8143873d17a5c2bebc19c140445a5ad30fac8dee
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78         unsigned int max_bitflips;  /* Saved during READ0 cmd             */
79 };
80
81 /* These map to the positions used by the FCM hardware ECC generator */
82
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85         .eccbytes = 3,
86         .eccpos = {6, 7, 8},
87         .oobfree = { {0, 5}, {9, 7} },
88 };
89
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92         .eccbytes = 3,
93         .eccpos = {8, 9, 10},
94         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
95 };
96
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99         .eccbytes = 12,
100         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
102 };
103
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106         .eccbytes = 12,
107         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
109 };
110
111 /*
112  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113  * 1, so we have to adjust bad block pattern. This pattern should be used for
114  * x8 chips only. So far hardware does not support x16 chips anyway.
115  */
116 static u8 scan_ff_pattern[] = { 0xff, };
117
118 static struct nand_bbt_descr largepage_memorybased = {
119         .options = 0,
120         .offs = 0,
121         .len = 1,
122         .pattern = scan_ff_pattern,
123 };
124
125 /*
126  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127  * interfere with ECC positions, that's why we implement our own descriptors.
128  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129  */
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132
133 static struct nand_bbt_descr bbt_main_descr = {
134         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135                    NAND_BBT_2BIT | NAND_BBT_VERSION,
136         .offs = 11,
137         .len = 4,
138         .veroffs = 15,
139         .maxblocks = 4,
140         .pattern = bbt_pattern,
141 };
142
143 static struct nand_bbt_descr bbt_mirror_descr = {
144         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145                    NAND_BBT_2BIT | NAND_BBT_VERSION,
146         .offs = 11,
147         .len = 4,
148         .veroffs = 15,
149         .maxblocks = 4,
150         .pattern = mirror_pattern,
151 };
152
153 /*=================================*/
154
155 /*
156  * Set up the FCM hardware block and page address fields, and the fcm
157  * structure addr field to point to the correct FCM buffer in memory
158  */
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 {
161         struct nand_chip *chip = mtd->priv;
162         struct fsl_elbc_mtd *priv = chip->priv;
163         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166         int buf_num;
167
168         elbc_fcm_ctrl->page = page_addr;
169
170         if (priv->page_size) {
171                 /*
172                  * large page size chip : FPAR[PI] save the lowest 6 bits,
173                  *                        FBAR[BLK] save the other bits.
174                  */
175                 out_be32(&lbc->fbar, page_addr >> 6);
176                 out_be32(&lbc->fpar,
177                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
178                          (oob ? FPAR_LP_MS : 0) | column);
179                 buf_num = (page_addr & 1) << 2;
180         } else {
181                 /*
182                  * small page size chip : FPAR[PI] save the lowest 5 bits,
183                  *                        FBAR[BLK] save the other bits.
184                  */
185                 out_be32(&lbc->fbar, page_addr >> 5);
186                 out_be32(&lbc->fpar,
187                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
188                          (oob ? FPAR_SP_MS : 0) | column);
189                 buf_num = page_addr & 7;
190         }
191
192         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
193         elbc_fcm_ctrl->index = column;
194
195         /* for OOB data point to the second half of the buffer */
196         if (oob)
197                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
198
199         dev_vdbg(priv->dev, "set_addr: bank=%d, "
200                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
201                             "index %x, pes %d ps %d\n",
202                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
203                  elbc_fcm_ctrl->index,
204                  chip->phys_erase_shift, chip->page_shift);
205 }
206
207 /*
208  * execute FCM command and wait for it to complete
209  */
210 static int fsl_elbc_run_command(struct mtd_info *mtd)
211 {
212         struct nand_chip *chip = mtd->priv;
213         struct fsl_elbc_mtd *priv = chip->priv;
214         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
215         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
216         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
217
218         /* Setup the FMR[OP] to execute without write protection */
219         out_be32(&lbc->fmr, priv->fmr | 3);
220         if (elbc_fcm_ctrl->use_mdr)
221                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
222
223         dev_vdbg(priv->dev,
224                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
225                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
226         dev_vdbg(priv->dev,
227                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
228                  "fbcr=%08x bank=%d\n",
229                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
230                  in_be32(&lbc->fbcr), priv->bank);
231
232         ctrl->irq_status = 0;
233         /* execute special operation */
234         out_be32(&lbc->lsor, priv->bank);
235
236         /* wait for FCM complete flag or timeout */
237         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
238                            FCM_TIMEOUT_MSECS * HZ/1000);
239         elbc_fcm_ctrl->status = ctrl->irq_status;
240         /* store mdr value in case it was needed */
241         if (elbc_fcm_ctrl->use_mdr)
242                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
243
244         elbc_fcm_ctrl->use_mdr = 0;
245
246         if (elbc_fcm_ctrl->status != LTESR_CC) {
247                 dev_info(priv->dev,
248                          "command failed: fir %x fcr %x status %x mdr %x\n",
249                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
250                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
251                 return -EIO;
252         }
253
254         if (chip->ecc.mode != NAND_ECC_HW)
255                 return 0;
256
257         elbc_fcm_ctrl->max_bitflips = 0;
258
259         if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
260                 uint32_t lteccr = in_be32(&lbc->lteccr);
261                 /*
262                  * if command was a full page read and the ELBC
263                  * has the LTECCR register, then bits 12-15 (ppc order) of
264                  * LTECCR indicates which 512 byte sub-pages had fixed errors.
