3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
37 #include <linux/err.h>
38 #include <linux/compat.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #ifdef CONFIG_MTD_PARTITIONS
44 #include <linux/mtd/partitions.h>
47 #include <linux/errno.h>
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
60 static struct nand_ecclayout nand_oob_16 = {
62 .eccpos = {0, 1, 2, 3, 6, 7},
68 static struct nand_ecclayout nand_oob_64 = {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
79 static struct nand_ecclayout nand_oob_128 = {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 struct mtd_oob_ops *ops);
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
102 DEFINE_LED_TRIGGER(nand_led_trigger);
104 static int check_offs_len(struct mtd_info *mtd,
105 loff_t ofs, uint64_t len)
107 struct nand_chip *chip = mtd_to_nand(mtd);
110 /* Start address must align on block boundary */
111 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__);
116 /* Length must align on block boundary */
117 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__);
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
129 * Release chip lock and wake up anyone waiting on the device.
131 static void nand_release_device(struct mtd_info *mtd)
133 struct nand_chip *chip = mtd_to_nand(mtd);
135 /* De-select the NAND device */
136 chip->select_chip(mtd, -1);
140 * nand_read_byte - [DEFAULT] read one byte from the chip
141 * @mtd: MTD device structure
143 * Default read function for 8bit buswidth
145 uint8_t nand_read_byte(struct mtd_info *mtd)
147 struct nand_chip *chip = mtd_to_nand(mtd);
148 return readb(chip->IO_ADDR_R);
152 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
153 * @mtd: MTD device structure
155 * Default read function for 16bit buswidth with endianness conversion.
158 static uint8_t nand_read_byte16(struct mtd_info *mtd)
160 struct nand_chip *chip = mtd_to_nand(mtd);
161 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
165 * nand_read_word - [DEFAULT] read one word from the chip
166 * @mtd: MTD device structure
168 * Default read function for 16bit buswidth without endianness conversion.
170 static u16 nand_read_word(struct mtd_info *mtd)
172 struct nand_chip *chip = mtd_to_nand(mtd);
173 return readw(chip->IO_ADDR_R);
177 * nand_select_chip - [DEFAULT] control CE line
178 * @mtd: MTD device structure
179 * @chipnr: chipnumber to select, -1 for deselect
181 * Default select function for 1 chip devices.
183 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
185 struct nand_chip *chip = mtd_to_nand(mtd);
189 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
200 * nand_write_byte - [DEFAULT] write single byte to chip
201 * @mtd: MTD device structure
202 * @byte: value to write
204 * Default function to write a byte to I/O[7:0]
206 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
208 struct nand_chip *chip = mtd_to_nand(mtd);
210 chip->write_buf(mtd, &byte, 1);
214 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
215 * @mtd: MTD device structure
216 * @byte: value to write
218 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
220 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
222 struct nand_chip *chip = mtd_to_nand(mtd);
223 uint16_t word = byte;
226 * It's not entirely clear what should happen to I/O[15:8] when writing
227 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
229 * When the host supports a 16-bit bus width, only data is
230 * transferred at the 16-bit width. All address and command line
231 * transfers shall use only the lower 8-bits of the data bus. During
232 * command transfers, the host may place any value on the upper
233 * 8-bits of the data bus. During address transfers, the host shall
234 * set the upper 8-bits of the data bus to 00h.
236 * One user of the write_byte callback is nand_onfi_set_features. The
237 * four parameters are specified to be written to I/O[7:0], but this is
238 * neither an address nor a command transfer. Let's assume a 0 on the
239 * upper I/O lines is OK.
241 chip->write_buf(mtd, (uint8_t *)&word, 2);
244 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
248 for (i = 0; i < len; i++)
249 writeb(buf[i], addr);
251 static void ioread8_rep(void *addr, uint8_t *buf, int len)
255 for (i = 0; i < len; i++)
256 buf[i] = readb(addr);
259 static void ioread16_rep(void *addr, void *buf, int len)
262 u16 *p = (u16 *) buf;
264 for (i = 0; i < len; i++)
268 static void iowrite16_rep(void *addr, void *buf, int len)
271 u16 *p = (u16 *) buf;
273 for (i = 0; i < len; i++)
278 * nand_write_buf - [DEFAULT] write buffer to chip
279 * @mtd: MTD device structure
281 * @len: number of bytes to write
283 * Default write function for 8bit buswidth.
285 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
287 struct nand_chip *chip = mtd_to_nand(mtd);
289 iowrite8_rep(chip->IO_ADDR_W, buf, len);
293 * nand_read_buf - [DEFAULT] read chip data into buffer
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
298 * Default read function for 8bit buswidth.
300 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
302 struct nand_chip *chip = mtd_to_nand(mtd);
304 ioread8_rep(chip->IO_ADDR_R, buf, len);
308 * nand_write_buf16 - [DEFAULT] write buffer to chip
309 * @mtd: MTD device structure
311 * @len: number of bytes to write
313 * Default write function for 16bit buswidth.
315 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
317 struct nand_chip *chip = mtd_to_nand(mtd);
318 u16 *p = (u16 *) buf;
320 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
324 * nand_read_buf16 - [DEFAULT] read chip data into buffer
325 * @mtd: MTD device structure
326 * @buf: buffer to store date
327 * @len: number of bytes to read
329 * Default read function for 16bit buswidth.
331 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
333 struct nand_chip *chip = mtd_to_nand(mtd);
334 u16 *p = (u16 *) buf;
336 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
340 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
341 * @mtd: MTD device structure
342 * @ofs: offset from device start
344 * Check, if the block is bad.
346 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
348 int page, res = 0, i = 0;
349 struct nand_chip *chip = mtd_to_nand(mtd);
352 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
353 ofs += mtd->erasesize - mtd->writesize;
355 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
358 if (chip->options & NAND_BUSWIDTH_16) {
359 chip->cmdfunc(mtd, NAND_CMD_READOOB,
360 chip->badblockpos & 0xFE, page);
361 bad = cpu_to_le16(chip->read_word(mtd));
362 if (chip->badblockpos & 0x1)
367 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
369 bad = chip->read_byte(mtd);
372 if (likely(chip->badblockbits == 8))
375 res = hweight8(bad) < chip->badblockbits;
376 ofs += mtd->writesize;
377 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
379 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
385 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
386 * @mtd: MTD device structure
387 * @ofs: offset from device start
389 * This is the default implementation, which can be overridden by a hardware
390 * specific driver. It provides the details for writing a bad block marker to a
393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
395 struct nand_chip *chip = mtd_to_nand(mtd);
396 struct mtd_oob_ops ops;
397 uint8_t buf[2] = { 0, 0 };
398 int ret = 0, res, i = 0;
400 memset(&ops, 0, sizeof(ops));
402 ops.ooboffs = chip->badblockpos;
403 if (chip->options & NAND_BUSWIDTH_16) {
404 ops.ooboffs &= ~0x01;
405 ops.len = ops.ooblen = 2;
407 ops.len = ops.ooblen = 1;
409 ops.mode = MTD_OPS_PLACE_OOB;
411 /* Write to first/last page(s) if necessary */
412 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
413 ofs += mtd->erasesize - mtd->writesize;
415 res = nand_do_write_oob(mtd, ofs, &ops);
420 ofs += mtd->writesize;
421 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
427 * nand_block_markbad_lowlevel - mark a block bad
428 * @mtd: MTD device structure
429 * @ofs: offset from device start
431 * This function performs the generic NAND bad block marking steps (i.e., bad
432 * block table(s) and/or marker(s)). We only allow the hardware driver to
433 * specify how to write bad block markers to OOB (chip->block_markbad).
435 * We try operations in the following order:
436 * (1) erase the affected block, to allow OOB marker to be written cleanly
437 * (2) write bad block marker to OOB area of affected block (unless flag
438 * NAND_BBT_NO_OOB_BBM is present)
440 * Note that we retain the first error encountered in (2) or (3), finish the
441 * procedures, and dump the error in the end.
443 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
445 struct nand_chip *chip = mtd_to_nand(mtd);
448 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
449 struct erase_info einfo;
451 /* Attempt erase before marking OOB */
452 memset(&einfo, 0, sizeof(einfo));
455 einfo.len = 1ULL << chip->phys_erase_shift;
456 nand_erase_nand(mtd, &einfo, 0);
458 /* Write bad block marker to OOB */
459 nand_get_device(mtd, FL_WRITING);
460 ret = chip->block_markbad(mtd, ofs);
461 nand_release_device(mtd);
464 /* Mark block bad in BBT */
466 res = nand_markbad_bbt(mtd, ofs);
472 mtd->ecc_stats.badblocks++;
478 * nand_check_wp - [GENERIC] check if the chip is write protected
479 * @mtd: MTD device structure
481 * Check, if the device is write protected. The function expects, that the
482 * device is already selected.
484 static int nand_check_wp(struct mtd_info *mtd)
486 struct nand_chip *chip = mtd_to_nand(mtd);
488 /* Broken xD cards report WP despite being writable */
489 if (chip->options & NAND_BROKEN_XD)
492 /* Check the WP bit */
493 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
494 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
498 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
499 * @mtd: MTD device structure
500 * @ofs: offset from device start
502 * Check if the block is marked as reserved.
504 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
506 struct nand_chip *chip = mtd_to_nand(mtd);
510 /* Return info from the table */
511 return nand_isreserved_bbt(mtd, ofs);
515 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
516 * @mtd: MTD device structure
517 * @ofs: offset from device start
518 * @allowbbt: 1, if its allowed to access the bbt area
520 * Check, if the block is bad. Either by reading the bad block table or
521 * calling of the scan function.
523 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
525 struct nand_chip *chip = mtd_to_nand(mtd);
527 if (!(chip->options & NAND_SKIP_BBTSCAN) &&
528 !(chip->options & NAND_BBT_SCANNED)) {
529 chip->options |= NAND_BBT_SCANNED;
534 return chip->block_bad(mtd, ofs);
536 /* Return info from the table */
537 return nand_isbad_bbt(mtd, ofs, allowbbt);
541 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
542 * @mtd: MTD device structure
544 * Wait for the ready pin after a command, and warn if a timeout occurs.
546 void nand_wait_ready(struct mtd_info *mtd)
548 struct nand_chip *chip = mtd_to_nand(mtd);
549 u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
552 time_start = get_timer(0);
553 /* Wait until command is processed or timeout occurs */
554 while (get_timer(time_start) < timeo) {
556 if (chip->dev_ready(mtd))
560 if (!chip->dev_ready(mtd))
561 pr_warn("timeout while waiting for chip to become ready\n");
563 EXPORT_SYMBOL_GPL(nand_wait_ready);
566 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
567 * @mtd: MTD device structure
568 * @timeo: Timeout in ms
570 * Wait for status ready (i.e. command done) or timeout.
572 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
574 register struct nand_chip *chip = mtd_to_nand(mtd);
577 timeo = (CONFIG_SYS_HZ * timeo) / 1000;
578 time_start = get_timer(0);
579 while (get_timer(time_start) < timeo) {
580 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
587 * nand_command - [DEFAULT] Send command to NAND device
588 * @mtd: MTD device structure
589 * @command: the command to be sent
590 * @column: the column address for this command, -1 if none
591 * @page_addr: the page address for this command, -1 if none
593 * Send command to NAND device. This function is used for small page devices
594 * (512 Bytes per page).
