mtd: kill MTD_NAND_VERIFY_WRITE
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78         unsigned int max_bitflips;  /* Saved during READ0 cmd             */
79 };
80
81 /* These map to the positions used by the FCM hardware ECC generator */
82
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85         .eccbytes = 3,
86         .eccpos = {6, 7, 8},
87         .oobfree = { {0, 5}, {9, 7} },
88 };
89
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92         .eccbytes = 3,
93         .eccpos = {8, 9, 10},
94         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
95 };
96
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99         .eccbytes = 12,
100         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
102 };
103
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106         .eccbytes = 12,
107         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
109 };
110
111 /*
112  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113  * 1, so we have to adjust bad block pattern. This pattern should be used for
114  * x8 chips only. So far hardware does not support x16 chips anyway.
115  */
116 static u8 scan_ff_pattern[] = { 0xff, };
117
118 static struct nand_bbt_descr largepage_memorybased = {
119         .options = 0,
120         .offs = 0,
121         .len = 1,
122         .pattern = scan_ff_pattern,
123 };
124
125 /*
126  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127  * interfere with ECC positions, that's why we implement our own descriptors.
128  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129  */
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132
133 static struct nand_bbt_descr bbt_main_descr = {
134         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135                    NAND_BBT_2BIT | NAND_BBT_VERSION,
136         .offs = 11,
137         .len = 4,
138         .veroffs = 15,
139         .maxblocks = 4,
140         .pattern = bbt_pattern,
141 };
142
143 static struct nand_bbt_descr bbt_mirror_descr = {
144         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145                    NAND_BBT_2BIT | NAND_BBT_VERSION,
146         .offs = 11,
147         .len = 4,
148         .veroffs = 15,
149         .maxblocks = 4,
150         .pattern = mirror_pattern,
151 };
152
153 /*=================================*/
154
155 /*
156  * Set up the FCM hardware block and page address fields, and the fcm
157  * structure addr field to point to the correct FCM buffer in memory
158  */
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 {
161         struct nand_chip *chip = mtd->priv;
162         struct fsl_elbc_mtd *priv = chip->priv;
163         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166         int buf_num;
167
168         elbc_fcm_ctrl->page = page_addr;
169
170         if (priv->page_size) {
171                 /*
172                  * large page size chip : FPAR[PI] save the lowest 6 bits,
173                  *                        FBAR[BLK] save the other bits.
174                  */
175                 out_be32(&lbc->fbar, page_addr >> 6);
176                 out_be32(&lbc->fpar,
177                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
178                          (oob ? FPAR_LP_MS : 0) | column);
179                 buf_num = (page_addr & 1) << 2;
180         } else {
181                 /*
182                  * small page size chip : FPAR[PI] save the lowest 5 bits,
183                  *                        FBAR[BLK] save the other bits.
184                  */
185                 out_be32(&lbc->fbar, page_addr >> 5);
186                 out_be32(&lbc->fpar,
187                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
188                          (oob ? FPAR_SP_MS : 0) | column);
189                 buf_num = page_addr & 7;
190         }
191
192         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
193         elbc_fcm_ctrl->index = column;
194
195         /* for OOB data point to the second half of the buffer */
196         if (oob)
197                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
198
199         dev_vdbg(priv->dev, "set_addr: bank=%d, "
200                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
201                             "index %x, pes %d ps %d\n",
202                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
203                  elbc_fcm_ctrl->index,
204                  chip->phys_erase_shift, chip->page_shift);
205 }
206
207 /*
208  * execute FCM command and wait for it to complete
209  */
210 static int fsl_elbc_run_command(struct mtd_info *mtd)
211 {
212         struct nand_chip *chip = mtd->priv;
213         struct fsl_elbc_mtd *priv = chip->priv;
214         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
215         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
216         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
217
218         /* Setup the FMR[OP] to execute without write protection */
219         out_be32(&lbc->fmr, priv->fmr | 3);
220         if (elbc_fcm_ctrl->use_mdr)
221                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
222
223         dev_vdbg(priv->dev,
224                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
225                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
226         dev_vdbg(priv->dev,
227                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
228                  "fbcr=%08x bank=%d\n",
229                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
230                  in_be32(&lbc->fbcr), priv->bank);
231
232         ctrl->irq_status = 0;
233         /* execute special operation */
234         out_be32(&lbc->lsor, priv->bank);
235
236         /* wait for FCM complete flag or timeout */
237         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
238                            FCM_TIMEOUT_MSECS * HZ/1000);
239         elbc_fcm_ctrl->status = ctrl->irq_status;
240         /* store mdr value in case it was needed */
241         if (elbc_fcm_ctrl->use_mdr)
242                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
243
244         elbc_fcm_ctrl->use_mdr = 0;
245
246         if (elbc_fcm_ctrl->status != LTESR_CC) {
247                 dev_info(priv->dev,
248                          "command failed: fir %x fcr %x status %x mdr %x\n",
