nand erase: .spread, .part, .chip subcommands
[platform/kernel/u-boot.git] / drivers / mtd / nand / nand_util.c
1 /*
2  * drivers/mtd/nand/nand_util.c
3  *
4  * Copyright (C) 2006 by Weiss-Electronic GmbH.
5  * All rights reserved.
6  *
7  * @author:     Guido Classen <clagix@gmail.com>
8  * @descr:      NAND Flash support
9  * @references: borrowed heavily from Linux mtd-utils code:
10  *              flash_eraseall.c by Arcom Control System Ltd
11  *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12  *                             and Thomas Gleixner (tglx@linutronix.de)
13  *
14  * See file CREDITS for list of people who contributed to this
15  * project.
16  *
17  * This program is free software; you can redistribute it and/or
18  * modify it under the terms of the GNU General Public License version
19  * 2 as published by the Free Software Foundation.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29  * MA 02111-1307 USA
30  *
31  * Copyright 2010 Freescale Semiconductor
32  * The portions of this file whose copyright is held by Freescale and which
33  * are not considered a derived work of GPL v2-only code may be distributed
34  * and/or modified under the terms of the GNU General Public License as
35  * published by the Free Software Foundation; either version 2 of the
36  * License, or (at your option) any later version.
37  */
38
39 #include <common.h>
40 #include <command.h>
41 #include <watchdog.h>
42 #include <malloc.h>
43 #include <div64.h>
44
45 #include <asm/errno.h>
46 #include <linux/mtd/mtd.h>
47 #include <nand.h>
48 #include <jffs2/jffs2.h>
49
50 typedef struct erase_info erase_info_t;
51 typedef struct mtd_info   mtd_info_t;
52
53 /* support only for native endian JFFS2 */
54 #define cpu_to_je16(x) (x)
55 #define cpu_to_je32(x) (x)
56
57 /*****************************************************************************/
58 static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
59 {
60         return 0;
61 }
62
63 /**
64  * nand_erase_opts: - erase NAND flash with support for various options
65  *                    (jffs2 formating)
66  *
67  * @param meminfo       NAND device to erase
68  * @param opts          options,  @see struct nand_erase_options
69  * @return              0 in case of success
70  *
71  * This code is ported from flash_eraseall.c from Linux mtd utils by
72  * Arcom Control System Ltd.
73  */
74 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
75 {
76         struct jffs2_unknown_node cleanmarker;
77         erase_info_t erase;
78         unsigned long erase_length, erased_length; /* in blocks */
79         int bbtest = 1;
80         int result;
81         int percent_complete = -1;
82         int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
83         const char *mtd_device = meminfo->name;
84         struct mtd_oob_ops oob_opts;
85         struct nand_chip *chip = meminfo->priv;
86
87         if ((opts->offset & (meminfo->writesize - 1)) != 0) {
88                 printf("Attempt to erase non page aligned data\n");
89                 return -1;
90         }
91
92         memset(&erase, 0, sizeof(erase));
93         memset(&oob_opts, 0, sizeof(oob_opts));
94
95         erase.mtd = meminfo;
96         erase.len  = meminfo->erasesize;
97         erase.addr = opts->offset;
98         erase_length = lldiv(opts->length + meminfo->erasesize - 1,
99                              meminfo->erasesize);
100
101         cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
102         cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
103         cleanmarker.totlen = cpu_to_je32(8);
104
105         /* scrub option allows to erase badblock. To prevent internal
106          * check from erase() method, set block check method to dummy
107          * and disable bad block table while erasing.
108          */
109         if (opts->scrub) {
110                 struct nand_chip *priv_nand = meminfo->priv;
111
112                 nand_block_bad_old = priv_nand->block_bad;
113                 priv_nand->block_bad = nand_block_bad_scrub;
114                 /* we don't need the bad block table anymore...
115                  * after scrub, there are no bad blocks left!