596 static void nand_command(struct mtd_info *mtd, unsigned int command,
597 int column, int page_addr)
599 register struct nand_chip *chip = mtd_to_nand(mtd);
600 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
602 /* Write out the command to the device */
603 if (command == NAND_CMD_SEQIN) {
606 if (column >= mtd->writesize) {
608 column -= mtd->writesize;
609 readcmd = NAND_CMD_READOOB;
610 } else if (column < 256) {
611 /* First 256 bytes --> READ0 */
612 readcmd = NAND_CMD_READ0;
615 readcmd = NAND_CMD_READ1;
617 chip->cmd_ctrl(mtd, readcmd, ctrl);
618 ctrl &= ~NAND_CTRL_CHANGE;
620 chip->cmd_ctrl(mtd, command, ctrl);
622 /* Address cycle, when necessary */
623 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624 /* Serially input address */
626 /* Adjust columns for 16 bit buswidth */
627 if (chip->options & NAND_BUSWIDTH_16 &&
628 !nand_opcode_8bits(command))
630 chip->cmd_ctrl(mtd, column, ctrl);
631 ctrl &= ~NAND_CTRL_CHANGE;
633 if (page_addr != -1) {
634 chip->cmd_ctrl(mtd, page_addr, ctrl);
635 ctrl &= ~NAND_CTRL_CHANGE;
636 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
637 /* One more address cycle for devices > 32MiB */
638 if (chip->chipsize > (32 << 20))
639 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
641 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
644 * Program and erase have their own busy handlers status and sequential
649 case NAND_CMD_PAGEPROG:
650 case NAND_CMD_ERASE1:
651 case NAND_CMD_ERASE2:
653 case NAND_CMD_STATUS:
654 case NAND_CMD_READID:
655 case NAND_CMD_SET_FEATURES:
661 udelay(chip->chip_delay);
662 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
663 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
665 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
667 nand_wait_status_ready(mtd, 250);
670 /* This applies to read commands */
673 * If we don't have access to the busy pin, we apply the given
676 if (!chip->dev_ready) {
677 udelay(chip->chip_delay);
682 * Apply this short delay always to ensure that we do wait tWB in
683 * any case on any machine.
687 nand_wait_ready(mtd);
691 * nand_command_lp - [DEFAULT] Send command to NAND large page device
692 * @mtd: MTD device structure
693 * @command: the command to be sent
694 * @column: the column address for this command, -1 if none
695 * @page_addr: the page address for this command, -1 if none
697 * Send command to NAND device. This is the version for the new large page
698 * devices. We don't have the separate regions as we have in the small page
699 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
701 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
702 int column, int page_addr)
704 register struct nand_chip *chip = mtd_to_nand(mtd);
706 /* Emulate NAND_CMD_READOOB */
707 if (command == NAND_CMD_READOOB) {
708 column += mtd->writesize;
709 command = NAND_CMD_READ0;
712 /* Command latch cycle */
713 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715 if (column != -1 || page_addr != -1) {
716 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
718 /* Serially input address */
720 /* Adjust columns for 16 bit buswidth */
721 if (chip->options & NAND_BUSWIDTH_16 &&
722 !nand_opcode_8bits(command))
724 chip->cmd_ctrl(mtd, column, ctrl);
725 ctrl &= ~NAND_CTRL_CHANGE;
726 chip->cmd_ctrl(mtd, column >> 8, ctrl);
728 if (page_addr != -1) {
729 chip->cmd_ctrl(mtd, page_addr, ctrl);
730 chip->cmd_ctrl(mtd, page_addr >> 8,
731 NAND_NCE | NAND_ALE);
732 /* One more address cycle for devices > 128MiB */
733 if (chip->chipsize > (128 << 20))
734 chip->cmd_ctrl(mtd, page_addr >> 16,
735 NAND_NCE | NAND_ALE);
738 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
741 * Program and erase have their own busy handlers status, sequential
742 * in and status need no delay.
746 case NAND_CMD_CACHEDPROG:
747 case NAND_CMD_PAGEPROG:
748 case NAND_CMD_ERASE1:
749 case NAND_CMD_ERASE2:
752 case NAND_CMD_STATUS:
753 case NAND_CMD_READID:
754 case NAND_CMD_SET_FEATURES:
760 udelay(chip->chip_delay);
761 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
762 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
763 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
764 NAND_NCE | NAND_CTRL_CHANGE);
765 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
766 nand_wait_status_ready(mtd, 250);
769 case NAND_CMD_RNDOUT:
770 /* No ready / busy check necessary */
771 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
772 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
773 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
774 NAND_NCE | NAND_CTRL_CHANGE);
778 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
779 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
780 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
781 NAND_NCE | NAND_CTRL_CHANGE);
783 /* This applies to read commands */
786 * If we don't have access to the busy pin, we apply the given
789 if (!chip->dev_ready) {
790 udelay(chip->chip_delay);
796 * Apply this short delay always to ensure that we do wait tWB in
797 * any case on any machine.
801 nand_wait_ready(mtd);
805 * panic_nand_get_device - [GENERIC] Get chip for selected access
806 * @chip: the nand chip descriptor
807 * @mtd: MTD device structure
808 * @new_state: the state which is requested
810 * Used when in panic, no locks are taken.
812 static void panic_nand_get_device(struct nand_chip *chip,
813 struct mtd_info *mtd, int new_state)
815 /* Hardware controller shared among independent devices */
816 chip->controller->active = chip;
817 chip->state = new_state;
821 * nand_get_device - [GENERIC] Get chip for selected access
822 * @mtd: MTD device structure
823 * @new_state: the state which is requested
825 * Get the device and lock it for exclusive access
828 nand_get_device(struct mtd_info *mtd, int new_state)
830 struct nand_chip *chip = mtd_to_nand(mtd);
831 chip->state = new_state;
836 * panic_nand_wait - [GENERIC] wait until the command is done
837 * @mtd: MTD device structure
838 * @chip: NAND chip structure
841 * Wait for command done. This is a helper function for nand_wait used when
842 * we are in interrupt context. May happen when in panic and trying to write
843 * an oops through mtdoops.
845 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
849 for (i = 0; i < timeo; i++) {
850 if (chip->dev_ready) {
851 if (chip->dev_ready(mtd))
854 if (chip->read_byte(mtd) & NAND_STATUS_READY)
862 * nand_wait - [DEFAULT] wait until the command is done
863 * @mtd: MTD device structure
864 * @chip: NAND chip structure
866 * Wait for command done. This applies to erase and program only.
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
871 unsigned long timeo = 400;
873 led_trigger_event(nand_led_trigger, LED_FULL);
876 * Apply this short delay always to ensure that we do wait tWB in any
877 * case on any machine.
881 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
883 u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
886 time_start = get_timer(0);
887 while (get_timer(time_start) < timer) {
888 if (chip->dev_ready) {
889 if (chip->dev_ready(mtd))
892 if (chip->read_byte(mtd) & NAND_STATUS_READY)
896 led_trigger_event(nand_led_trigger, LED_OFF);
898 status = (int)chip->read_byte(mtd);
899 /* This can happen if in case of timeout or buggy dev_ready */
900 WARN_ON(!(status & NAND_STATUS_READY));
904 #define BITS_PER_BYTE 8
907 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
908 * @buf: buffer to test
909 * @len: buffer length
910 * @bitflips_threshold: maximum number of bitflips
912 * Check if a buffer contains only 0xff, which means the underlying region
913 * has been erased and is ready to be programmed.
914 * The bitflips_threshold specify the maximum number of bitflips before
915 * considering the region is not erased.
916 * Note: The logic of this function has been extracted from the memweight
917 * implementation, except that nand_check_erased_buf function exit before
918 * testing the whole buffer if the number of bitflips exceed the
919 * bitflips_threshold value.
921 * Returns a positive number of bitflips less than or equal to
922 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
925 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
927 const unsigned char *bitmap = buf;
931 for (; len && ((uintptr_t)bitmap) % sizeof(long);
933 weight = hweight8(*bitmap);
934 bitflips += BITS_PER_BYTE - weight;
935 if (unlikely(bitflips > bitflips_threshold))
939 for (; len >= 4; len -= 4, bitmap += 4) {
940 weight = hweight32(*((u32 *)bitmap));
941 bitflips += 32 - weight;
942 if (unlikely(bitflips > bitflips_threshold))
946 for (; len > 0; len--, bitmap++) {
947 weight = hweight8(*bitmap);
948 bitflips += BITS_PER_BYTE - weight;
949 if (unlikely(bitflips > bitflips_threshold))
957 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
959 * @data: data buffer to test
960 * @datalen: data length
962 * @ecclen: ECC length
963 * @extraoob: extra OOB buffer
964 * @extraooblen: extra OOB length
965 * @bitflips_threshold: maximum number of bitflips
967 * Check if a data buffer and its associated ECC and OOB data contains only
968 * 0xff pattern, which means the underlying region has been erased and is
969 * ready to be programmed.
970 * The bitflips_threshold specify the maximum number of bitflips before
971 * considering the region as not erased.
974 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
975 * different from the NAND page size. When fixing bitflips, ECC engines will
976 * report the number of errors per chunk, and the NAND core infrastructure
977 * expect you to return the maximum number of bitflips for the whole page.
978 * This is why you should always use this function on a single chunk and
979 * not on the whole page. After checking each chunk you should update your
980 * max_bitflips value accordingly.
981 * 2/ When checking for bitflips in erased pages you should not only check
982 * the payload data but also their associated ECC data, because a user might
983 * have programmed almost all bits to 1 but a few. In this case, we
984 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
986 * 3/ The extraoob argument is optional, and should be used if some of your OOB
987 * data are protected by the ECC engine.
988 * It could also be used if you support subpages and want to attach some
989 * extra OOB data to an ECC chunk.
991 * Returns a positive number of bitflips less than or equal to
992 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
993 * threshold. In case of success, the passed buffers are filled with 0xff.
995 int nand_check_erased_ecc_chunk(void *data, int datalen,
996 void *ecc, int ecclen,
997 void *extraoob, int extraooblen,
998 int bitflips_threshold)
1000 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1002 data_bitflips = nand_check_erased_buf(data, datalen,
1003 bitflips_threshold);
1004 if (data_bitflips < 0)
1005 return data_bitflips;
1007 bitflips_threshold -= data_bitflips;
1009 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1010 if (ecc_bitflips < 0)
1011 return ecc_bitflips;
1013 bitflips_threshold -= ecc_bitflips;
1015 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1016 bitflips_threshold);
1017 if (extraoob_bitflips < 0)
1018 return extraoob_bitflips;
1021 memset(data, 0xff, datalen);
1024 memset(ecc, 0xff, ecclen);
1026 if (extraoob_bitflips)
1027 memset(extraoob, 0xff, extraooblen);
1029 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1031 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1034 * nand_read_page_raw - [INTERN] read raw page data without ecc
1035 * @mtd: mtd info structure
1036 * @chip: nand chip info structure
1037 * @buf: buffer to store read data
1038 * @oob_required: caller requires OOB data read to chip->oob_poi
1039 * @page: page number to read
1041 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1043 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1044 uint8_t *buf, int oob_required, int page)
1046 chip->read_buf(mtd, buf, mtd->writesize);
1048 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1053 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1054 * @mtd: mtd info structure
1055 * @chip: nand chip info structure
1056 * @buf: buffer to store read data
1057 * @oob_required: caller requires OOB data read to chip->oob_poi
1058 * @page: page number to read
1060 * We need a special oob layout and handling even when OOB isn't used.