249                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
250                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
251                 return -EIO;
252         }
253
254         if (chip->ecc.mode != NAND_ECC_HW)
255                 return 0;
256
257         elbc_fcm_ctrl->max_bitflips = 0;
258
259         if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
260                 uint32_t lteccr = in_be32(&lbc->lteccr);
261                 /*
262                  * if command was a full page read and the ELBC
263                  * has the LTECCR register, then bits 12-15 (ppc order) of
264                  * LTECCR indicates which 512 byte sub-pages had fixed errors.
265                  * bits 28-31 are uncorrectable errors, marked elsewhere.
266                  * for small page nand only 1 bit is used.
267                  * if the ELBC doesn't have the lteccr register it reads 0
268                  * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
269                  * count the number of sub-pages with bitflips and update
270                  * ecc_stats.corrected accordingly.
271                  */
272                 if (lteccr & 0x000F000F)
273                         out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
274                 if (lteccr & 0x000F0000) {
275                         mtd->ecc_stats.corrected++;
276                         elbc_fcm_ctrl->max_bitflips = 1;
277                 }
278         }
279
280         return 0;
281 }
282
283 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
284 {
285         struct fsl_elbc_mtd *priv = chip->priv;
286         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
288
289         if (priv->page_size) {
290                 out_be32(&lbc->fir,
291                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
292                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
293                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
294                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
295                          (FIR_OP_RBW << FIR_OP4_SHIFT));
296
297                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
298                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
299         } else {
300                 out_be32(&lbc->fir,
301                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
302                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
303                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
304                          (FIR_OP_RBW << FIR_OP3_SHIFT));
305
306                 if (oob)
307                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
308                 else
309                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
310         }
311 }
312
313 /* cmdfunc send commands to the FCM */
314 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
315                              int column, int page_addr)
316 {
317         struct nand_chip *chip = mtd->priv;
318         struct fsl_elbc_mtd *priv = chip->priv;
319         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
320         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
321         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
322
323         elbc_fcm_ctrl->use_mdr = 0;
324
325         /* clear the read buffer */
326         elbc_fcm_ctrl->read_bytes = 0;
327         if (command != NAND_CMD_PAGEPROG)
328                 elbc_fcm_ctrl->index = 0;
329
330         switch (command) {
331         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
332         case NAND_CMD_READ1:
333                 column += 256;
334
335         /* fall-through */
336         case NAND_CMD_READ0:
337                 dev_dbg(priv->dev,
338                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
339                         " 0x%x, column: 0x%x.\n", page_addr, column);
340
341
342                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
343                 set_addr(mtd, 0, page_addr, 0);
344
345                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
346                 elbc_fcm_ctrl->index += column;
347
348                 fsl_elbc_do_read(chip, 0);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* READOOB reads only the OOB because no ECC is performed. */
353         case NAND_CMD_READOOB:
354                 dev_vdbg(priv->dev,
355                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
356                          " 0x%x, column: 0x%x.\n", page_addr, column);
357
358                 out_be32(&lbc->fbcr, mtd->oobsize - column);
359                 set_addr(mtd, column, page_addr, 1);
360
361                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
362
363                 fsl_elbc_do_read(chip, 1);
364                 fsl_elbc_run_command(mtd);
365                 return;
366
367         case NAND_CMD_READID:
368         case NAND_CMD_PARAM:
369                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
370
371                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
372                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
373                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
374                 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
375                 /*
376                  * although currently it's 8 bytes for READID, we always read
377                  * the maximum 256 bytes(for PARAM)
378                  */
379                 out_be32(&lbc->fbcr, 256);
380                 elbc_fcm_ctrl->read_bytes = 256;
381                 elbc_fcm_ctrl->use_mdr = 1;
382                 elbc_fcm_ctrl->mdr = column;
383                 set_addr(mtd, 0, 0, 0);
384                 fsl_elbc_run_command(mtd);
385                 return;
386
387         /* ERASE1 stores the block and page address */
388         case NAND_CMD_ERASE1:
389                 dev_vdbg(priv->dev,
390                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
391                          "page_addr: 0x%x.\n", page_addr);
392                 set_addr(mtd, 0, page_addr, 0);
393                 return;
394
395         /* ERASE2 uses the block and page address from ERASE1 */
396         case NAND_CMD_ERASE2:
397                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