265                  * bits 28-31 are uncorrectable errors, marked elsewhere.
266                  * for small page nand only 1 bit is used.
267                  * if the ELBC doesn't have the lteccr register it reads 0
268                  * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
269                  * count the number of sub-pages with bitflips and update
270                  * ecc_stats.corrected accordingly.
271                  */
272                 if (lteccr & 0x000F000F)
273                         out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
274                 if (lteccr & 0x000F0000) {
275                         mtd->ecc_stats.corrected++;
276                         elbc_fcm_ctrl->max_bitflips = 1;
277                 }
278         }
279
280         return 0;
281 }
282
283 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
284 {
285         struct fsl_elbc_mtd *priv = chip->priv;
286         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
288
289         if (priv->page_size) {
290                 out_be32(&lbc->fir,
291                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
292                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
293                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
294                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
295                          (FIR_OP_RBW << FIR_OP4_SHIFT));
296
297                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
298                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
299         } else {
300                 out_be32(&lbc->fir,
301                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
302                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
303                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
304                          (FIR_OP_RBW << FIR_OP3_SHIFT));
305
306                 if (oob)
307                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
308                 else
309                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
310         }
311 }
312
313 /* cmdfunc send commands to the FCM */
314 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
315                              int column, int page_addr)
316 {
317         struct nand_chip *chip = mtd->priv;
318         struct fsl_elbc_mtd *priv = chip->priv;
319         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
320         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
321         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
322
323         elbc_fcm_ctrl->use_mdr = 0;
324
325         /* clear the read buffer */
326         elbc_fcm_ctrl->read_bytes = 0;
327         if (command != NAND_CMD_PAGEPROG)
328                 elbc_fcm_ctrl->index = 0;
329
330         switch (command) {
331         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
332         case NAND_CMD_READ1:
333                 column += 256;
334
335         /* fall-through */
336         case NAND_CMD_READ0:
337                 dev_dbg(priv->dev,
338                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
339                         " 0x%x, column: 0x%x.\n", page_addr, column);
340
341
342                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
343                 set_addr(mtd, 0, page_addr, 0);
344
345                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
346                 elbc_fcm_ctrl->index += column;
347
348                 fsl_elbc_do_read(chip, 0);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* READOOB reads only the OOB because no ECC is performed. */
353         case NAND_CMD_READOOB:
354                 dev_vdbg(priv->dev,
355                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
356                          " 0x%x, column: 0x%x.\n", page_addr, column);
357
358                 out_be32(&lbc->fbcr, mtd->oobsize - column);
359                 set_addr(mtd, column, page_addr, 1);
360
361                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
362
363                 fsl_elbc_do_read(chip, 1);
364                 fsl_elbc_run_command(mtd);
365                 return;
366
367         case NAND_CMD_READID:
368         case NAND_CMD_PARAM:
369                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
370
371                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
372                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
373                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
374                 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
375                 /*
376                  * although currently it's 8 bytes for READID, we always read
377                  * the maximum 256 bytes(for PARAM)
378                  */
379                 out_be32(&lbc->fbcr, 256);
380                 elbc_fcm_ctrl->read_bytes = 256;
381                 elbc_fcm_ctrl->use_mdr = 1;
382                 elbc_fcm_ctrl->mdr = column;
383                 set_addr(mtd, 0, 0, 0);
384                 fsl_elbc_run_command(mtd);
385                 return;
386
387         /* ERASE1 stores the block and page address */
388         case NAND_CMD_ERASE1:
389                 dev_vdbg(priv->dev,
390                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
391                          "page_addr: 0x%x.\n", page_addr);
392                 set_addr(mtd, 0, page_addr, 0);
393                 return;
394
395         /* ERASE2 uses the block and page address from ERASE1 */
396         case NAND_CMD_ERASE2:
397                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
398
399                 out_be32(&lbc->fir,
400                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
401                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
402                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
403                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