1062 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1063 struct nand_chip *chip, uint8_t *buf,
1064 int oob_required, int page)
1066 int eccsize = chip->ecc.size;
1067 int eccbytes = chip->ecc.bytes;
1068 uint8_t *oob = chip->oob_poi;
1071 for (steps = chip->ecc.steps; steps > 0; steps--) {
1072 chip->read_buf(mtd, buf, eccsize);
1075 if (chip->ecc.prepad) {
1076 chip->read_buf(mtd, oob, chip->ecc.prepad);
1077 oob += chip->ecc.prepad;
1080 chip->read_buf(mtd, oob, eccbytes);
1083 if (chip->ecc.postpad) {
1084 chip->read_buf(mtd, oob, chip->ecc.postpad);
1085 oob += chip->ecc.postpad;
1089 size = mtd->oobsize - (oob - chip->oob_poi);
1091 chip->read_buf(mtd, oob, size);
1097 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1098 * @mtd: mtd info structure
1099 * @chip: nand chip info structure
1100 * @buf: buffer to store read data
1101 * @oob_required: caller requires OOB data read to chip->oob_poi
1102 * @page: page number to read
1104 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1105 uint8_t *buf, int oob_required, int page)
1107 int i, eccsize = chip->ecc.size;
1108 int eccbytes = chip->ecc.bytes;
1109 int eccsteps = chip->ecc.steps;
1111 uint8_t *ecc_calc = chip->buffers->ecccalc;
1112 uint8_t *ecc_code = chip->buffers->ecccode;
1113 uint32_t *eccpos = chip->ecc.layout->eccpos;
1114 unsigned int max_bitflips = 0;
1116 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1118 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1119 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1121 for (i = 0; i < chip->ecc.total; i++)
1122 ecc_code[i] = chip->oob_poi[eccpos[i]];
1124 eccsteps = chip->ecc.steps;
1127 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1130 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1132 mtd->ecc_stats.failed++;
1134 mtd->ecc_stats.corrected += stat;
1135 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1138 return max_bitflips;
1142 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1143 * @mtd: mtd info structure
1144 * @chip: nand chip info structure
1145 * @data_offs: offset of requested data within the page
1146 * @readlen: data length
1147 * @bufpoi: buffer to store read data
1148 * @page: page number to read
1150 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1151 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1154 int start_step, end_step, num_steps;
1155 uint32_t *eccpos = chip->ecc.layout->eccpos;
1157 int data_col_addr, i, gaps = 0;
1158 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1159 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1161 unsigned int max_bitflips = 0;
1163 /* Column address within the page aligned to ECC size (256bytes) */
1164 start_step = data_offs / chip->ecc.size;
1165 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1166 num_steps = end_step - start_step + 1;
1167 index = start_step * chip->ecc.bytes;
1169 /* Data size aligned to ECC ecc.size */
1170 datafrag_len = num_steps * chip->ecc.size;
1171 eccfrag_len = num_steps * chip->ecc.bytes;
1173 data_col_addr = start_step * chip->ecc.size;
1174 /* If we read not a page aligned data */
1175 if (data_col_addr != 0)
1176 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1178 p = bufpoi + data_col_addr;
1179 chip->read_buf(mtd, p, datafrag_len);
1182 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1183 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1186 * The performance is faster if we position offsets according to
1187 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1189 for (i = 0; i < eccfrag_len - 1; i++) {
1190 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1196 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1197 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1200 * Send the command to read the particular ECC bytes take care
1201 * about buswidth alignment in read_buf.
1203 aligned_pos = eccpos[index] & ~(busw - 1);
1204 aligned_len = eccfrag_len;
1205 if (eccpos[index] & (busw - 1))
1207 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1210 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1211 mtd->writesize + aligned_pos, -1);
1212 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1215 for (i = 0; i < eccfrag_len; i++)
1216 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1218 p = bufpoi + data_col_addr;
1219 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1222 stat = chip->ecc.correct(mtd, p,
1223 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1224 if (stat == -EBADMSG &&
1225 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1226 /* check for empty pages with bitflips */
1227 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1228 &chip->buffers->ecccode[i],
1231 chip->ecc.strength);
1235 mtd->ecc_stats.failed++;
1237 mtd->ecc_stats.corrected += stat;
1238 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1241 return max_bitflips;
1245 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1246 * @mtd: mtd info structure
1247 * @chip: nand chip info structure
1248 * @buf: buffer to store read data
1249 * @oob_required: caller requires OOB data read to chip->oob_poi
1250 * @page: page number to read
1252 * Not for syndrome calculating ECC controllers which need a special oob layout.
1254 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1255 uint8_t *buf, int oob_required, int page)
1257 int i, eccsize = chip->ecc.size;
1258 int eccbytes = chip->ecc.bytes;
1259 int eccsteps = chip->ecc.steps;
1261 uint8_t *ecc_calc = chip->buffers->ecccalc;
1262 uint8_t *ecc_code = chip->buffers->ecccode;
1263 uint32_t *eccpos = chip->ecc.layout->eccpos;
1264 unsigned int max_bitflips = 0;
1266 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1267 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1268 chip->read_buf(mtd, p, eccsize);
1269 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1271 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1273 for (i = 0; i < chip->ecc.total; i++)
1274 ecc_code[i] = chip->oob_poi[eccpos[i]];
1276 eccsteps = chip->ecc.steps;
1279 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1282 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1283 if (stat == -EBADMSG &&
1284 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1285 /* check for empty pages with bitflips */
1286 stat = nand_check_erased_ecc_chunk(p, eccsize,
1287 &ecc_code[i], eccbytes,
1289 chip->ecc.strength);
1293 mtd->ecc_stats.failed++;
1295 mtd->ecc_stats.corrected += stat;
1296 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1299 return max_bitflips;
1303 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1304 * @mtd: mtd info structure
1305 * @chip: nand chip info structure
1306 * @buf: buffer to store read data
1307 * @oob_required: caller requires OOB data read to chip->oob_poi
1308 * @page: page number to read
1310 * Hardware ECC for large page chips, require OOB to be read first. For this
1311 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1312 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1313 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1314 * the data area, by overwriting the NAND manufacturer bad block markings.
1316 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1317 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1319 int i, eccsize = chip->ecc.size;
1320 int eccbytes = chip->ecc.bytes;
1321 int eccsteps = chip->ecc.steps;
1323 uint8_t *ecc_code = chip->buffers->ecccode;
1324 uint32_t *eccpos = chip->ecc.layout->eccpos;
1325 uint8_t *ecc_calc = chip->buffers->ecccalc;
1326 unsigned int max_bitflips = 0;
1328 /* Read the OOB area first */
1329 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1330 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1331 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1333 for (i = 0; i < chip->ecc.total; i++)
1334 ecc_code[i] = chip->oob_poi[eccpos[i]];
1336 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1339 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1340 chip->read_buf(mtd, p, eccsize);
1341 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1343 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1344 if (stat == -EBADMSG &&
1345 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1346 /* check for empty pages with bitflips */
1347 stat = nand_check_erased_ecc_chunk(p, eccsize,
1348 &ecc_code[i], eccbytes,
1350 chip->ecc.strength);
1354 mtd->ecc_stats.failed++;
1356 mtd->ecc_stats.corrected += stat;
1357 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1360 return max_bitflips;
1364 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1365 * @mtd: mtd info structure
1366 * @chip: nand chip info structure
1367 * @buf: buffer to store read data
1368 * @oob_required: caller requires OOB data read to chip->oob_poi
1369 * @page: page number to read
1371 * The hw generator calculates the error syndrome automatically. Therefore we
1372 * need a special oob layout and handling.
1374 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1375 uint8_t *buf, int oob_required, int page)
1377 int i, eccsize = chip->ecc.size;
1378 int eccbytes = chip->ecc.bytes;
1379 int eccsteps = chip->ecc.steps;
1380 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1382 uint8_t *oob = chip->oob_poi;
1383 unsigned int max_bitflips = 0;
1385 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1388 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1389 chip->read_buf(mtd, p, eccsize);
1391 if (chip->ecc.prepad) {
1392 chip->read_buf(mtd, oob, chip->ecc.prepad);
1393 oob += chip->ecc.prepad;
1396 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1397 chip->read_buf(mtd, oob, eccbytes);
1398 stat = chip->ecc.correct(mtd, p, oob, NULL);
1402 if (chip->ecc.postpad) {
1403 chip->read_buf(mtd, oob, chip->ecc.postpad);
1404 oob += chip->ecc.postpad;
1407 if (stat == -EBADMSG &&
1408 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1409 /* check for empty pages with bitflips */
1410 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1414 chip->ecc.strength);
1418 mtd->ecc_stats.failed++;
1420 mtd->ecc_stats.corrected += stat;
1421 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1425 /* Calculate remaining oob bytes */
1426 i = mtd->oobsize - (oob - chip->oob_poi);
1428 chip->read_buf(mtd, oob, i);
1430 return max_bitflips;
1434 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1435 * @chip: nand chip structure
1436 * @oob: oob destination address
1437 * @ops: oob ops structure
1438 * @len: size of oob to transfer
1440 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1441 struct mtd_oob_ops *ops, size_t len)
1443 switch (ops->mode) {
1445 case MTD_OPS_PLACE_OOB:
1447 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1450 case MTD_OPS_AUTO_OOB: {
1451 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1452 uint32_t boffs = 0, roffs = ops->ooboffs;
1455 for (; free->length && len; free++, len -= bytes) {
1456 /* Read request not from offset 0? */
1457 if (unlikely(roffs)) {
1458 if (roffs >= free->length) {
1459 roffs -= free->length;
1462 boffs = free->offset + roffs;
1463 bytes = min_t(size_t, len,
1464 (free->length - roffs));
1467 bytes = min_t(size_t, len, free->length);
1468 boffs = free->offset;
1470 memcpy(oob, chip->oob_poi + boffs, bytes);
1482 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1483 * @mtd: MTD device structure
1484 * @retry_mode: the retry mode to use
1486 * Some vendors supply a special command to shift the Vt threshold, to be used
1487 * when there are too many bitflips in a page (i.e., ECC error). After setting
1488 * a new threshold, the host should retry reading the page.
1490 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1492 struct nand_chip *chip = mtd_to_nand(mtd);
1494 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1496 if (retry_mode >= chip->read_retries)
1499 if (!chip->setup_read_retry)
1502 return chip->setup_read_retry(mtd, retry_mode);
1506 * nand_do_read_ops - [INTERN] Read data with ECC
1507 * @mtd: MTD device structure
1508 * @from: offset to read from
1509 * @ops: oob ops structure
1511 * Internal function. Called with chip held.
1513 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1514 struct mtd_oob_ops *ops)
1516 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1517 struct nand_chip *chip = mtd_to_nand(mtd);
1519 uint32_t readlen = ops->len;
1520 uint32_t oobreadlen = ops->ooblen;
1521 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1523 uint8_t *bufpoi, *oob, *buf;
1525 unsigned int max_bitflips = 0;
1527 bool ecc_fail = false;
1529 chipnr = (int)(from >> chip->chip_shift);
1530 chip->select_chip(mtd, chipnr);
1532 realpage = (int)(from >> chip->page_shift);
1533 page = realpage & chip->pagemask;
1535 col = (int)(from & (mtd->writesize - 1));
1539 oob_required = oob ? 1 : 0;
1542 unsigned int ecc_failures = mtd->ecc_stats.failed;
1545 bytes = min(mtd->writesize - col, readlen);
1546 aligned = (bytes == mtd->writesize);
1553 /* Is the current page in the buffer? */
1554 if (realpage != chip->pagebuf || oob) {
1555 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1557 if (use_bufpoi && aligned)
1558 pr_debug("%s: using read bounce buffer for buf@%p\n",
1562 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1565 * Now read the page into the buffer. Absent an error,
1566 * the read methods return max bitflips per ecc step.
