537e380b8dcb3fb3eb403a6c5c8a094016309afc
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78         char *oob_poi;           /* Place to write ECC after read back    */
79 };
80
81 /* These map to the positions used by the FCM hardware ECC generator */
82
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85         .eccbytes = 3,
86         .eccpos = {6, 7, 8},
87         .oobfree = { {0, 5}, {9, 7} },
88 };
89
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92         .eccbytes = 3,
93         .eccpos = {8, 9, 10},
94         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
95 };
96
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99         .eccbytes = 12,
100         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
102 };
103
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106         .eccbytes = 12,
107         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
109 };
110
111 /*
112  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113  * 1, so we have to adjust bad block pattern. This pattern should be used for
114  * x8 chips only. So far hardware does not support x16 chips anyway.
115  */
116 static u8 scan_ff_pattern[] = { 0xff, };
117
118 static struct nand_bbt_descr largepage_memorybased = {
119         .options = 0,
120         .offs = 0,
121         .len = 1,
122         .pattern = scan_ff_pattern,
123 };
124
125 /*
126  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127  * interfere with ECC positions, that's why we implement our own descriptors.
128  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129  */
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132
133 static struct nand_bbt_descr bbt_main_descr = {
134         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135                    NAND_BBT_2BIT | NAND_BBT_VERSION,
136         .offs = 11,
137         .len = 4,
138         .veroffs = 15,
139         .maxblocks = 4,
140         .pattern = bbt_pattern,
141 };
142
143 static struct nand_bbt_descr bbt_mirror_descr = {
144         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145                    NAND_BBT_2BIT | NAND_BBT_VERSION,
146         .offs = 11,
147         .len = 4,
148         .veroffs = 15,
149         .maxblocks = 4,
150         .pattern = mirror_pattern,
151 };
152
153 /*=================================*/
154
155 /*
156  * Set up the FCM hardware block and page address fields, and the fcm
157  * structure addr field to point to the correct FCM buffer in memory
158  */
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 {
161         struct nand_chip *chip = mtd->priv;
162         struct fsl_elbc_mtd *priv = chip->priv;
163         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166         int buf_num;
167
168         elbc_fcm_ctrl->page = page_addr;
169
170         out_be32(&lbc->fbar,
171                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
172
173         if (priv->page_size) {
174                 out_be32(&lbc->fpar,
175                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
176                          (oob ? FPAR_LP_MS : 0) | column);
177                 buf_num = (page_addr & 1) << 2;
178         } else {
179                 out_be32(&lbc->fpar,
180                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
181                          (oob ? FPAR_SP_MS : 0) | column);
182                 buf_num = page_addr & 7;
183         }
184
185         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
186         elbc_fcm_ctrl->index = column;
187
188         /* for OOB data point to the second half of the buffer */
189         if (oob)
190                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191
192         dev_vdbg(priv->dev, "set_addr: bank=%d, "
193                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194                             "index %x, pes %d ps %d\n",
195                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
196                  elbc_fcm_ctrl->index,
197                  chip->phys_erase_shift, chip->page_shift);
198 }
199
200 /*
201  * execute FCM command and wait for it to complete
202  */
203 static int fsl_elbc_run_command(struct mtd_info *mtd)
204 {
205         struct nand_chip *chip = mtd->priv;
206         struct fsl_elbc_mtd *priv = chip->priv;
207         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
208         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210
211         /* Setup the FMR[OP] to execute without write protection */
212         out_be32(&lbc->fmr, priv->fmr | 3);
213         if (elbc_fcm_ctrl->use_mdr)
214                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215
216         dev_vdbg(priv->dev,
217                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219         dev_vdbg(priv->dev,
220                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221                  "fbcr=%08x bank=%d\n",
222                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223                  in_be32(&lbc->fbcr), priv->bank);
224
225         ctrl->irq_status = 0;
226         /* execute special operation */
227         out_be32(&lbc->lsor, priv->bank);
228
229         /* wait for FCM complete flag or timeout */
230         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231                            FCM_TIMEOUT_MSECS * HZ/1000);
232         elbc_fcm_ctrl->status = ctrl->irq_status;
233         /* store mdr value in case it was needed */
234         if (elbc_fcm_ctrl->use_mdr)
235                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236
237         elbc_fcm_ctrl->use_mdr = 0;
238
239         if (elbc_fcm_ctrl->status != LTESR_CC) {
240                 dev_info(priv->dev,
241                          "command failed: fir %x fcr %x status %x mdr %x\n",
242                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
243                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244                 return -EIO;
245         }
246
247         return 0;
248 }
249
250 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
251 {
252         struct fsl_elbc_mtd *priv = chip->priv;
253         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
254         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
255
256         if (priv->page_size) {
257                 out_be32(&lbc->fir,
258                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
259                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
260                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
261                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
262                          (FIR_OP_RBW << FIR_OP4_SHIFT));
263
264                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
265                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
266         } else {
267                 out_be32(&lbc->fir,
268                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
269                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