404                          (FIR_OP_RS  << FIR_OP4_SHIFT));
405
406                 out_be32(&lbc->fcr,
407                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
408                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
409                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
410
411                 out_be32(&lbc->fbcr, 0);
412                 elbc_fcm_ctrl->read_bytes = 0;
413                 elbc_fcm_ctrl->use_mdr = 1;
414
415                 fsl_elbc_run_command(mtd);
416                 return;
417
418         /* SEQIN sets up the addr buffer and all registers except the length */
419         case NAND_CMD_SEQIN: {
420                 __be32 fcr;
421                 dev_vdbg(priv->dev,
422                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
423                          "page_addr: 0x%x, column: 0x%x.\n",
424                          page_addr, column);
425
426                 elbc_fcm_ctrl->column = column;
427                 elbc_fcm_ctrl->use_mdr = 1;
428
429                 if (column >= mtd->writesize) {
430                         /* OOB area */
431                         column -= mtd->writesize;
432                         elbc_fcm_ctrl->oob = 1;
433                 } else {
434                         WARN_ON(column != 0);
435                         elbc_fcm_ctrl->oob = 0;
436                 }
437
438                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
439                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
440                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
441
442                 if (priv->page_size) {
443                         out_be32(&lbc->fir,
444                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
445                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
446                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
447                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
448                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
449                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
450                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
451                 } else {
452                         out_be32(&lbc->fir,
453                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
454                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
455                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
456                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
457                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
458                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
459                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
460                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
461
462                         if (elbc_fcm_ctrl->oob)
463                                 /* OOB area --> READOOB */
464                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
465                         else
466                                 /* First 256 bytes --> READ0 */
467                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
468                 }
469
470                 out_be32(&lbc->fcr, fcr);
471                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
472                 return;
473         }
474
475         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
476         case NAND_CMD_PAGEPROG: {
477                 dev_vdbg(priv->dev,
478                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
479                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
480
481                 /* if the write did not start at 0 or is not a full page
482                  * then set the exact length, otherwise use a full page
483                  * write so the HW generates the ECC.
484                  */
485                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
486                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
487                         out_be32(&lbc->fbcr,
488                                 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
489                 else
490                         out_be32(&lbc->fbcr, 0);
491
492                 fsl_elbc_run_command(mtd);
493                 return;
494         }
495
496         /* CMD_STATUS must read the status byte while CEB is active */
497         /* Note - it does not wait for the ready line */
498         case NAND_CMD_STATUS:
499                 out_be32(&lbc->fir,
500                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
501                          (FIR_OP_RBW << FIR_OP1_SHIFT));
502                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
503                 out_be32(&lbc->fbcr, 1);
504                 set_addr(mtd, 0, 0, 0);
505                 elbc_fcm_ctrl->read_bytes = 1;
506
507                 fsl_elbc_run_command(mtd);
508
509                 /* The chip always seems to report that it is
510                  * write-protected, even when it is not.
511                  */
512                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
513                 return;
514
515         /* RESET without waiting for the ready line */
516         case NAND_CMD_RESET:
517                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
518                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
519                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
520                 fsl_elbc_run_command(mtd);
521                 return;
522
523         default:
524                 dev_err(priv->dev,
525                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
526                         command);
527         }
528 }
529
530 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
531 {
532         /* The hardware does not seem to support multiple
533          * chips per bank.