1568 if (unlikely(ops->mode == MTD_OPS_RAW))
1569 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1572 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1574 ret = chip->ecc.read_subpage(mtd, chip,
1578 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1579 oob_required, page);
1582 /* Invalidate page cache */
1587 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1589 /* Transfer not aligned data */
1591 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1592 !(mtd->ecc_stats.failed - ecc_failures) &&
1593 (ops->mode != MTD_OPS_RAW)) {
1594 chip->pagebuf = realpage;
1595 chip->pagebuf_bitflips = ret;
1597 /* Invalidate page cache */
1600 memcpy(buf, chip->buffers->databuf + col, bytes);
1603 if (unlikely(oob)) {
1604 int toread = min(oobreadlen, max_oobsize);
1607 oob = nand_transfer_oob(chip,
1609 oobreadlen -= toread;
1613 if (chip->options & NAND_NEED_READRDY) {
1614 /* Apply delay or wait for ready/busy pin */
1615 if (!chip->dev_ready)
1616 udelay(chip->chip_delay);
1618 nand_wait_ready(mtd);
1621 if (mtd->ecc_stats.failed - ecc_failures) {
1622 if (retry_mode + 1 < chip->read_retries) {
1624 ret = nand_setup_read_retry(mtd,
1629 /* Reset failures; retry */
1630 mtd->ecc_stats.failed = ecc_failures;
1633 /* No more retry modes; real failure */
1640 memcpy(buf, chip->buffers->databuf + col, bytes);
1642 max_bitflips = max_t(unsigned int, max_bitflips,
1643 chip->pagebuf_bitflips);
1648 /* Reset to retry mode 0 */
1650 ret = nand_setup_read_retry(mtd, 0);
1659 /* For subsequent reads align to page boundary */
1661 /* Increment page address */
1664 page = realpage & chip->pagemask;
1665 /* Check, if we cross a chip boundary */
1668 chip->select_chip(mtd, -1);
1669 chip->select_chip(mtd, chipnr);
1672 chip->select_chip(mtd, -1);
1674 ops->retlen = ops->len - (size_t) readlen;
1676 ops->oobretlen = ops->ooblen - oobreadlen;
1684 return max_bitflips;
1688 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1689 * @mtd: MTD device structure
1690 * @from: offset to read from
1691 * @len: number of bytes to read
1692 * @retlen: pointer to variable to store the number of read bytes
1693 * @buf: the databuffer to put data
1695 * Get hold of the chip and call nand_do_read.
1697 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1698 size_t *retlen, uint8_t *buf)
1700 struct mtd_oob_ops ops;
1703 nand_get_device(mtd, FL_READING);
1704 memset(&ops, 0, sizeof(ops));
1707 ops.mode = MTD_OPS_PLACE_OOB;
1708 ret = nand_do_read_ops(mtd, from, &ops);
1709 *retlen = ops.retlen;
1710 nand_release_device(mtd);
1715 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1716 * @mtd: mtd info structure
1717 * @chip: nand chip info structure
1718 * @page: page number to read
1720 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1723 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1724 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1729 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1731 * @mtd: mtd info structure
1732 * @chip: nand chip info structure
1733 * @page: page number to read
1735 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1738 int length = mtd->oobsize;
1739 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1740 int eccsize = chip->ecc.size;
1741 uint8_t *bufpoi = chip->oob_poi;
1742 int i, toread, sndrnd = 0, pos;
1744 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1745 for (i = 0; i < chip->ecc.steps; i++) {
1747 pos = eccsize + i * (eccsize + chunk);
1748 if (mtd->writesize > 512)
1749 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1751 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1754 toread = min_t(int, length, chunk);
1755 chip->read_buf(mtd, bufpoi, toread);
1760 chip->read_buf(mtd, bufpoi, length);
1766 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1767 * @mtd: mtd info structure
1768 * @chip: nand chip info structure
1769 * @page: page number to write
1771 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1775 const uint8_t *buf = chip->oob_poi;
1776 int length = mtd->oobsize;
1778 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1779 chip->write_buf(mtd, buf, length);
1780 /* Send command to program the OOB data */
1781 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1783 status = chip->waitfunc(mtd, chip);
1785 return status & NAND_STATUS_FAIL ? -EIO : 0;
1789 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1790 * with syndrome - only for large page flash
1791 * @mtd: mtd info structure
1792 * @chip: nand chip info structure
1793 * @page: page number to write
1795 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1796 struct nand_chip *chip, int page)
1798 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1799 int eccsize = chip->ecc.size, length = mtd->oobsize;
1800 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1801 const uint8_t *bufpoi = chip->oob_poi;
1804 * data-ecc-data-ecc ... ecc-oob
1806 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1808 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1809 pos = steps * (eccsize + chunk);
1814 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1815 for (i = 0; i < steps; i++) {
1817 if (mtd->writesize <= 512) {
1818 uint32_t fill = 0xFFFFFFFF;
1822 int num = min_t(int, len, 4);
1823 chip->write_buf(mtd, (uint8_t *)&fill,
1828 pos = eccsize + i * (eccsize + chunk);
1829 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1833 len = min_t(int, length, chunk);
1834 chip->write_buf(mtd, bufpoi, len);
1839 chip->write_buf(mtd, bufpoi, length);
1841 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1842 status = chip->waitfunc(mtd, chip);
1844 return status & NAND_STATUS_FAIL ? -EIO : 0;
1848 * nand_do_read_oob - [INTERN] NAND read out-of-band
1849 * @mtd: MTD device structure
1850 * @from: offset to read from
1851 * @ops: oob operations description structure
1853 * NAND read out-of-band data from the spare area.
1855 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1856 struct mtd_oob_ops *ops)
1858 int page, realpage, chipnr;
1859 struct nand_chip *chip = mtd_to_nand(mtd);
1860 struct mtd_ecc_stats stats;
1861 int readlen = ops->ooblen;
1863 uint8_t *buf = ops->oobbuf;
1866 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1867 __func__, (unsigned long long)from, readlen);
1869 stats = mtd->ecc_stats;
1871 len = mtd_oobavail(mtd, ops);
1873 if (unlikely(ops->ooboffs >= len)) {
1874 pr_debug("%s: attempt to start read outside oob\n",
1879 /* Do not allow reads past end of device */
1880 if (unlikely(from >= mtd->size ||
1881 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1882 (from >> chip->page_shift)) * len)) {
1883 pr_debug("%s: attempt to read beyond end of device\n",
1888 chipnr = (int)(from >> chip->chip_shift);
1889 chip->select_chip(mtd, chipnr);
1891 /* Shift to get page */
1892 realpage = (int)(from >> chip->page_shift);
1893 page = realpage & chip->pagemask;
1898 if (ops->mode == MTD_OPS_RAW)
1899 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1901 ret = chip->ecc.read_oob(mtd, chip, page);
1906 len = min(len, readlen);
1907 buf = nand_transfer_oob(chip, buf, ops, len);
1909 if (chip->options & NAND_NEED_READRDY) {
1910 /* Apply delay or wait for ready/busy pin */
1911 if (!chip->dev_ready)
1912 udelay(chip->chip_delay);
1914 nand_wait_ready(mtd);
1921 /* Increment page address */
1924 page = realpage & chip->pagemask;
1925 /* Check, if we cross a chip boundary */
1928 chip->select_chip(mtd, -1);
1929 chip->select_chip(mtd, chipnr);
1932 chip->select_chip(mtd, -1);
1934 ops->oobretlen = ops->ooblen - readlen;
1939 if (mtd->ecc_stats.failed - stats.failed)
1942 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1946 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1947 * @mtd: MTD device structure
1948 * @from: offset to read from
1949 * @ops: oob operation description structure
1951 * NAND read data and/or out-of-band data.
1953 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1954 struct mtd_oob_ops *ops)
1956 int ret = -ENOTSUPP;
1960 /* Do not allow reads past end of device */
1961 if (ops->datbuf && (from + ops->len) > mtd->size) {
1962 pr_debug("%s: attempt to read beyond end of device\n",
1967 nand_get_device(mtd, FL_READING);
1969 switch (ops->mode) {
1970 case MTD_OPS_PLACE_OOB:
1971 case MTD_OPS_AUTO_OOB:
1980 ret = nand_do_read_oob(mtd, from, ops);
1982 ret = nand_do_read_ops(mtd, from, ops);
1985 nand_release_device(mtd);
1991 * nand_write_page_raw - [INTERN] raw page write function
1992 * @mtd: mtd info structure
1993 * @chip: nand chip info structure
1995 * @oob_required: must write chip->oob_poi to OOB
1996 * @page: page number to write
1998 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2000 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2001 const uint8_t *buf, int oob_required, int page)
2003 chip->write_buf(mtd, buf, mtd->writesize);
2005 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2011 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2012 * @mtd: mtd info structure
2013 * @chip: nand chip info structure
2015 * @oob_required: must write chip->oob_poi to OOB
2016 * @page: page number to write
2018 * We need a special oob layout and handling even when ECC isn't checked.
2020 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2021 struct nand_chip *chip,
2022 const uint8_t *buf, int oob_required,
2025 int eccsize = chip->ecc.size;
2026 int eccbytes = chip->ecc.bytes;
2027 uint8_t *oob = chip->oob_poi;
2030 for (steps = chip->ecc.steps; steps > 0; steps--) {
2031 chip->write_buf(mtd, buf, eccsize);
2034 if (chip->ecc.prepad) {
2035 chip->write_buf(mtd, oob, chip->ecc.prepad);
2036 oob += chip->ecc.prepad;
2039 chip->write_buf(mtd, oob, eccbytes);
2042 if (chip->ecc.postpad) {
2043 chip->write_buf(mtd, oob, chip->ecc.postpad);
2044 oob += chip->ecc.postpad;
2048 size = mtd->oobsize - (oob - chip->oob_poi);
2050 chip->write_buf(mtd, oob, size);
2055 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2056 * @mtd: mtd info structure
2057 * @chip: nand chip info structure
2059 * @oob_required: must write chip->oob_poi to OOB
2060 * @page: page number to write
2062 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2063 const uint8_t *buf, int oob_required,
2066 int i, eccsize = chip->ecc.size;
2067 int eccbytes = chip->ecc.bytes;
2068 int eccsteps = chip->ecc.steps;
2069 uint8_t *ecc_calc = chip->buffers->ecccalc;
2070 const uint8_t *p = buf;
2071 uint32_t *eccpos = chip->ecc.layout->eccpos;
2073 /* Software ECC calculation */
2074 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2075 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2077 for (i = 0; i < chip->ecc.total; i++)
2078 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2080 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2084 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2085 * @mtd: mtd info structure
2086 * @chip: nand chip info structure
2088 * @oob_required: must write chip->oob_poi to OOB
2089 * @page: page number to write
2091 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2092 const uint8_t *buf, int oob_required,
2095 int i, eccsize = chip->ecc.size;
2096 int eccbytes = chip->ecc.bytes;
2097 int eccsteps = chip->ecc.steps;
2098 uint8_t *ecc_calc = chip->buffers->ecccalc;
2099 const uint8_t *p = buf;
2100 uint32_t *eccpos = chip->ecc.layout->eccpos;
2102 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2103 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2104 chip->write_buf(mtd, p, eccsize);
2105 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2108 for (i = 0; i < chip->ecc.total; i++)
2109 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2111 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2118 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2119 * @mtd: mtd info structure
2120 * @chip: nand chip info structure
2121 * @offset: column address of subpage within the page
2122 * @data_len: data length
2124 * @oob_required: must write chip->oob_poi to OOB
2125 * @page: page number to write
2127 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2128 struct nand_chip *chip, uint32_t offset,
2129 uint32_t data_len, const uint8_t *buf,
2130 int oob_required, int page)
2132 uint8_t *oob_buf = chip->oob_poi;
2133 uint8_t *ecc_calc = chip->buffers->ecccalc;
2134 int ecc_size = chip->ecc.size;
2135 int ecc_bytes = chip->ecc.bytes;
2136 int ecc_steps = chip->ecc.steps;
2137 uint32_t *eccpos = chip->ecc.layout->eccpos;
2138 uint32_t start_step = offset / ecc_size;
2139 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2140 int oob_bytes = mtd->oobsize / ecc_steps;
2143 for (step = 0; step < ecc_steps; step++) {
2144 /* configure controller for WRITE access */
2145 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2147 /* write data (untouched subpages already masked by 0xFF) */
2148 chip->write_buf(mtd, buf, ecc_size);
2150 /* mask ECC of un-touched subpages by padding 0xFF */
2151 if ((step < start_step) || (step > end_step))
2152 memset(ecc_calc, 0xff, ecc_bytes);
2154 chip->ecc.calculate(mtd, buf, ecc_calc);
2156 /* mask OOB of un-touched subpages by padding 0xFF */
2157 /* if oob_required, preserve OOB metadata of written subpage */
2158 if (!oob_required || (step < start_step) || (step > end_step))
2159 memset(oob_buf, 0xff, oob_bytes);
2162 ecc_calc += ecc_bytes;
2163 oob_buf += oob_bytes;
2166 /* copy calculated ECC for whole page to chip->buffer->oob */
2167 /* this include masked-value(0xFF) for unwritten subpages */
2168 ecc_calc = chip->buffers->ecccalc;
2169 for (i = 0; i < chip->ecc.total; i++)
2170 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2172 /* write OOB buffer to NAND device */
2173 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2180 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2181 * @mtd: mtd info structure
2182 * @chip: nand chip info structure
2184 * @oob_required: must write chip->oob_poi to OOB
2185 * @page: page number to write
2187 * The hw generator calculates the error syndrome automatically. Therefore we
2188 * need a special oob layout and handling.