398
399                 out_be32(&lbc->fir,
400                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
401                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
402                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
403                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
404                          (FIR_OP_RS  << FIR_OP4_SHIFT));
405
406                 out_be32(&lbc->fcr,
407                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
408                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
409                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
410
411                 out_be32(&lbc->fbcr, 0);
412                 elbc_fcm_ctrl->read_bytes = 0;
413                 elbc_fcm_ctrl->use_mdr = 1;
414
415                 fsl_elbc_run_command(mtd);
416                 return;
417
418         /* SEQIN sets up the addr buffer and all registers except the length */
419         case NAND_CMD_SEQIN: {
420                 __be32 fcr;
421                 dev_vdbg(priv->dev,
422                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
423                          "page_addr: 0x%x, column: 0x%x.\n",
424                          page_addr, column);
425
426                 elbc_fcm_ctrl->column = column;
427                 elbc_fcm_ctrl->use_mdr = 1;
428
429                 if (column >= mtd->writesize) {
430                         /* OOB area */
431                         column -= mtd->writesize;
432                         elbc_fcm_ctrl->oob = 1;
433                 } else {
434                         WARN_ON(column != 0);
435                         elbc_fcm_ctrl->oob = 0;
436                 }
437
438                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
439                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
440                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
441
442                 if (priv->page_size) {
443                         out_be32(&lbc->fir,
444                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
445                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
446                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
447                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
448                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
449                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
450                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
451                 } else {
452                         out_be32(&lbc->fir,
453                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
454                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
455                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
456                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
457                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
458                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
459                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
460                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
461
462                         if (elbc_fcm_ctrl->oob)
463                                 /* OOB area --> READOOB */
464                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
465                         else
466                                 /* First 256 bytes --> READ0 */
467                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
468                 }
469
470                 out_be32(&lbc->fcr, fcr);
471                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
472                 return;
473         }
474
475         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
476         case NAND_CMD_PAGEPROG: {
477                 dev_vdbg(priv->dev,
478                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
479                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
480
481                 /* if the write did not start at 0 or is not a full page
482                  * then set the exact length, otherwise use a full page
483                  * write so the HW generates the ECC.
484                  */
485                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
486                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
487                         out_be32(&lbc->fbcr,
488                                 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
489                 else
490                         out_be32(&lbc->fbcr, 0);
491
492                 fsl_elbc_run_command(mtd);
493                 return;
494         }
495
496         /* CMD_STATUS must read the status byte while CEB is active */
497         /* Note - it does not wait for the ready line */
498         case NAND_CMD_STATUS:
499                 out_be32(&lbc->fir,
500                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
501                          (FIR_OP_RBW << FIR_OP1_SHIFT));
502                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
503                 out_be32(&lbc->fbcr, 1);
504                 set_addr(mtd, 0, 0, 0);
505                 elbc_fcm_ctrl->read_bytes = 1;
506
507                 fsl_elbc_run_command(mtd);
508
509                 /* The chip always seems to report that it is
510                  * write-protected, even when it is not.
511                  */
512                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
513                 return;
514
515         /* RESET without waiting for the ready line */
516         case NAND_CMD_RESET:
517                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
518                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
519                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
520                 fsl_elbc_run_command(mtd);
521                 return;
522
523         default:
524                 dev_err(priv->dev,
525                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
526                         command);
527         }
528 }
529
530 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
531 {
532         /* The hardware does not seem to support multiple
533          * chips per bank.