534          */
535 }
536
537 /*
538  * Write buf to the FCM Controller Data Buffer
539  */
540 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
541 {
542         struct nand_chip *chip = mtd->priv;
543         struct fsl_elbc_mtd *priv = chip->priv;
544         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
545         unsigned int bufsize = mtd->writesize + mtd->oobsize;
546
547         if (len <= 0) {
548                 dev_err(priv->dev, "write_buf of %d bytes", len);
549                 elbc_fcm_ctrl->status = 0;
550                 return;
551         }
552
553         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
554                 dev_err(priv->dev,
555                         "write_buf beyond end of buffer "
556                         "(%d requested, %u available)\n",
557                         len, bufsize - elbc_fcm_ctrl->index);
558                 len = bufsize - elbc_fcm_ctrl->index;
559         }
560
561         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
562         /*
563          * This is workaround for the weird elbc hangs during nand write,
564          * Scott Wood says: "...perhaps difference in how long it takes a
565          * write to make it through the localbus compared to a write to IMMR
566          * is causing problems, and sync isn't helping for some reason."
567          * Reading back the last byte helps though.
568          */
569         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
570
571         elbc_fcm_ctrl->index += len;
572 }
573
574 /*
575  * read a byte from either the FCM hardware buffer if it has any data left
576  * otherwise issue a command to read a single byte.
577  */
578 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
579 {
580         struct nand_chip *chip = mtd->priv;
581         struct fsl_elbc_mtd *priv = chip->priv;
582         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583
584         /* If there are still bytes in the FCM, then use the next byte. */
585         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
586                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
587
588         dev_err(priv->dev, "read_byte beyond end of buffer\n");
589         return ERR_BYTE;
590 }
591
592 /*
593  * Read from the FCM Controller Data Buffer
594  */
595 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
596 {
597         struct nand_chip *chip = mtd->priv;
598         struct fsl_elbc_mtd *priv = chip->priv;
599         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
600         int avail;
601
602         if (len < 0)
603                 return;
604
605         avail = min((unsigned int)len,
606                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
607         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
608         elbc_fcm_ctrl->index += avail;
609
610         if (len > avail)
611                 dev_err(priv->dev,
612                         "read_buf beyond end of buffer "
613                         "(%d requested, %d available)\n",
614                         len, avail);
615 }
616
617 /*
618  * Verify buffer against the FCM Controller Data Buffer
619  */
620 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
621 {
622         struct nand_chip *chip = mtd->priv;
623         struct fsl_elbc_mtd *priv = chip->priv;
624         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
625         int i;
626
627         if (len < 0) {
628                 dev_err(priv->dev, "write_buf of %d bytes", len);
629                 return -EINVAL;
630         }
631
632         if ((unsigned int)len >
633                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
634                 dev_err(priv->dev,
635                         "verify_buf beyond end of buffer "
636                         "(%d requested, %u available)\n",
637                         len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
638
639                 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
640                 return -EINVAL;
641         }
642
643         for (i = 0; i < len; i++)
644                 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
645                                 != buf[i])
646                         break;
647
648         elbc_fcm_ctrl->index += len;
649         return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
650 }
651
652 /* This function is called after Program and Erase Operations to
653  * check for success or failure.
654  */
655 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
656 {
657         struct fsl_elbc_mtd *priv = chip->priv;
658         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
659
660         if (elbc_fcm_ctrl->status != LTESR_CC)
661                 return NAND_STATUS_FAIL;
662
663         /* The chip always seems to report that it is
664          * write-protected, even when it is not.