2190 static int nand_write_page_syndrome(struct mtd_info *mtd,
2191 struct nand_chip *chip,
2192 const uint8_t *buf, int oob_required,
2195 int i, eccsize = chip->ecc.size;
2196 int eccbytes = chip->ecc.bytes;
2197 int eccsteps = chip->ecc.steps;
2198 const uint8_t *p = buf;
2199 uint8_t *oob = chip->oob_poi;
2201 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2203 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2204 chip->write_buf(mtd, p, eccsize);
2206 if (chip->ecc.prepad) {
2207 chip->write_buf(mtd, oob, chip->ecc.prepad);
2208 oob += chip->ecc.prepad;
2211 chip->ecc.calculate(mtd, p, oob);
2212 chip->write_buf(mtd, oob, eccbytes);
2215 if (chip->ecc.postpad) {
2216 chip->write_buf(mtd, oob, chip->ecc.postpad);
2217 oob += chip->ecc.postpad;
2221 /* Calculate remaining oob bytes */
2222 i = mtd->oobsize - (oob - chip->oob_poi);
2224 chip->write_buf(mtd, oob, i);
2230 * nand_write_page - [REPLACEABLE] write one page
2231 * @mtd: MTD device structure
2232 * @chip: NAND chip descriptor
2233 * @offset: address offset within the page
2234 * @data_len: length of actual data to be written
2235 * @buf: the data to write
2236 * @oob_required: must write chip->oob_poi to OOB
2237 * @page: page number to write
2238 * @cached: cached programming
2239 * @raw: use _raw version of write_page
2241 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2242 uint32_t offset, int data_len, const uint8_t *buf,
2243 int oob_required, int page, int cached, int raw)
2245 int status, subpage;
2247 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2248 chip->ecc.write_subpage)
2249 subpage = offset || (data_len < mtd->writesize);
2253 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2256 status = chip->ecc.write_page_raw(mtd, chip, buf,
2257 oob_required, page);
2259 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2260 buf, oob_required, page);
2262 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2269 * Cached progamming disabled for now. Not sure if it's worth the
2270 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2274 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2276 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2277 status = chip->waitfunc(mtd, chip);
2279 * See if operation failed and additional status checks are
2282 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2283 status = chip->errstat(mtd, chip, FL_WRITING, status,
2286 if (status & NAND_STATUS_FAIL)
2289 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2290 status = chip->waitfunc(mtd, chip);
2297 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2298 * @mtd: MTD device structure
2299 * @oob: oob data buffer
2300 * @len: oob data write length
2301 * @ops: oob ops structure
2303 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2304 struct mtd_oob_ops *ops)
2306 struct nand_chip *chip = mtd_to_nand(mtd);
2309 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2310 * data from a previous OOB read.
2312 memset(chip->oob_poi, 0xff, mtd->oobsize);
2314 switch (ops->mode) {
2316 case MTD_OPS_PLACE_OOB:
2318 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2321 case MTD_OPS_AUTO_OOB: {
2322 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2323 uint32_t boffs = 0, woffs = ops->ooboffs;
2326 for (; free->length && len; free++, len -= bytes) {
2327 /* Write request not from offset 0? */
2328 if (unlikely(woffs)) {
2329 if (woffs >= free->length) {
2330 woffs -= free->length;
2333 boffs = free->offset + woffs;
2334 bytes = min_t(size_t, len,
2335 (free->length - woffs));
2338 bytes = min_t(size_t, len, free->length);
2339 boffs = free->offset;
2341 memcpy(chip->oob_poi + boffs, oob, bytes);
2352 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2355 * nand_do_write_ops - [INTERN] NAND write with ECC
2356 * @mtd: MTD device structure
2357 * @to: offset to write to
2358 * @ops: oob operations description structure
2360 * NAND write with ECC.
2362 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2363 struct mtd_oob_ops *ops)
2365 int chipnr, realpage, page, blockmask, column;
2366 struct nand_chip *chip = mtd_to_nand(mtd);
2367 uint32_t writelen = ops->len;
2369 uint32_t oobwritelen = ops->ooblen;
2370 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2372 uint8_t *oob = ops->oobbuf;
2373 uint8_t *buf = ops->datbuf;
2375 int oob_required = oob ? 1 : 0;
2381 /* Reject writes, which are not page aligned */
2382 if (NOTALIGNED(to)) {
2383 pr_notice("%s: attempt to write non page aligned data\n",
2388 column = to & (mtd->writesize - 1);
2390 chipnr = (int)(to >> chip->chip_shift);
2391 chip->select_chip(mtd, chipnr);
2393 /* Check, if it is write protected */
2394 if (nand_check_wp(mtd)) {
2399 realpage = (int)(to >> chip->page_shift);
2400 page = realpage & chip->pagemask;
2401 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2403 /* Invalidate the page cache, when we write to the cached page */
2404 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2405 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2408 /* Don't allow multipage oob writes with offset */
2409 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2415 int bytes = mtd->writesize;
2416 int cached = writelen > bytes && page != blockmask;
2417 uint8_t *wbuf = buf;
2419 int part_pagewr = (column || writelen < mtd->writesize);
2427 /* Partial page write?, or need to use bounce buffer */
2429 pr_debug("%s: using write bounce buffer for buf@%p\n",
2433 bytes = min_t(int, bytes - column, writelen);
2435 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2436 memcpy(&chip->buffers->databuf[column], buf, bytes);
2437 wbuf = chip->buffers->databuf;
2440 if (unlikely(oob)) {
2441 size_t len = min(oobwritelen, oobmaxlen);
2442 oob = nand_fill_oob(mtd, oob, len, ops);
2445 /* We still need to erase leftover OOB data */
2446 memset(chip->oob_poi, 0xff, mtd->oobsize);
2448 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2449 oob_required, page, cached,
2450 (ops->mode == MTD_OPS_RAW));
2462 page = realpage & chip->pagemask;
2463 /* Check, if we cross a chip boundary */
2466 chip->select_chip(mtd, -1);
2467 chip->select_chip(mtd, chipnr);
2471 ops->retlen = ops->len - writelen;
2473 ops->oobretlen = ops->ooblen;
2476 chip->select_chip(mtd, -1);
2481 * panic_nand_write - [MTD Interface] NAND write with ECC
2482 * @mtd: MTD device structure
2483 * @to: offset to write to
2484 * @len: number of bytes to write
2485 * @retlen: pointer to variable to store the number of written bytes
2486 * @buf: the data to write
2488 * NAND write with ECC. Used when performing writes in interrupt context, this
2489 * may for example be called by mtdoops when writing an oops while in panic.
2491 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2492 size_t *retlen, const uint8_t *buf)
2494 struct nand_chip *chip = mtd_to_nand(mtd);
2495 struct mtd_oob_ops ops;
2498 /* Wait for the device to get ready */
2499 panic_nand_wait(mtd, chip, 400);
2501 /* Grab the device */
2502 panic_nand_get_device(chip, mtd, FL_WRITING);
2504 memset(&ops, 0, sizeof(ops));
2506 ops.datbuf = (uint8_t *)buf;
2507 ops.mode = MTD_OPS_PLACE_OOB;
2509 ret = nand_do_write_ops(mtd, to, &ops);
2511 *retlen = ops.retlen;
2516 * nand_write - [MTD Interface] NAND write with ECC
2517 * @mtd: MTD device structure
2518 * @to: offset to write to
2519 * @len: number of bytes to write
2520 * @retlen: pointer to variable to store the number of written bytes
2521 * @buf: the data to write
2523 * NAND write with ECC.
2525 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2526 size_t *retlen, const uint8_t *buf)
2528 struct mtd_oob_ops ops;
2531 nand_get_device(mtd, FL_WRITING);
2532 memset(&ops, 0, sizeof(ops));
2534 ops.datbuf = (uint8_t *)buf;
2535 ops.mode = MTD_OPS_PLACE_OOB;
2536 ret = nand_do_write_ops(mtd, to, &ops);
2537 *retlen = ops.retlen;
2538 nand_release_device(mtd);
2543 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2544 * @mtd: MTD device structure
2545 * @to: offset to write to
2546 * @ops: oob operation description structure
2548 * NAND write out-of-band.
2550 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2551 struct mtd_oob_ops *ops)
2553 int chipnr, page, status, len;
2554 struct nand_chip *chip = mtd_to_nand(mtd);
2556 pr_debug("%s: to = 0x%08x, len = %i\n",
2557 __func__, (unsigned int)to, (int)ops->ooblen);
2559 len = mtd_oobavail(mtd, ops);
2561 /* Do not allow write past end of page */
2562 if ((ops->ooboffs + ops->ooblen) > len) {
2563 pr_debug("%s: attempt to write past end of page\n",
2568 if (unlikely(ops->ooboffs >= len)) {
2569 pr_debug("%s: attempt to start write outside oob\n",
2574 /* Do not allow write past end of device */
2575 if (unlikely(to >= mtd->size ||
2576 ops->ooboffs + ops->ooblen >
2577 ((mtd->size >> chip->page_shift) -
2578 (to >> chip->page_shift)) * len)) {
2579 pr_debug("%s: attempt to write beyond end of device\n",
2584 chipnr = (int)(to >> chip->chip_shift);
2585 chip->select_chip(mtd, chipnr);
2587 /* Shift to get page */
2588 page = (int)(to >> chip->page_shift);
2591 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2592 * of my DiskOnChip 2000 test units) will clear the whole data page too
2593 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2594 * it in the doc2000 driver in August 1999. dwmw2.
2596 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2598 /* Check, if it is write protected */
2599 if (nand_check_wp(mtd)) {
2600 chip->select_chip(mtd, -1);
2604 /* Invalidate the page cache, if we write to the cached page */
2605 if (page == chip->pagebuf)
2608 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2610 if (ops->mode == MTD_OPS_RAW)
2611 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2613 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2615 chip->select_chip(mtd, -1);
2620 ops->oobretlen = ops->ooblen;
2626 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2627 * @mtd: MTD device structure
2628 * @to: offset to write to
2629 * @ops: oob operation description structure
2631 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2632 struct mtd_oob_ops *ops)
2634 int ret = -ENOTSUPP;
2638 /* Do not allow writes past end of device */
2639 if (ops->datbuf && (to + ops->len) > mtd->size) {
2640 pr_debug("%s: attempt to write beyond end of device\n",
2645 nand_get_device(mtd, FL_WRITING);
2647 switch (ops->mode) {
2648 case MTD_OPS_PLACE_OOB:
2649 case MTD_OPS_AUTO_OOB:
2658 ret = nand_do_write_oob(mtd, to, ops);
2660 ret = nand_do_write_ops(mtd, to, ops);
2663 nand_release_device(mtd);
2668 * single_erase - [GENERIC] NAND standard block erase command function
2669 * @mtd: MTD device structure
2670 * @page: the page address of the block which will be erased
2672 * Standard erase command for NAND chips. Returns NAND status.
2674 static int single_erase(struct mtd_info *mtd, int page)
2676 struct nand_chip *chip = mtd_to_nand(mtd);
2677 /* Send commands to erase a block */
2678 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2679 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2681 return chip->waitfunc(mtd, chip);
2685 * nand_erase - [MTD Interface] erase block(s)
2686 * @mtd: MTD device structure
2687 * @instr: erase instruction
2689 * Erase one ore more blocks.