116                  */
117                 if (priv_nand->bbt) {
118                         kfree(priv_nand->bbt);
119                 }
120                 priv_nand->bbt = NULL;
121         }
122
123         for (erased_length = 0;
124              erased_length < erase_length;
125              erase.addr += meminfo->erasesize) {
126
127                 WATCHDOG_RESET ();
128
129                 if (!opts->scrub && bbtest) {
130                         int ret = meminfo->block_isbad(meminfo, erase.addr);
131                         if (ret > 0) {
132                                 if (!opts->quiet)
133                                         printf("\rSkipping bad block at  "
134                                                "0x%08llx                 "
135                                                "                         \n",
136                                                erase.addr);
137
138                                 if (!opts->spread)
139                                         erased_length++;
140
141                                 continue;
142
143                         } else if (ret < 0) {
144                                 printf("\n%s: MTD get bad block failed: %d\n",
145                                        mtd_device,
146                                        ret);
147                                 return -1;
148                         }
149                 }
150
151                 erased_length++;
152
153                 result = meminfo->erase(meminfo, &erase);
154                 if (result != 0) {
155                         printf("\n%s: MTD Erase failure: %d\n",
156                                mtd_device, result);
157                         continue;
158                 }
159
160                 /* format for JFFS2 ? */
161                 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
162                         chip->ops.ooblen = 8;
163                         chip->ops.datbuf = NULL;
164                         chip->ops.oobbuf = (uint8_t *)&cleanmarker;
165                         chip->ops.ooboffs = 0;
166                         chip->ops.mode = MTD_OOB_AUTO;
167
168                         result = meminfo->write_oob(meminfo,
169                                                     erase.addr,
170                                                     &chip->ops);
171                         if (result != 0) {
172                                 printf("\n%s: MTD writeoob failure: %d\n",
173                                        mtd_device, result);
174                                 continue;
175                         }
176                 }
177
178                 if (!opts->quiet) {
179                         unsigned long long n = erased_length * 100ULL;
180                         int percent;
181
182                         do_div(n, erase_length);
183                         percent = (int)n;
184
185                         /* output progress message only at whole percent
186                          * steps to reduce the number of messages printed
187                          * on (slow) serial consoles
188                          */
189                         if (percent != percent_complete) {
190                                 percent_complete = percent;
191
192                                 printf("\rErasing at 0x%llx -- %3d%% complete.",
193                                        erase.addr, percent);
194
195                                 if (opts->jffs2 && result == 0)
196                                         printf(" Cleanmarker written at 0x%llx.",
197                                                erase.addr);
198                         }
199                 }
200         }
201         if (!opts->quiet)
202                 printf("\n");
203
204         if (nand_block_bad_old) {
205                 struct nand_chip *priv_nand = meminfo->priv;
206
207                 priv_nand->block_bad = nand_block_bad_old;
208                 priv_nand->scan_bbt(meminfo);
209         }
210
211         return 0;
212 }
213
214 /* XXX U-BOOT XXX */
215 #if 0
216
217 #define MAX_PAGE_SIZE   2048
218 #define MAX_OOB_SIZE    64
219
220 /*
221  * buffer array used for writing data
222  */
223 static unsigned char data_buf[MAX_PAGE_SIZE];
224 static unsigned char oob_buf[MAX_OOB_SIZE];
225
226 /* OOB layouts to pass into the kernel as default */
227 static struct nand_ecclayout none_ecclayout = {
228         .useecc = MTD_NANDECC_OFF,
229 };
230
231 static struct nand_ecclayout jffs2_ecclayout = {