534          */
535 }
536
537 /*
538  * Write buf to the FCM Controller Data Buffer
539  */
540 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
541 {
542         struct nand_chip *chip = mtd->priv;
543         struct fsl_elbc_mtd *priv = chip->priv;
544         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
545         unsigned int bufsize = mtd->writesize + mtd->oobsize;
546
547         if (len <= 0) {
548                 dev_err(priv->dev, "write_buf of %d bytes", len);
549                 elbc_fcm_ctrl->status = 0;
550                 return;
551         }
552
553         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
554                 dev_err(priv->dev,
555                         "write_buf beyond end of buffer "
556                         "(%d requested, %u available)\n",
557                         len, bufsize - elbc_fcm_ctrl->index);
558                 len = bufsize - elbc_fcm_ctrl->index;
559         }
560
561         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
562         /*
563          * This is workaround for the weird elbc hangs during nand write,
564          * Scott Wood says: "...perhaps difference in how long it takes a
565          * write to make it through the localbus compared to a write to IMMR
566          * is causing problems, and sync isn't helping for some reason."
567          * Reading back the last byte helps though.
568          */
569         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
570
571         elbc_fcm_ctrl->index += len;
572 }
573
574 /*
575  * read a byte from either the FCM hardware buffer if it has any data left
576  * otherwise issue a command to read a single byte.
577  */
578 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
579 {
580         struct nand_chip *chip = mtd->priv;
581         struct fsl_elbc_mtd *priv = chip->priv;
582         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583
584         /* If there are still bytes in the FCM, then use the next byte. */
585         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
586                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
587
588         dev_err(priv->dev, "read_byte beyond end of buffer\n");
589         return ERR_BYTE;
590 }
591
592 /*
593  * Read from the FCM Controller Data Buffer
594  */
595 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
596 {
597         struct nand_chip *chip = mtd->priv;
598         struct fsl_elbc_mtd *priv = chip->priv;
599         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
600         int avail;
601
602         if (len < 0)
603                 return;
604
605         avail = min((unsigned int)len,
606                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
607         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
608         elbc_fcm_ctrl->index += avail;
609
610         if (len > avail)
611                 dev_err(priv->dev,
612                         "read_buf beyond end of buffer "
613                         "(%d requested, %d available)\n",
614                         len, avail);
615 }
616
617 /* This function is called after Program and Erase Operations to
618  * check for success or failure.
619  */
620 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
621 {
622         struct fsl_elbc_mtd *priv = chip->priv;
623         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
624
625         if (elbc_fcm_ctrl->status != LTESR_CC)
626                 return NAND_STATUS_FAIL;
627
628         /* The chip always seems to report that it is
629          * write-protected, even when it is not.
630          */
631         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
632 }
633
634 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
635 {
636         struct nand_chip *chip = mtd->priv;
637         struct fsl_elbc_mtd *priv = chip->priv;
638         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
639         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
640         unsigned int al;
641
642         /* calculate FMR Address Length field */
643         al = 0;
644         if (chip->pagemask & 0xffff0000)
645                 al++;
646         if (chip->pagemask & 0xff000000)
647                 al++;
648
649         priv->fmr |= al << FMR_AL_SHIFT;
650
651         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
652                 chip->numchips);
653         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
654                 chip->chipsize);
655         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
656                 chip->pagemask);
657         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
658                 chip->chip_delay);
659         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
660                 chip->badblockpos);
661         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
662                 chip->chip_shift);
663         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
664                 chip->page_shift);
665         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
666                 chip->phys_erase_shift);
667         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
668                 chip->ecclayout);
669         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
670                 chip->ecc.mode);
671         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
672                 chip->ecc.steps);
673         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
674                 chip->ecc.bytes);
675         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
676                 chip->ecc.total);
677         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
678                 chip->ecc.layout);
679         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
680         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
681         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
682                 mtd->erasesize);
683         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
684                 mtd->writesize);
685         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
686                 mtd->oobsize);
687
688         /* adjust Option Register and ECC to match Flash page size */
689         if (mtd->writesize == 512) {
690                 priv->page_size = 0;
691                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
692         } else if (mtd->writesize == 2048) {
693                 priv->page_size = 1;
694                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
695                 /* adjust ecc setup if needed */
696                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
697                     BR_DECC_CHK_GEN) {
698                         chip->ecc.size = 512;
699                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
700                                            &fsl_elbc_oob_lp_eccm1 :
701                                            &fsl_elbc_oob_lp_eccm0;
702                         chip->badblock_pattern = &largepage_memorybased;
703                 }
704         } else {
705                 dev_err(priv->dev,
706                         "fsl_elbc_init: page size %d is not supported\n",
707                         mtd->writesize);
708                 return -1;
709         }
710
711         return 0;
712 }
713
714 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
715                               uint8_t *buf, int oob_required, int page)
716 {
717         struct fsl_elbc_mtd *priv = chip->priv;
718         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
719         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
720
721         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
722         if (oob_required)
723                 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
724
725         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
726                 mtd->ecc_stats.failed++;
727
728         return elbc_fcm_ctrl->max_bitflips;
729 }
730
731 /* ECC will be calculated automatically, and errors will be detected in
732  * waitfunc.
