics of bad block skipping ambiguous (really,
501          * you should only start a block skipping access at a
502          * partition boundary).  So don't try to handle that.
503          */
504         if ((offset & (nand->writesize - 1)) != 0) {
505                 printf ("Attempt to write non page aligned data\n");
506                 *length = 0;
507                 return -EINVAL;
508         }
509
510         need_skip = check_skip_len(nand, offset, *length);
511         if (need_skip < 0) {
512                 printf ("Attempt to write outside the flash area\n");
513                 *length = 0;
514                 return -EINVAL;
515         }
516
517         if (!need_skip) {
518                 rval = nand_write (nand, offset, length, buffer);
519                 if (rval == 0)
520                         return 0;
521
522                 *length = 0;
523                 printf ("NAND write to offset %llx failed %d\n",
524                         offset, rval);
525                 return rval;
526         }
527
528         while (left_to_write > 0) {
529                 size_t block_offset = offset & (nand->erasesize - 1);
530                 size_t write_size;
531
532                 WATCHDOG_RESET ();
533
534                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
535                         printf ("Skip bad block 0x%08llx\n",
536                                 offset & ~(nand->erasesize - 1));
537                         offset += nand->erasesize - block_offset;
538                         continue;
539                 }
540
541                 if (left_to_write < (nand->erasesize - block_offset))
542                         write_size = left_to_write;
543                 else
544                         write_size = nand->erasesize - block_offset;
545
546                 rval = nand_write (nand, offset, &write_size, p_buffer);
547                 if (rval != 0) {
548                         printf ("NAND write to offset %llx failed %d\n",
549                                 offset, rval);
550                         *length -= left_to_write;
551                         return rval;
552                 }
553
554                 left_to_write -= write_size;
555                 offset        += write_size;
556                 p_buffer      += write_size;
557         }
558
559         return 0;
560 }
561
562 /**
563  * nand_read_skip_bad:
564  *
565  * Read image from NAND flash.
566  * Blocks that are marked bad are skipped and the next block is readen
567  * instead as long as the image is short enough to fit even after skipping the
568  * bad blocks.
569  *
570  * @param nand NAND device
571  * @param offset offset in flash
572  * @param length buffer length, on return holds remaining bytes to read
573  * @param buffer buffer to write to
574  * @return 0 in case of success
575  */
576 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
577                        u_char *buffer)
578 {
579         int rval;
580         size_t left_to_read = *length;
581         u_char *p_buffer = buffer;
582         int need_skip;
583
584         if ((offset & (nand->writesize - 1)) != 0) {
585                 printf ("Attempt to read non page aligned data\n");
586                 *length = 0;
587                 return -EINVAL;
588         }
589
590         need_skip = check_skip_len(nand, offset, *length);
591         if (need_skip < 0) {
592                 printf ("Attempt to read outside the flash area\n");
593                 *length = 0;
594                 return -EINVAL;
595         }
596
597         if (!need_skip) {
598                 rval = nand_read (nand, offset, length, buffer);
599                 if (!rval || rval == -EUCLEAN)
600                         return 0;
601
602                 *length = 0;
603                 printf ("NAND read from offset %llx failed %d\n",
604                         offset, rval);
605                 return rval;
606         }
607
608         while (left_to_read > 0) {
609                 size_t block_offset = offset & (nand->erasesize - 1);
610                 size_t read_length;
611
612                 WATCHDOG_RESET ();
613
614                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
615                         printf ("Skipping bad block 0x%08llx\n",
616                                 offset & ~(nand->erasesize - 1));
617                         offset += nand->erasesize - block_offset;
618                         continue;
619                 }
620
621                 if (left_to_read < (nand->erasesize - block_offset))
622                         read_length = left_to_read;
623                 else
624                         read_length = nand->erasesize - block_offset;
625
626                 rval = nand_read (nand, offset, &read_length, p_buffer);
627                 if (rval && rval != -EUCLEAN) {
628                         printf ("NAND read from offset %llx failed %d\n",
629                                 offset, rval);
630                         *length -= left_to_read;
631                         return rval;
632                 }
633
634                 left_to_read -= read_length;
635                 offset       += read_length;
636                 p_buffer     += read_length;
637         }
638
639         return 0;
640 }