665          */
666         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
667 }
668
669 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
670 {
671         struct nand_chip *chip = mtd->priv;
672         struct fsl_elbc_mtd *priv = chip->priv;
673         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
674         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
675         unsigned int al;
676
677         /* calculate FMR Address Length field */
678         al = 0;
679         if (chip->pagemask & 0xffff0000)
680                 al++;
681         if (chip->pagemask & 0xff000000)
682                 al++;
683
684         priv->fmr |= al << FMR_AL_SHIFT;
685
686         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
687                 chip->numchips);
688         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
689                 chip->chipsize);
690         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
691                 chip->pagemask);
692         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
693                 chip->chip_delay);
694         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
695                 chip->badblockpos);
696         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
697                 chip->chip_shift);
698         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
699                 chip->page_shift);
700         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
701                 chip->phys_erase_shift);
702         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
703                 chip->ecclayout);
704         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
705                 chip->ecc.mode);
706         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
707                 chip->ecc.steps);
708         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
709                 chip->ecc.bytes);
710         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
711                 chip->ecc.total);
712         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
713                 chip->ecc.layout);
714         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
715         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
716         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
717                 mtd->erasesize);
718         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
719                 mtd->writesize);
720         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
721                 mtd->oobsize);
722
723         /* adjust Option Register and ECC to match Flash page size */
724         if (mtd->writesize == 512) {
725                 priv->page_size = 0;
726                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
727         } else if (mtd->writesize == 2048) {
728                 priv->page_size = 1;
729                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
730                 /* adjust ecc setup if needed */
731                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
732                     BR_DECC_CHK_GEN) {
733                         chip->ecc.size = 512;
734                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
735                                            &fsl_elbc_oob_lp_eccm1 :
736                                            &fsl_elbc_oob_lp_eccm0;
737                         chip->badblock_pattern = &largepage_memorybased;
738                 }
739         } else {
740                 dev_err(priv->dev,
741                         "fsl_elbc_init: page size %d is not supported\n",
742                         mtd->writesize);
743                 return -1;
744         }
745
746         return 0;
747 }
748
749 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
750                               uint8_t *buf, int oob_required, int page)
751 {
752         struct fsl_elbc_mtd *priv = chip->priv;
753         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
754         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
755
756         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
757         if (oob_required)
758                 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
759
760         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
761                 mtd->ecc_stats.failed++;
762
763         return elbc_fcm_ctrl->max_bitflips;
764 }
765
766 /* ECC will be calculated automatically, and errors will be detected in
767  * waitfunc.
768  */
769 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
770                                 const uint8_t *buf, int oob_required)
771 {
772         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
773         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
774
775         return 0;
776 }
777
778 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
779 {
780         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
781         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
782         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
783         struct nand_chip *chip = &priv->chip;
784
785         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
786
787         /* Fill in fsl_elbc_mtd structure */
788         priv->mtd.priv = chip;
789         priv->mtd.owner = THIS_MODULE;
790
791         /* set timeout to maximum */
792         priv->fmr = 15 << FMR_CWTO_SHIFT;
793         if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
794                 priv->fmr |= FMR_ECCM;
795
796         /* fill in nand_chip structure */
797         /* set up function call table */
798         chip->read_byte = fsl_elbc_read_byte;
799         chip->write_buf = fsl_elbc_write_buf;
800         chip->read_buf = fsl_elbc_read_buf;
801         chip->verify_buf = fsl_elbc_verify_buf;
802         chip->select_chip = fsl_elbc_select_chip;
803         chip->cmdfunc = fsl_elbc_cmdfunc;
804         chip->waitfunc = fsl_elbc_wait;
805
806         chip->bbt_td = &bbt_main_descr;
807         chip->bbt_md = &bbt_mirror_descr;
808
809         /* set up nand options */
810         chip->bbt_options = NAND_BBT_USE_FLASH;
811
812         chip->controller = &elbc_fcm_ctrl->controller;
813         chip->priv = priv;
814
815         chip->ecc.read_page = fsl_elbc_read_page;
816         chip->ecc.write_page = fsl_elbc_write_page;
817
818         /* If CS Base Register selects full hardware ECC then use it */
819         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