733  */
734 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
735                                 const uint8_t *buf, int oob_required)
736 {
737         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
738         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
739
740         return 0;
741 }
742
743 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
744 {
745         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
746         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
747         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
748         struct nand_chip *chip = &priv->chip;
749
750         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
751
752         /* Fill in fsl_elbc_mtd structure */
753         priv->mtd.priv = chip;
754         priv->mtd.owner = THIS_MODULE;
755
756         /* set timeout to maximum */
757         priv->fmr = 15 << FMR_CWTO_SHIFT;
758         if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
759                 priv->fmr |= FMR_ECCM;
760
761         /* fill in nand_chip structure */
762         /* set up function call table */
763         chip->read_byte = fsl_elbc_read_byte;
764         chip->write_buf = fsl_elbc_write_buf;
765         chip->read_buf = fsl_elbc_read_buf;
766         chip->select_chip = fsl_elbc_select_chip;
767         chip->cmdfunc = fsl_elbc_cmdfunc;
768         chip->waitfunc = fsl_elbc_wait;
769
770         chip->bbt_td = &bbt_main_descr;
771         chip->bbt_md = &bbt_mirror_descr;
772
773         /* set up nand options */
774         chip->bbt_options = NAND_BBT_USE_FLASH;
775
776         chip->controller = &elbc_fcm_ctrl->controller;
777         chip->priv = priv;
778
779         chip->ecc.read_page = fsl_elbc_read_page;
780         chip->ecc.write_page = fsl_elbc_write_page;
781
782         /* If CS Base Register selects full hardware ECC then use it */
783         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
784             BR_DECC_CHK_GEN) {
785                 chip->ecc.mode = NAND_ECC_HW;
786                 /* put in small page settings and adjust later if needed */
787                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
788                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
789                 chip->ecc.size = 512;
790                 chip->ecc.bytes = 3;
791                 chip->ecc.strength = 1;
792         } else {
793                 /* otherwise fall back to default software ECC */
794                 chip->ecc.mode = NAND_ECC_SOFT;
795         }
796
797         return 0;
798 }
799
800 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
801 {
802         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
803         nand_release(&priv->mtd);
804
805         kfree(priv->mtd.name);
806
807         if (priv->vbase)
808                 iounmap(priv->vbase);
809
810         elbc_fcm_ctrl->chips[priv->bank] = NULL;
811         kfree(priv);
812         return 0;
813 }
814
815 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
816
817 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
818 {
819         struct fsl_lbc_regs __iomem *lbc;
820         struct fsl_elbc_mtd *priv;
821         struct resource res;
822         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
823         static const char *part_probe_types[]
824                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
825         int ret;
826         int bank;
827         struct device *dev;
828         struct device_node *node = pdev->dev.of_node;
829         struct mtd_part_parser_data ppdata;
830
831         ppdata.of_node = pdev->dev.of_node;
832         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
833                 return -ENODEV;
834         lbc = fsl_lbc_ctrl_dev->regs;
835         dev = fsl_lbc_ctrl_dev->dev;
836
837         /* get, allocate and map the memory resource */
838         ret = of_address_to_resource(node, 0, &res);
839         if (ret) {
840                 dev_err(dev, "failed to get resource\n");
841                 return ret;
842         }
843
844         /* find which chip select it is connected to */
845         for (bank = 0; bank < MAX_BANKS; bank++)
846                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