232         .useecc = MTD_NANDECC_PLACE,
233         .eccbytes = 6,
234         .eccpos = { 0, 1, 2, 3, 6, 7 }
235 };
236
237 static struct nand_ecclayout yaffs_ecclayout = {
238         .useecc = MTD_NANDECC_PLACE,
239         .eccbytes = 6,
240         .eccpos = { 8, 9, 10, 13, 14, 15}
241 };
242
243 static struct nand_ecclayout autoplace_ecclayout = {
244         .useecc = MTD_NANDECC_AUTOPLACE
245 };
246 #endif
247
248 /* XXX U-BOOT XXX */
249 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
250
251 /******************************************************************************
252  * Support for locking / unlocking operations of some NAND devices
253  *****************************************************************************/
254
255 #define NAND_CMD_LOCK           0x2a
256 #define NAND_CMD_LOCK_TIGHT     0x2c
257 #define NAND_CMD_UNLOCK1        0x23
258 #define NAND_CMD_UNLOCK2        0x24
259 #define NAND_CMD_LOCK_STATUS    0x7a
260
261 /**
262  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
263  *            state
264  *
265  * @param mtd           nand mtd instance
266  * @param tight         bring device in lock tight mode
267  *
268  * @return              0 on success, -1 in case of error
269  *
270  * The lock / lock-tight command only applies to the whole chip. To get some
271  * parts of the chip lock and others unlocked use the following sequence:
272  *
273  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
274  * - Call nand_unlock() once for each consecutive area to be unlocked
275  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
276  *
277  *   If the device is in lock-tight state software can't change the
278  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
279  *   calls will fail. It is only posible to leave lock-tight state by
280  *   an hardware signal (low pulse on _WP pin) or by power down.
281  */
282 int nand_lock(struct mtd_info *mtd, int tight)
283 {
284         int ret = 0;
285         int status;
286         struct nand_chip *chip = mtd->priv;
287
288         /* select the NAND device */
289         chip->select_chip(mtd, 0);
290
291         chip->cmdfunc(mtd,
292                       (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
293                       -1, -1);
294
295         /* call wait ready function */
296         status = chip->waitfunc(mtd, chip);
297
298         /* see if device thinks it succeeded */
299         if (status & 0x01) {
300                 ret = -1;
301         }
302
303         /* de-select the NAND device */
304         chip->select_chip(mtd, -1);
305         return ret;
306 }
307
308 /**
309  * nand_get_lock_status: - query current lock state from one page of NAND
310  *                         flash
311  *
312  * @param mtd           nand mtd instance
313  * @param offset        page address to query (muss be page aligned!)
314  *
315  * @return              -1 in case of error
316  *                      >0 lock status:
317  *                        bitfield with the following combinations:
318  *                        NAND_LOCK_STATUS_TIGHT: page in tight state
319  *                        NAND_LOCK_STATUS_LOCK:  page locked
320  *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
321  *
322  */
323 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
324 {
325         int ret = 0;
326         int chipnr;
327         int page;
328         struct nand_chip *chip = mtd->priv;
329
330         /* select the NAND device */
331         chipnr = (int)(offset >> chip->chip_shift);
332         chip->select_chip(mtd, chipnr);
333
334
335         if ((offset & (mtd->writesize - 1)) != 0) {
336                 printf ("nand_get_lock_status: "
337                         "Start address must be beginning of "
338                         "nand page!\n");
339                 ret = -1;
340                 goto out;
341         }
342
343         /* check the Lock Status */
344         page = (int)(offset >> chip->page_shift);
345         chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
346
347         ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
348                                           | NAND_LOCK_STATUS_LOCK
349                                           | NAND_LOCK_STATUS_UNLOCK);
350
351  out:
352         /* de-select the NAND device */
353         chip->select_chip(mtd, -1);
354         return ret;
355 }
356
357 /**
358  * nand_unlock: - Unlock area of NAND pages
359  *                only one consecutive area can be unlocked at one time!