2691 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2693 return nand_erase_nand(mtd, instr, 0);
2697 * nand_erase_nand - [INTERN] erase block(s)
2698 * @mtd: MTD device structure
2699 * @instr: erase instruction
2700 * @allowbbt: allow erasing the bbt area
2702 * Erase one ore more blocks.
2704 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2707 int page, status, pages_per_block, ret, chipnr;
2708 struct nand_chip *chip = mtd_to_nand(mtd);
2711 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2712 __func__, (unsigned long long)instr->addr,
2713 (unsigned long long)instr->len);
2715 if (check_offs_len(mtd, instr->addr, instr->len))
2718 /* Grab the lock and see if the device is available */
2719 nand_get_device(mtd, FL_ERASING);
2721 /* Shift to get first page */
2722 page = (int)(instr->addr >> chip->page_shift);
2723 chipnr = (int)(instr->addr >> chip->chip_shift);
2725 /* Calculate pages in each block */
2726 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2728 /* Select the NAND device */
2729 chip->select_chip(mtd, chipnr);
2731 /* Check, if it is write protected */
2732 if (nand_check_wp(mtd)) {
2733 pr_debug("%s: device is write protected!\n",
2735 instr->state = MTD_ERASE_FAILED;
2739 /* Loop through the pages */
2742 instr->state = MTD_ERASING;
2747 /* Check if we have a bad block, we do not erase bad blocks! */
2748 if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2749 chip->page_shift, allowbbt)) {
2750 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2752 instr->state = MTD_ERASE_FAILED;
2757 * Invalidate the page cache, if we erase the block which
2758 * contains the current cached page.
2760 if (page <= chip->pagebuf && chip->pagebuf <
2761 (page + pages_per_block))
2764 status = chip->erase(mtd, page & chip->pagemask);
2767 * See if operation failed and additional status checks are
2770 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2771 status = chip->errstat(mtd, chip, FL_ERASING,
2774 /* See if block erase succeeded */
2775 if (status & NAND_STATUS_FAIL) {
2776 pr_debug("%s: failed erase, page 0x%08x\n",
2778 instr->state = MTD_ERASE_FAILED;
2780 ((loff_t)page << chip->page_shift);
2784 /* Increment page address and decrement length */
2785 len -= (1ULL << chip->phys_erase_shift);
2786 page += pages_per_block;
2788 /* Check, if we cross a chip boundary */
2789 if (len && !(page & chip->pagemask)) {
2791 chip->select_chip(mtd, -1);
2792 chip->select_chip(mtd, chipnr);
2795 instr->state = MTD_ERASE_DONE;
2799 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2801 /* Deselect and wake up anyone waiting on the device */
2802 chip->select_chip(mtd, -1);
2803 nand_release_device(mtd);
2805 /* Do call back function */
2807 mtd_erase_callback(instr);
2809 /* Return more or less happy */
2814 * nand_sync - [MTD Interface] sync
2815 * @mtd: MTD device structure
2817 * Sync is actually a wait for chip ready function.
2819 static void nand_sync(struct mtd_info *mtd)
2821 pr_debug("%s: called\n", __func__);
2823 /* Grab the lock and see if the device is available */
2824 nand_get_device(mtd, FL_SYNCING);
2825 /* Release it and go back */
2826 nand_release_device(mtd);
2830 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2831 * @mtd: MTD device structure
2832 * @offs: offset relative to mtd start
2834 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2836 struct nand_chip *chip = mtd_to_nand(mtd);
2837 int chipnr = (int)(offs >> chip->chip_shift);
2840 /* Select the NAND device */
2841 nand_get_device(mtd, FL_READING);
2842 chip->select_chip(mtd, chipnr);
2844 ret = nand_block_checkbad(mtd, offs, 0);
2846 chip->select_chip(mtd, -1);
2847 nand_release_device(mtd);
2853 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2854 * @mtd: MTD device structure
2855 * @ofs: offset relative to mtd start
2857 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2861 ret = nand_block_isbad(mtd, ofs);
2863 /* If it was bad already, return success and do nothing */
2869 return nand_block_markbad_lowlevel(mtd, ofs);
2873 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2874 * @mtd: MTD device structure
2875 * @chip: nand chip info structure
2876 * @addr: feature address.
2877 * @subfeature_param: the subfeature parameters, a four bytes array.
2879 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2880 int addr, uint8_t *subfeature_param)
2885 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2886 if (!chip->onfi_version ||
2887 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2888 & ONFI_OPT_CMD_SET_GET_FEATURES))
2892 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2893 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2894 chip->write_byte(mtd, subfeature_param[i]);
2896 status = chip->waitfunc(mtd, chip);
2897 if (status & NAND_STATUS_FAIL)
2903 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2904 * @mtd: MTD device structure
2905 * @chip: nand chip info structure
2906 * @addr: feature address.
2907 * @subfeature_param: the subfeature parameters, a four bytes array.
2909 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2910 int addr, uint8_t *subfeature_param)
2914 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2915 if (!chip->onfi_version ||
2916 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2917 & ONFI_OPT_CMD_SET_GET_FEATURES))
2921 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2922 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2923 *subfeature_param++ = chip->read_byte(mtd);
2927 /* Set default functions */
2928 static void nand_set_defaults(struct nand_chip *chip, int busw)
2930 /* check for proper chip_delay setup, set 20us if not */
2931 if (!chip->chip_delay)
2932 chip->chip_delay = 20;
2934 /* check, if a user supplied command function given */
2935 if (chip->cmdfunc == NULL)
2936 chip->cmdfunc = nand_command;
2938 /* check, if a user supplied wait function given */
2939 if (chip->waitfunc == NULL)
2940 chip->waitfunc = nand_wait;
2942 if (!chip->select_chip)
2943 chip->select_chip = nand_select_chip;
2945 /* set for ONFI nand */
2946 if (!chip->onfi_set_features)
2947 chip->onfi_set_features = nand_onfi_set_features;
2948 if (!chip->onfi_get_features)
2949 chip->onfi_get_features = nand_onfi_get_features;
2951 /* If called twice, pointers that depend on busw may need to be reset */
2952 if (!chip->read_byte || chip->read_byte == nand_read_byte)
2953 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2954 if (!chip->read_word)
2955 chip->read_word = nand_read_word;
2956 if (!chip->block_bad)
2957 chip->block_bad = nand_block_bad;
2958 if (!chip->block_markbad)
2959 chip->block_markbad = nand_default_block_markbad;
2960 if (!chip->write_buf || chip->write_buf == nand_write_buf)
2961 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2962 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2963 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2964 if (!chip->read_buf || chip->read_buf == nand_read_buf)
2965 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2966 if (!chip->scan_bbt)
2967 chip->scan_bbt = nand_default_bbt;
2969 if (!chip->controller) {
2970 chip->controller = &chip->hwcontrol;
2971 spin_lock_init(&chip->controller->lock);
2972 init_waitqueue_head(&chip->controller->wq);
2977 /* Sanitize ONFI strings so we can safely print them */
2978 static void sanitize_string(char *s, size_t len)
2982 /* Null terminate */
2985 /* Remove non printable chars */
2986 for (i = 0; i < len - 1; i++) {
2987 if (s[i] < ' ' || s[i] > 127)
2991 /* Remove trailing spaces */
2995 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3000 for (i = 0; i < 8; i++)
3001 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3007 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3008 /* Parse the Extended Parameter Page. */
3009 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3010 struct nand_chip *chip, struct nand_onfi_params *p)
3012 struct onfi_ext_param_page *ep;
3013 struct onfi_ext_section *s;
3014 struct onfi_ext_ecc_info *ecc;
3020 len = le16_to_cpu(p->ext_param_page_length) * 16;
3021 ep = kmalloc(len, GFP_KERNEL);
3025 /* Send our own NAND_CMD_PARAM. */
3026 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3028 /* Use the Change Read Column command to skip the ONFI param pages. */
3029 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3030 sizeof(*p) * p->num_of_param_pages , -1);
3032 /* Read out the Extended Parameter Page. */
3033 chip->read_buf(mtd, (uint8_t *)ep, len);
3034 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3035 != le16_to_cpu(ep->crc))) {
3036 pr_debug("fail in the CRC.\n");
3041 * Check the signature.
3042 * Do not strictly follow the ONFI spec, maybe changed in future.
3044 if (strncmp((char *)ep->sig, "EPPS", 4)) {
3045 pr_debug("The signature is invalid.\n");
3049 /* find the ECC section. */
3050 cursor = (uint8_t *)(ep + 1);
3051 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3052 s = ep->sections + i;
3053 if (s->type == ONFI_SECTION_TYPE_2)
3055 cursor += s->length * 16;
3057 if (i == ONFI_EXT_SECTION_MAX) {
3058 pr_debug("We can not find the ECC section.\n");
3062 /* get the info we want. */
3063 ecc = (struct onfi_ext_ecc_info *)cursor;
3065 if (!ecc->codeword_size) {
3066 pr_debug("Invalid codeword size\n");
3070 chip->ecc_strength_ds = ecc->ecc_bits;
3071 chip->ecc_step_ds = 1 << ecc->codeword_size;
3079 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3081 struct nand_chip *chip = mtd_to_nand(mtd);
3082 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3084 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3089 * Configure chip properties from Micron vendor-specific ONFI table
3091 static void nand_onfi_detect_micron(struct nand_chip *chip,
3092 struct nand_onfi_params *p)
3094 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3096 if (le16_to_cpu(p->vendor_revision) < 1)
3099 chip->read_retries = micron->read_retry_options;
3100 chip->setup_read_retry = nand_setup_read_retry_micron;
3104 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3106 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3109 struct nand_onfi_params *p = &chip->onfi_params;
3113 /* Try ONFI for unknown chip or LP */
3114 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3115 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3116 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3119 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3120 for (i = 0; i < 3; i++) {
3121 for (j = 0; j < sizeof(*p); j++)
3122 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3123 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3124 le16_to_cpu(p->crc)) {
3130 pr_err("Could not find valid ONFI parameter page; aborting\n");
3135 val = le16_to_cpu(p->revision);
3137 chip->onfi_version = 23;
3138 else if (val & (1 << 4))
3139 chip->onfi_version = 22;
3140 else if (val & (1 << 3))
3141 chip->onfi_version = 21;
3142 else if (val & (1 << 2))
3143 chip->onfi_version = 20;
3144 else if (val & (1 << 1))
3145 chip->onfi_version = 10;
3147 if (!chip->onfi_version) {
3148 pr_info("unsupported ONFI version: %d\n", val);
3152 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3153 sanitize_string(p->model, sizeof(p->model));
3155 mtd->name = p->model;
3157 mtd->writesize = le32_to_cpu(p->byte_per_page);
3160 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3161 * (don't ask me who thought of this...). MTD assumes that these
3162 * dimensions will be power-of-2, so just truncate the remaining area.
3164 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3165 mtd->erasesize *= mtd->writesize;
3167 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3169 /* See erasesize comment */
3170 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3171 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3172 chip->bits_per_cell = p->bits_per_cell;
3174 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3175 *busw = NAND_BUSWIDTH_16;
3179 if (p->ecc_bits != 0xff) {
3180 chip->ecc_strength_ds = p->ecc_bits;
3181 chip->ecc_step_ds = 512;
3182 } else if (chip->onfi_version >= 21 &&
3183 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3186 * The nand_flash_detect_ext_param_page() uses the
3187 * Change Read Column command which maybe not supported
3188 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3189 * now. We do not replace user supplied command function.