847                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
848                     (in_be32(&lbc->bank[bank].br) &
849                      in_be32(&lbc->bank[bank].or) & BR_BA)
850                      == fsl_lbc_addr(res.start))
851                         break;
852
853         if (bank >= MAX_BANKS) {
854                 dev_err(dev, "address did not match any chip selects\n");
855                 return -ENODEV;
856         }
857
858         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
859         if (!priv)
860                 return -ENOMEM;
861
862         mutex_lock(&fsl_elbc_nand_mutex);
863         if (!fsl_lbc_ctrl_dev->nand) {
864                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
865                 if (!elbc_fcm_ctrl) {
866                         dev_err(dev, "failed to allocate memory\n");
867                         mutex_unlock(&fsl_elbc_nand_mutex);
868                         ret = -ENOMEM;
869                         goto err;
870                 }
871                 elbc_fcm_ctrl->counter++;
872
873                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
874                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
875                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
876         } else {
877                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
878         }
879         mutex_unlock(&fsl_elbc_nand_mutex);
880
881         elbc_fcm_ctrl->chips[bank] = priv;
882         priv->bank = bank;
883         priv->ctrl = fsl_lbc_ctrl_dev;
884         priv->dev = &pdev->dev;
885         dev_set_drvdata(priv->dev, priv);
886
887         priv->vbase = ioremap(res.start, resource_size(&res));
888         if (!priv->vbase) {
889                 dev_err(dev, "failed to map chip region\n");
890                 ret = -ENOMEM;
891                 goto err;
892         }
893
894         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
895         if (!priv->mtd.name) {
896                 ret = -ENOMEM;
897                 goto err;
898         }
899
900         ret = fsl_elbc_chip_init(priv);
901         if (ret)
902                 goto err;
903
904         ret = nand_scan_ident(&priv->mtd, 1, NULL);
905         if (ret)
906                 goto err;
907
908         ret = fsl_elbc_chip_init_tail(&priv->mtd);
909         if (ret)
910                 goto err;
911
912         ret = nand_scan_tail(&priv->mtd);
913         if (ret)
914                 goto err;
915
916         /* First look for RedBoot table or partitions on the command
917          * line, these take precedence over device tree information */
918         mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
919                                   NULL, 0);
920
921         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
922                (unsigned long long)res.start, priv->bank);
923         return 0;
924
925 err:
926         fsl_elbc_chip_remove(priv);
927         return ret;
928 }
929
930 static int fsl_elbc_nand_remove(struct platform_device *pdev)
931 {
932         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
933         struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
934
935         fsl_elbc_chip_remove(priv);
936
937         mutex_lock(&fsl_elbc_nand_mutex);
938         elbc_fcm_ctrl->counter--;
939         if (!elbc_fcm_ctrl->counter) {
940                 fsl_lbc_ctrl_dev->nand = NULL;
941                 kfree(elbc_fcm_ctrl);
942         }
943         mutex_unlock(&fsl_elbc_nand_mutex);
944
945         return 0;
946
947 }
948
949 static const struct of_device_id fsl_elbc_nand_match[] = {
950         { .compatible = "fsl,elbc-fcm-nand", },
951         {}
952 };
953
954 static struct platform_driver fsl_elbc_nand_driver = {
955         .driver = {
956                 .name = "fsl,elbc-fcm-nand",
957                 .owner = THIS_MODULE,
958                 .of_match_table = fsl_elbc_nand_match,
959         },
960         .probe = fsl_elbc_nand_probe,
961         .remove = fsl_elbc_nand_remove,
962 };
963
964 module_platform_driver(fsl_elbc_nand_driver);
965
966 MODULE_LICENSE("GPL");
967 MODULE_AUTHOR("Freescale");
968 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");