360  *
361  * @param mtd           nand mtd instance
362  * @param start         start byte address
363  * @param length        number of bytes to unlock (must be a multiple of
364  *                      page size nand->writesize)
365  *
366  * @return              0 on success, -1 in case of error
367  */
368 int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
369 {
370         int ret = 0;
371         int chipnr;
372         int status;
373         int page;
374         struct nand_chip *chip = mtd->priv;
375         printf ("nand_unlock: start: %08x, length: %d!\n",
376                 (int)start, (int)length);
377
378         /* select the NAND device */
379         chipnr = (int)(start >> chip->chip_shift);
380         chip->select_chip(mtd, chipnr);
381
382         /* check the WP bit */
383         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
384         if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
385                 printf ("nand_unlock: Device is write protected!\n");
386                 ret = -1;
387                 goto out;
388         }
389
390         if ((start & (mtd->erasesize - 1)) != 0) {
391                 printf ("nand_unlock: Start address must be beginning of "
392                         "nand block!\n");
393                 ret = -1;
394                 goto out;
395         }
396
397         if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
398                 printf ("nand_unlock: Length must be a multiple of nand block "
399                         "size %08x!\n", mtd->erasesize);
400                 ret = -1;
401                 goto out;
402         }
403
404         /*
405          * Set length so that the last address is set to the
406          * starting address of the last block
407          */
408         length -= mtd->erasesize;
409
410         /* submit address of first page to unlock */
411         page = (int)(start >> chip->page_shift);
412         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
413
414         /* submit ADDRESS of LAST page to unlock */
415         page += (int)(length >> chip->page_shift);
416         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
417
418         /* call wait ready function */
419         status = chip->waitfunc(mtd, chip);
420         /* see if device thinks it succeeded */
421         if (status & 0x01) {
422                 /* there was an error */
423                 ret = -1;
424                 goto out;
425         }
426
427  out:
428         /* de-select the NAND device */
429         chip->select_chip(mtd, -1);
430         return ret;
431 }
432 #endif
433
434 /**
435  * check_skip_len
436  *
437  * Check if there are any bad blocks, and whether length including bad
438  * blocks fits into device
439  *
440  * @param nand NAND device
441  * @param offset offset in flash
442  * @param length image length
443  * @return 0 if the image fits and there are no bad blocks
444  *         1 if the image fits, but there are bad blocks
445  *        -1 if the image does not fit
446  */
447 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
448 {
449         size_t len_excl_bad = 0;
450         int ret = 0;
451
452         while (len_excl_bad < length) {
453                 size_t block_len, block_off;
454                 loff_t block_start;
455
456                 if (offset >= nand->size)
457                         return -1;
458
459                 block_start = offset & ~(loff_t)(nand->erasesize - 1);
460                 block_off = offset & (nand->erasesize - 1);
461                 block_len = nand->erasesize - block_off;
462
463                 if (!nand_block_isbad(nand, block_start))
464                         len_excl_bad += block_len;
465                 else
466                         ret = 1;
467
468                 offset += block_len;
469         }
470
471         return ret;
472 }
473
474 /**
475  * nand_write_skip_bad:
476  *
477  * Write image to NAND flash.
478  * Blocks that are marked bad are skipped and the is written to the next
479  * block instead as long as the image is short enough to fit even after
480  * skipping the bad blocks.
481  *
482  * @param nand          NAND device
483  * @param offset        offset in flash
484  * @param length        buffer length
485  * @param buf           buffer to read from
486  * @return              0 in case of success
487  */
488 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
489                         u_char *buffer)
490 {
491         int rval;
492         size_t left_to_write = *length;
493         u_char *p_buffer = buffer;
494         int need_skip;
495
496         /*
497          * nand_write() handles unaligned, partial page writes.
498          *
499          * We allow length to be unaligned, for convenience in
500          * using the $filesize variable.
501          *
502          * However, starting at an unaligned offset makes the
503          * semantics of bad block skipping ambiguous (really,
504          * you should only start a block skipping access at a
505          * partition boundary).  So don't try to handle that.