3191 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3192 chip->cmdfunc = nand_command_lp;
3194 /* The Extended Parameter Page is supported since ONFI 2.1. */
3195 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3196 pr_warn("Failed to detect ONFI extended param page\n");
3198 pr_warn("Could not retrieve ONFI ECC requirements\n");
3201 if (p->jedec_id == NAND_MFR_MICRON)
3202 nand_onfi_detect_micron(chip, p);
3207 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3215 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3217 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3220 struct nand_jedec_params *p = &chip->jedec_params;
3221 struct jedec_ecc_info *ecc;
3225 /* Try JEDEC for unknown chip or LP */
3226 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3227 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3228 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3229 chip->read_byte(mtd) != 'C')
3232 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3233 for (i = 0; i < 3; i++) {
3234 for (j = 0; j < sizeof(*p); j++)
3235 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3237 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3238 le16_to_cpu(p->crc))
3243 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3248 val = le16_to_cpu(p->revision);
3250 chip->jedec_version = 10;
3251 else if (val & (1 << 1))
3252 chip->jedec_version = 1; /* vendor specific version */
3254 if (!chip->jedec_version) {
3255 pr_info("unsupported JEDEC version: %d\n", val);
3259 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3260 sanitize_string(p->model, sizeof(p->model));
3262 mtd->name = p->model;
3264 mtd->writesize = le32_to_cpu(p->byte_per_page);
3266 /* Please reference to the comment for nand_flash_detect_onfi. */
3267 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3268 mtd->erasesize *= mtd->writesize;
3270 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3272 /* Please reference to the comment for nand_flash_detect_onfi. */
3273 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3274 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3275 chip->bits_per_cell = p->bits_per_cell;
3277 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3278 *busw = NAND_BUSWIDTH_16;
3283 ecc = &p->ecc_info[0];
3285 if (ecc->codeword_size >= 9) {
3286 chip->ecc_strength_ds = ecc->ecc_bits;
3287 chip->ecc_step_ds = 1 << ecc->codeword_size;
3289 pr_warn("Invalid codeword size\n");
3296 * nand_id_has_period - Check if an ID string has a given wraparound period
3297 * @id_data: the ID string
3298 * @arrlen: the length of the @id_data array
3299 * @period: the period of repitition
3301 * Check if an ID string is repeated within a given sequence of bytes at
3302 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3303 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3304 * if the repetition has a period of @period; otherwise, returns zero.
3306 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3309 for (i = 0; i < period; i++)
3310 for (j = i + period; j < arrlen; j += period)
3311 if (id_data[i] != id_data[j])
3317 * nand_id_len - Get the length of an ID string returned by CMD_READID
3318 * @id_data: the ID string
3319 * @arrlen: the length of the @id_data array
3321 * Returns the length of the ID string, according to known wraparound/trailing
3322 * zero patterns. If no pattern exists, returns the length of the array.
3324 static int nand_id_len(u8 *id_data, int arrlen)
3326 int last_nonzero, period;
3328 /* Find last non-zero byte */
3329 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3330 if (id_data[last_nonzero])
3334 if (last_nonzero < 0)
3337 /* Calculate wraparound period */
3338 for (period = 1; period < arrlen; period++)
3339 if (nand_id_has_period(id_data, arrlen, period))
3342 /* There's a repeated pattern */
3343 if (period < arrlen)
3346 /* There are trailing zeros */
3347 if (last_nonzero < arrlen - 1)
3348 return last_nonzero + 1;
3350 /* No pattern detected */
3354 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3355 static int nand_get_bits_per_cell(u8 cellinfo)
3359 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3360 bits >>= NAND_CI_CELLTYPE_SHIFT;
3365 * Many new NAND share similar device ID codes, which represent the size of the
3366 * chip. The rest of the parameters must be decoded according to generic or
3367 * manufacturer-specific "extended ID" decoding patterns.
3369 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3370 u8 id_data[8], int *busw)
3373 /* The 3rd id byte holds MLC / multichip data */
3374 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3375 /* The 4th id byte is the important one */
3378 id_len = nand_id_len(id_data, 8);
3381 * Field definitions are in the following datasheets:
3382 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3383 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3384 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3386 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3387 * ID to decide what to do.
3389 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3390 !nand_is_slc(chip) && id_data[5] != 0x00) {
3392 mtd->writesize = 2048 << (extid & 0x03);
3395 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3415 default: /* Other cases are "reserved" (unknown) */
3416 mtd->oobsize = 1024;
3420 /* Calc blocksize */
3421 mtd->erasesize = (128 * 1024) <<
3422 (((extid >> 1) & 0x04) | (extid & 0x03));
3424 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3425 !nand_is_slc(chip)) {
3429 mtd->writesize = 2048 << (extid & 0x03);
3432 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3456 /* Calc blocksize */
3457 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3459 mtd->erasesize = (128 * 1024) << tmp;
3460 else if (tmp == 0x03)
3461 mtd->erasesize = 768 * 1024;
3463 mtd->erasesize = (64 * 1024) << tmp;
3467 mtd->writesize = 1024 << (extid & 0x03);
3470 mtd->oobsize = (8 << (extid & 0x01)) *
3471 (mtd->writesize >> 9);
3473 /* Calc blocksize. Blocksize is multiples of 64KiB */
3474 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3476 /* Get buswidth information */
3477 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3480 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3481 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3483 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3485 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3487 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3488 nand_is_slc(chip) &&
3489 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3490 !(id_data[4] & 0x80) /* !BENAND */) {
3491 mtd->oobsize = 32 * mtd->writesize >> 9;
3498 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3499 * decodes a matching ID table entry and assigns the MTD size parameters for
3502 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3503 struct nand_flash_dev *type, u8 id_data[8],
3506 int maf_id = id_data[0];
3508 mtd->erasesize = type->erasesize;
3509 mtd->writesize = type->pagesize;
3510 mtd->oobsize = mtd->writesize / 32;
3511 *busw = type->options & NAND_BUSWIDTH_16;
3513 /* All legacy ID NAND are small-page, SLC */
3514 chip->bits_per_cell = 1;
3517 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3518 * some Spansion chips have erasesize that conflicts with size
3519 * listed in nand_ids table.
3520 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3522 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3523 && id_data[6] == 0x00 && id_data[7] == 0x00
3524 && mtd->writesize == 512) {
3525 mtd->erasesize = 128 * 1024;
3526 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3531 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3532 * heuristic patterns using various detected parameters (e.g., manufacturer,
3533 * page size, cell-type information).
3535 static void nand_decode_bbm_options(struct mtd_info *mtd,
3536 struct nand_chip *chip, u8 id_data[8])
3538 int maf_id = id_data[0];
3540 /* Set the bad block position */
3541 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3542 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3544 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3547 * Bad block marker is stored in the last page of each block on Samsung
3548 * and Hynix MLC devices; stored in first two pages of each block on
3549 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3550 * AMD/Spansion, and Macronix. All others scan only the first page.
3552 if (!nand_is_slc(chip) &&
3553 (maf_id == NAND_MFR_SAMSUNG ||
3554 maf_id == NAND_MFR_HYNIX))
3555 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3556 else if ((nand_is_slc(chip) &&
3557 (maf_id == NAND_MFR_SAMSUNG ||
3558 maf_id == NAND_MFR_HYNIX ||
3559 maf_id == NAND_MFR_TOSHIBA ||
3560 maf_id == NAND_MFR_AMD ||
3561 maf_id == NAND_MFR_MACRONIX)) ||
3562 (mtd->writesize == 2048 &&
3563 maf_id == NAND_MFR_MICRON))
3564 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3567 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3569 return type->id_len;
3572 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3573 struct nand_flash_dev *type, u8 *id_data, int *busw)
3575 if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3576 mtd->writesize = type->pagesize;
3577 mtd->erasesize = type->erasesize;
3578 mtd->oobsize = type->oobsize;
3580 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3581 chip->chipsize = (uint64_t)type->chipsize << 20;
3582 chip->options |= type->options;
3583 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3584 chip->ecc_step_ds = NAND_ECC_STEP(type);
3585 chip->onfi_timing_mode_default =
3586 type->onfi_timing_mode_default;
3588 *busw = type->options & NAND_BUSWIDTH_16;
3591 mtd->name = type->name;
3599 * Get the flash and manufacturer id and lookup if the type is supported.
3601 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3602 struct nand_chip *chip,
3603 int *maf_id, int *dev_id,
3604 struct nand_flash_dev *type)
3610 /* Select the device */
3611 chip->select_chip(mtd, 0);
3614 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3617 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3619 /* Send the command for reading device ID */
3620 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3622 /* Read manufacturer and device IDs */
3623 *maf_id = chip->read_byte(mtd);
3624 *dev_id = chip->read_byte(mtd);
3627 * Try again to make sure, as some systems the bus-hold or other
3628 * interface concerns can cause random data which looks like a
3629 * possibly credible NAND flash to appear. If the two results do
3630 * not match, ignore the device completely.
3633 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3635 /* Read entire ID string */
3636 for (i = 0; i < 8; i++)
3637 id_data[i] = chip->read_byte(mtd);
3639 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3640 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3641 *maf_id, *dev_id, id_data[0], id_data[1]);
3642 return ERR_PTR(-ENODEV);
3646 type = nand_flash_ids;
3648 for (; type->name != NULL; type++) {
3649 if (is_full_id_nand(type)) {
3650 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3652 } else if (*dev_id == type->dev_id) {
3657 chip->onfi_version = 0;
3658 if (!type->name || !type->pagesize) {
3659 /* Check if the chip is ONFI compliant */
3660 if (nand_flash_detect_onfi(mtd, chip, &busw))
3663 /* Check if the chip is JEDEC compliant */
3664 if (nand_flash_detect_jedec(mtd, chip, &busw))
3669 return ERR_PTR(-ENODEV);
3672 mtd->name = type->name;
3674 chip->chipsize = (uint64_t)type->chipsize << 20;
3676 if (!type->pagesize) {
3677 /* Decode parameters from extended ID */
3678 nand_decode_ext_id(mtd, chip, id_data, &busw);
3680 nand_decode_id(mtd, chip, type, id_data, &busw);
3682 /* Get chip options */
3683 chip->options |= type->options;
3686 * Check if chip is not a Samsung device. Do not clear the
3687 * options for chips which do not have an extended id.
3689 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3690 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3693 /* Try to identify manufacturer */
3694 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3695 if (nand_manuf_ids[maf_idx].id == *maf_id)
3699 if (chip->options & NAND_BUSWIDTH_AUTO) {
3700 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3701 chip->options |= busw;
3702 nand_set_defaults(chip, busw);
3703 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3705 * Check, if buswidth is correct. Hardware drivers should set
3708 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3710 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3711 pr_warn("bus width %d instead %d bit\n",
3712 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3714 return ERR_PTR(-EINVAL);
3717 nand_decode_bbm_options(mtd, chip, id_data);
3719 /* Calculate the address shift from the page size */
3720 chip->page_shift = ffs(mtd->writesize) - 1;
3721 /* Convert chipsize to number of pages per chip -1 */
3722 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3724 chip->bbt_erase_shift = chip->phys_erase_shift =
3725 ffs(mtd->erasesize) - 1;
3726 if (chip->chipsize & 0xffffffff)
3727 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3729 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3730 chip->chip_shift += 32 - 1;
3733 chip->badblockbits = 8;
3734 chip->erase = single_erase;
3736 /* Do not replace user supplied command function! */
3737 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3738 chip->cmdfunc = nand_command_lp;
3740 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3743 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3744 if (chip->onfi_version)
3745 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3746 chip->onfi_params.model);
3747 else if (chip->jedec_version)
3748 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3749 chip->jedec_params.model);
3751 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3754 if (chip->jedec_version)
3755 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3756 chip->jedec_params.model);
3758 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3761 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3765 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3766 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3767 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3771 #if CONFIG_IS_ENABLED(OF_CONTROL)
3772 DECLARE_GLOBAL_DATA_PTR;
3774 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3776 int ret, ecc_mode = -1, ecc_strength, ecc_step;
3777 const void *blob = gd->fdt_blob;
3780 ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3782 chip->options |= NAND_BUSWIDTH_16;
3784 if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3785 chip->bbt_options |= NAND_BBT_USE_FLASH;
3787 str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3789 if (!strcmp(str, "none"))
3790 ecc_mode = NAND_ECC_NONE;
3791 else if (!strcmp(str, "soft"))
3792 ecc_mode = NAND_ECC_SOFT;
3793 else if (!strcmp(str, "hw"))
3794 ecc_mode = NAND_ECC_HW;
3795 else if (!strcmp(str, "hw_syndrome"))
3796 ecc_mode = NAND_ECC_HW_SYNDROME;
3797 else if (!strcmp(str, "hw_oob_first"))
3798 ecc_mode = NAND_ECC_HW_OOB_FIRST;
3799 else if (!strcmp(str, "soft_bch"))
3800 ecc_mode = NAND_ECC_SOFT_BCH;
3804 ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3805 ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3807 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3808 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3809 pr_err("must set both strength and step size in DT\n");
3814 chip->ecc.mode = ecc_mode;
3816 if (ecc_strength >= 0)
3817 chip->ecc.strength = ecc_strength;
3820 chip->ecc.size = ecc_step;
3825 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3829 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
3832 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3833 * @mtd: MTD device structure
3834 * @maxchips: number of chips to scan for
3835 * @table: alternative NAND ID table
3837 * This is the first phase of the normal nand_scan() function. It reads the
3838 * flash ID and sets up MTD fields accordingly.