820             BR_DECC_CHK_GEN) {
821                 chip->ecc.mode = NAND_ECC_HW;
822                 /* put in small page settings and adjust later if needed */
823                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
824                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
825                 chip->ecc.size = 512;
826                 chip->ecc.bytes = 3;
827                 chip->ecc.strength = 1;
828         } else {
829                 /* otherwise fall back to default software ECC */
830                 chip->ecc.mode = NAND_ECC_SOFT;
831         }
832
833         return 0;
834 }
835
836 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
837 {
838         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
839         nand_release(&priv->mtd);
840
841         kfree(priv->mtd.name);
842
843         if (priv->vbase)
844                 iounmap(priv->vbase);
845
846         elbc_fcm_ctrl->chips[priv->bank] = NULL;
847         kfree(priv);
848         return 0;
849 }
850
851 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
852
853 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
854 {
855         struct fsl_lbc_regs __iomem *lbc;
856         struct fsl_elbc_mtd *priv;
857         struct resource res;
858         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
859         static const char *part_probe_types[]
860                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
861         int ret;
862         int bank;
863         struct device *dev;
864         struct device_node *node = pdev->dev.of_node;
865         struct mtd_part_parser_data ppdata;
866
867         ppdata.of_node = pdev->dev.of_node;
868         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
869                 return -ENODEV;
870         lbc = fsl_lbc_ctrl_dev->regs;
871         dev = fsl_lbc_ctrl_dev->dev;
872
873         /* get, allocate and map the memory resource */
874         ret = of_address_to_resource(node, 0, &res);
875         if (ret) {
876                 dev_err(dev, "failed to get resource\n");
877                 return ret;
878         }
879
880         /* find which chip select it is connected to */
881         for (bank = 0; bank < MAX_BANKS; bank++)
882                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
883                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
884                     (in_be32(&lbc->bank[bank].br) &
885                      in_be32(&lbc->bank[bank].or) & BR_BA)
886                      == fsl_lbc_addr(res.start))
887                         break;
888
889         if (bank >= MAX_BANKS) {
890                 dev_err(dev, "address did not match any chip selects\n");
891                 return -ENODEV;
892         }
893
894         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
895         if (!priv)
896                 return -ENOMEM;
897
898         mutex_lock(&fsl_elbc_nand_mutex);
899         if (!fsl_lbc_ctrl_dev->nand) {
900                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
901                 if (!elbc_fcm_ctrl) {
902                         dev_err(dev, "failed to allocate memory\n");
903                         mutex_unlock(&fsl_elbc_nand_mutex);
904                         ret = -ENOMEM;
905                         goto err;
906                 }
907                 elbc_fcm_ctrl->counter++;
908
909                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
910                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
911                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
912         } else {
913                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
914         }
915         mutex_unlock(&fsl_elbc_nand_mutex);
916
917         elbc_fcm_ctrl->chips[bank] = priv;
918         priv->bank = bank;
919         priv->ctrl = fsl_lbc_ctrl_dev;
920         priv->dev = &pdev->dev;
921         dev_set_drvdata(priv->dev, priv);
922
923         priv->vbase = ioremap(res.start, resource_size(&res));
924         if (!priv->vbase) {
925                 dev_err(dev, "failed to map chip region\n");
926                 ret = -ENOMEM;
927                 goto err;
928         }
929
930         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
931         if (!priv->mtd.name) {
932                 ret = -ENOMEM;
933                 goto err;
934         }
935
936         ret = fsl_elbc_chip_init(priv);
937         if (ret)
938                 goto err;
939
940         ret = nand_scan_ident(&priv->mtd, 1, NULL);
941         if (ret)
942                 goto err;
943
944         ret = fsl_elbc_chip_init_tail(&priv->mtd);
945         if (ret)
946                 goto err;
947
948         ret = nand_scan_tail(&priv->mtd);
949         if (ret)
950                 goto err;
951
952         /* First look for RedBoot table or partitions on the command
953          * line, these take precedence over device tree information */
954         mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
955                                   NULL, 0);
956
957         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
958                (unsigned long long)res.start, priv->bank);
959         return 0;
960
961 err:
962         fsl_elbc_chip_remove(priv);
963         return ret;
964 }
965
966 static int fsl_elbc_nand_remove(struct platform_device *pdev)
967 {
968         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
969         struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
970
971         fsl_elbc_chip_remove(priv);
972
973         mutex_lock(&fsl_elbc_nand_mutex);
974         elbc_fcm_ctrl->counter--;
975         if (!elbc_fcm_ctrl->counter) {
976                 fsl_lbc_ctrl_dev->nand = NULL;
977                 kfree(elbc_fcm_ctrl);
978         }
979         mutex_unlock(&fsl_elbc_nand_mutex);
980
981         return 0;
982
983 }
984
985 static const struct of_device_id fsl_elbc_nand_match[] = {
986         { .compatible = "fsl,elbc-fcm-nand", },
987         {}
988 };
989
990 static struct platform_driver fsl_elbc_nand_driver = {
991         .driver = {
992                 .name = "fsl,elbc-fcm-nand",
993                 .owner = THIS_MODULE,
994                 .of_match_table = fsl_elbc_nand_match,
995         },
996         .probe = fsl_elbc_nand_probe,
997         .remove = fsl_elbc_nand_remove,
998 };
999
1000 module_platform_driver(fsl_elbc_nand_driver);
1001
1002 MODULE_LICENSE("GPL");
1003 MODULE_AUTHOR("Freescale");
1004 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");