506          */
507         if ((offset & (nand->writesize - 1)) != 0) {
508                 printf ("Attempt to write non page aligned data\n");
509                 *length = 0;
510                 return -EINVAL;
511         }
512
513         need_skip = check_skip_len(nand, offset, *length);
514         if (need_skip < 0) {
515                 printf ("Attempt to write outside the flash area\n");
516                 *length = 0;
517                 return -EINVAL;
518         }
519
520         if (!need_skip) {
521                 rval = nand_write (nand, offset, length, buffer);
522                 if (rval == 0)
523                         return 0;
524
525                 *length = 0;
526                 printf ("NAND write to offset %llx failed %d\n",
527                         offset, rval);
528                 return rval;
529         }
530
531         while (left_to_write > 0) {
532                 size_t block_offset = offset & (nand->erasesize - 1);
533                 size_t write_size;
534
535                 WATCHDOG_RESET ();
536
537                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
538                         printf ("Skip bad block 0x%08llx\n",
539                                 offset & ~(nand->erasesize - 1));
540                         offset += nand->erasesize - block_offset;
541                         continue;
542                 }
543
544                 if (left_to_write < (nand->erasesize - block_offset))
545                         write_size = left_to_write;
546                 else
547                         write_size = nand->erasesize - block_offset;
548
549                 rval = nand_write (nand, offset, &write_size, p_buffer);
550                 if (rval != 0) {
551                         printf ("NAND write to offset %llx failed %d\n",
552                                 offset, rval);
553                         *length -= left_to_write;
554                         return rval;
555                 }
556
557                 left_to_write -= write_size;
558                 offset        += write_size;
559                 p_buffer      += write_size;
560         }
561
562         return 0;
563 }
564
565 /**
566  * nand_read_skip_bad:
567  *
568  * Read image from NAND flash.
569  * Blocks that are marked bad are skipped and the next block is readen
570  * instead as long as the image is short enough to fit even after skipping the
571  * bad blocks.
572  *
573  * @param nand NAND device
574  * @param offset offset in flash
575  * @param length buffer length, on return holds remaining bytes to read
576  * @param buffer buffer to write to
577  * @return 0 in case of success
578  */
579 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
580                        u_char *buffer)
581 {
582         int rval;
583         size_t left_to_read = *length;
584         u_char *p_buffer = buffer;
585         int need_skip;
586
587         if ((offset & (nand->writesize - 1)) != 0) {
588                 printf ("Attempt to read non page aligned data\n");
589                 *length = 0;
590                 return -EINVAL;
591         }
592
593         need_skip = check_skip_len(nand, offset, *length);
594         if (need_skip < 0) {
595                 printf ("Attempt to read outside the flash area\n");
596                 *length = 0;
597                 return -EINVAL;
598         }
599
600         if (!need_skip) {
601                 rval = nand_read (nand, offset, length, buffer);
602                 if (!rval || rval == -EUCLEAN)
603                         return 0;
604
605                 *length = 0;
606                 printf ("NAND read from offset %llx failed %d\n",
607                         offset, rval);
608                 return rval;
609         }
610
611         while (left_to_read > 0) {
612                 size_t block_offset = offset & (nand->erasesize - 1);
613                 size_t read_length;
614
615                 WATCHDOG_RESET ();
616
617                 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
618                         printf ("Skipping bad block 0x%08llx\n",
619                                 offset & ~(nand->erasesize - 1));
620                         offset += nand->erasesize - block_offset;
621                         continue;
622                 }
623
624                 if (left_to_read < (nand->erasesize - block_offset))
625                         read_length = left_to_read;
626                 else
627                         read_length = nand->erasesize - block_offset;
628
629                 rval = nand_read (nand, offset, &read_length, p_buffer);
630                 if (rval && rval != -EUCLEAN) {
631                         printf ("NAND read from offset %llx failed %d\n",
632                                 offset, rval);
633                         *length -= left_to_read;
634                         return rval;
635                 }
636
637                 left_to_read -= read_length;
638                 offset       += read_length;
639                 p_buffer     += read_length;
640         }
641
642         return 0;
643 }