3841 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3842 struct nand_flash_dev *table)
3844 int i, nand_maf_id, nand_dev_id;
3845 struct nand_chip *chip = mtd_to_nand(mtd);
3846 struct nand_flash_dev *type;
3849 if (chip->flash_node) {
3850 ret = nand_dt_init(mtd, chip, chip->flash_node);
3855 /* Set the default functions */
3856 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3858 /* Read the flash type */
3859 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3860 &nand_dev_id, table);
3863 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3864 pr_warn("No NAND device found\n");
3865 chip->select_chip(mtd, -1);
3866 return PTR_ERR(type);
3869 chip->select_chip(mtd, -1);
3871 /* Check for a chip array */
3872 for (i = 1; i < maxchips; i++) {
3873 chip->select_chip(mtd, i);
3874 /* See comment in nand_get_flash_type for reset */
3875 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3876 /* Send the command for reading device ID */
3877 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3878 /* Read manufacturer and device IDs */
3879 if (nand_maf_id != chip->read_byte(mtd) ||
3880 nand_dev_id != chip->read_byte(mtd)) {
3881 chip->select_chip(mtd, -1);
3884 chip->select_chip(mtd, -1);
3889 pr_info("%d chips detected\n", i);
3892 /* Store the number of chips and calc total size for mtd */
3894 mtd->size = i * chip->chipsize;
3898 EXPORT_SYMBOL(nand_scan_ident);
3901 * Check if the chip configuration meet the datasheet requirements.
3903 * If our configuration corrects A bits per B bytes and the minimum
3904 * required correction level is X bits per Y bytes, then we must ensure
3905 * both of the following are true:
3907 * (1) A / B >= X / Y
3910 * Requirement (1) ensures we can correct for the required bitflip density.
3911 * Requirement (2) ensures we can correct even when all bitflips are clumped
3912 * in the same sector.
3914 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3916 struct nand_chip *chip = mtd_to_nand(mtd);
3917 struct nand_ecc_ctrl *ecc = &chip->ecc;
3920 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3921 /* Not enough information */
3925 * We get the number of corrected bits per page to compare
3926 * the correction density.
3928 corr = (mtd->writesize * ecc->strength) / ecc->size;
3929 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3931 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3935 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3936 * @mtd: MTD device structure
3938 * This is the second phase of the normal nand_scan() function. It fills out
3939 * all the uninitialized function pointers with the defaults and scans for a
3940 * bad block table if appropriate.
3942 int nand_scan_tail(struct mtd_info *mtd)
3945 struct nand_chip *chip = mtd_to_nand(mtd);
3946 struct nand_ecc_ctrl *ecc = &chip->ecc;
3947 struct nand_buffers *nbuf;
3949 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3950 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3951 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3953 if (!(chip->options & NAND_OWN_BUFFERS)) {
3954 nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
3955 chip->buffers = nbuf;
3961 /* Set the internal oob buffer location, just after the page data */
3962 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3965 * If no default placement scheme is given, select an appropriate one.
3967 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3968 switch (mtd->oobsize) {
3970 ecc->layout = &nand_oob_8;
3973 ecc->layout = &nand_oob_16;
3976 ecc->layout = &nand_oob_64;
3979 ecc->layout = &nand_oob_128;
3982 pr_warn("No oob scheme defined for oobsize %d\n",
3988 if (!chip->write_page)
3989 chip->write_page = nand_write_page;
3992 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3993 * selected and we have 256 byte pagesize fallback to software ECC
3996 switch (ecc->mode) {
3997 case NAND_ECC_HW_OOB_FIRST:
3998 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3999 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4000 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4003 if (!ecc->read_page)
4004 ecc->read_page = nand_read_page_hwecc_oob_first;
4007 /* Use standard hwecc read page function? */
4008 if (!ecc->read_page)
4009 ecc->read_page = nand_read_page_hwecc;
4010 if (!ecc->write_page)
4011 ecc->write_page = nand_write_page_hwecc;
4012 if (!ecc->read_page_raw)
4013 ecc->read_page_raw = nand_read_page_raw;
4014 if (!ecc->write_page_raw)
4015 ecc->write_page_raw = nand_write_page_raw;
4017 ecc->read_oob = nand_read_oob_std;
4018 if (!ecc->write_oob)
4019 ecc->write_oob = nand_write_oob_std;
4020 if (!ecc->read_subpage)
4021 ecc->read_subpage = nand_read_subpage;
4022 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4023 ecc->write_subpage = nand_write_subpage_hwecc;
4025 case NAND_ECC_HW_SYNDROME:
4026 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4028 ecc->read_page == nand_read_page_hwecc ||
4030 ecc->write_page == nand_write_page_hwecc)) {
4031 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4034 /* Use standard syndrome read/write page function? */
4035 if (!ecc->read_page)
4036 ecc->read_page = nand_read_page_syndrome;
4037 if (!ecc->write_page)
4038 ecc->write_page = nand_write_page_syndrome;
4039 if (!ecc->read_page_raw)
4040 ecc->read_page_raw = nand_read_page_raw_syndrome;
4041 if (!ecc->write_page_raw)
4042 ecc->write_page_raw = nand_write_page_raw_syndrome;
4044 ecc->read_oob = nand_read_oob_syndrome;
4045 if (!ecc->write_oob)
4046 ecc->write_oob = nand_write_oob_syndrome;
4048 if (mtd->writesize >= ecc->size) {
4049 if (!ecc->strength) {
4050 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4055 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4056 ecc->size, mtd->writesize);
4057 ecc->mode = NAND_ECC_SOFT;
4060 ecc->calculate = nand_calculate_ecc;
4061 ecc->correct = nand_correct_data;
4062 ecc->read_page = nand_read_page_swecc;
4063 ecc->read_subpage = nand_read_subpage;
4064 ecc->write_page = nand_write_page_swecc;
4065 ecc->read_page_raw = nand_read_page_raw;
4066 ecc->write_page_raw = nand_write_page_raw;
4067 ecc->read_oob = nand_read_oob_std;
4068 ecc->write_oob = nand_write_oob_std;
4075 case NAND_ECC_SOFT_BCH:
4076 if (!mtd_nand_has_bch()) {
4077 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4080 ecc->calculate = nand_bch_calculate_ecc;
4081 ecc->correct = nand_bch_correct_data;
4082 ecc->read_page = nand_read_page_swecc;
4083 ecc->read_subpage = nand_read_subpage;
4084 ecc->write_page = nand_write_page_swecc;
4085 ecc->read_page_raw = nand_read_page_raw;
4086 ecc->write_page_raw = nand_write_page_raw;
4087 ecc->read_oob = nand_read_oob_std;
4088 ecc->write_oob = nand_write_oob_std;
4090 * Board driver should supply ecc.size and ecc.strength values
4091 * to select how many bits are correctable. Otherwise, default
4092 * to 4 bits for large page devices.
4094 if (!ecc->size && (mtd->oobsize >= 64)) {
4099 /* See nand_bch_init() for details. */
4101 ecc->priv = nand_bch_init(mtd);
4103 pr_warn("BCH ECC initialization failed!\n");
4109 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4110 ecc->read_page = nand_read_page_raw;
4111 ecc->write_page = nand_write_page_raw;
4112 ecc->read_oob = nand_read_oob_std;
4113 ecc->read_page_raw = nand_read_page_raw;
4114 ecc->write_page_raw = nand_write_page_raw;
4115 ecc->write_oob = nand_write_oob_std;
4116 ecc->size = mtd->writesize;
4122 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4126 /* For many systems, the standard OOB write also works for raw */
4127 if (!ecc->read_oob_raw)
4128 ecc->read_oob_raw = ecc->read_oob;
4129 if (!ecc->write_oob_raw)
4130 ecc->write_oob_raw = ecc->write_oob;
4133 * The number of bytes available for a client to place data into
4134 * the out of band area.
4138 for (i = 0; ecc->layout->oobfree[i].length; i++)
4139 mtd->oobavail += ecc->layout->oobfree[i].length;
4142 /* ECC sanity check: warn if it's too weak */
4143 if (!nand_ecc_strength_good(mtd))
4144 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4148 * Set the number of read / write steps for one page depending on ECC
4151 ecc->steps = mtd->writesize / ecc->size;
4152 if (ecc->steps * ecc->size != mtd->writesize) {
4153 pr_warn("Invalid ECC parameters\n");
4156 ecc->total = ecc->steps * ecc->bytes;
4158 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4159 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4160 switch (ecc->steps) {
4162 mtd->subpage_sft = 1;
4167 mtd->subpage_sft = 2;
4171 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4173 /* Initialize state */
4174 chip->state = FL_READY;
4176 /* Invalidate the pagebuffer reference */
4179 /* Large page NAND with SOFT_ECC should support subpage reads */
4180 switch (ecc->mode) {
4182 case NAND_ECC_SOFT_BCH:
4183 if (chip->page_shift > 9)
4184 chip->options |= NAND_SUBPAGE_READ;
4191 /* Fill in remaining MTD driver data */
4192 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4193 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4195 mtd->_erase = nand_erase;
4196 mtd->_read = nand_read;
4197 mtd->_write = nand_write;
4198 mtd->_panic_write = panic_nand_write;
4199 mtd->_read_oob = nand_read_oob;
4200 mtd->_write_oob = nand_write_oob;
4201 mtd->_sync = nand_sync;
4203 mtd->_unlock = NULL;
4204 mtd->_block_isreserved = nand_block_isreserved;
4205 mtd->_block_isbad = nand_block_isbad;
4206 mtd->_block_markbad = nand_block_markbad;
4207 mtd->writebufsize = mtd->writesize;
4209 /* propagate ecc info to mtd_info */
4210 mtd->ecclayout = ecc->layout;
4211 mtd->ecc_strength = ecc->strength;
4212 mtd->ecc_step_size = ecc->size;
4214 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4215 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4218 if (!mtd->bitflip_threshold)
4219 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4223 EXPORT_SYMBOL(nand_scan_tail);
4226 * nand_scan - [NAND Interface] Scan for the NAND device
4227 * @mtd: MTD device structure
4228 * @maxchips: number of chips to scan for
4230 * This fills out all the uninitialized function pointers with the defaults.
4231 * The flash ID is read and the mtd/chip structures are filled with the
4232 * appropriate values.
4234 int nand_scan(struct mtd_info *mtd, int maxchips)
4238 ret = nand_scan_ident(mtd, maxchips, NULL);
4240 ret = nand_scan_tail(mtd);
4243 EXPORT_SYMBOL(nand_scan);
4245 MODULE_LICENSE("GPL");
4246 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4247 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4248 MODULE_DESCRIPTION("Generic NAND flash driver code");