270                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
271                          (FIR_OP_RBW << FIR_OP3_SHIFT));
272
273                 if (oob)
274                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
275                 else
276                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
277         }
278 }
279
280 /* cmdfunc send commands to the FCM */
281 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
282                              int column, int page_addr)
283 {
284         struct nand_chip *chip = mtd->priv;
285         struct fsl_elbc_mtd *priv = chip->priv;
286         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
288         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
289
290         elbc_fcm_ctrl->use_mdr = 0;
291
292         /* clear the read buffer */
293         elbc_fcm_ctrl->read_bytes = 0;
294         if (command != NAND_CMD_PAGEPROG)
295                 elbc_fcm_ctrl->index = 0;
296
297         switch (command) {
298         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
299         case NAND_CMD_READ1:
300                 column += 256;
301
302         /* fall-through */
303         case NAND_CMD_READ0:
304                 dev_dbg(priv->dev,
305                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306                         " 0x%x, column: 0x%x.\n", page_addr, column);
307
308
309                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
310                 set_addr(mtd, 0, page_addr, 0);
311
312                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
313                 elbc_fcm_ctrl->index += column;
314
315                 fsl_elbc_do_read(chip, 0);
316                 fsl_elbc_run_command(mtd);
317                 return;
318
319         /* READOOB reads only the OOB because no ECC is performed. */
320         case NAND_CMD_READOOB:
321                 dev_vdbg(priv->dev,
322                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323                          " 0x%x, column: 0x%x.\n", page_addr, column);
324
325                 out_be32(&lbc->fbcr, mtd->oobsize - column);
326                 set_addr(mtd, column, page_addr, 1);
327
328                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
329
330                 fsl_elbc_do_read(chip, 1);
331                 fsl_elbc_run_command(mtd);
332                 return;
333
334         /* READID must read all 5 possible bytes while CEB is active */
335         case NAND_CMD_READID:
336                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
337
338                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
340                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
341                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342                 /* 5 bytes for manuf, device and exts */
343                 out_be32(&lbc->fbcr, 5);
344                 elbc_fcm_ctrl->read_bytes = 5;
345                 elbc_fcm_ctrl->use_mdr = 1;
346                 elbc_fcm_ctrl->mdr = 0;
347
348                 set_addr(mtd, 0, 0, 0);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* ERASE1 stores the block and page address */
353         case NAND_CMD_ERASE1:
354                 dev_vdbg(priv->dev,
355                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356                          "page_addr: 0x%x.\n", page_addr);
357                 set_addr(mtd, 0, page_addr, 0);
358                 return;
359
360         /* ERASE2 uses the block and page address from ERASE1 */
361         case NAND_CMD_ERASE2:
362                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
363
364                 out_be32(&lbc->fir,
365                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
367                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
368                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
369                          (FIR_OP_RS  << FIR_OP4_SHIFT));
370
371                 out_be32(&lbc->fcr,
372                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
374                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
375
376                 out_be32(&lbc->fbcr, 0);
377                 elbc_fcm_ctrl->read_bytes = 0;
378                 elbc_fcm_ctrl->use_mdr = 1;
379
380                 fsl_elbc_run_command(mtd);
381                 return;
382
383         /* SEQIN sets up the addr buffer and all registers except the length */
384         case NAND_CMD_SEQIN: {
385                 __be32 fcr;
386                 dev_vdbg(priv->dev,
387                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388                          "page_addr: 0x%x, column: 0x%x.\n",
389                          page_addr, column);
390
391                 elbc_fcm_ctrl->column = column;
392                 elbc_fcm_ctrl->oob = 0;
393                 elbc_fcm_ctrl->use_mdr = 1;
394
395                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
396                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
397                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
398
399                 if (priv->page_size) {
400                         out_be32(&lbc->fir,
401                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
402                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
403                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
404                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
405                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
406                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
407                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
408                 } else {
409                         out_be32(&lbc->fir,
410                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
411                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
412                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
413                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
414                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
415                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
416                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
417                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
418
419                         if (column >= mtd->writesize) {
420                                 /* OOB area --> READOOB */
421                                 column -= mtd->writesize;
422                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
423                                 elbc_fcm_ctrl->oob = 1;
424                         } else {
425                                 WARN_ON(column != 0);
426                                 /* First 256 bytes --> READ0 */
427                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
428                         }
429                 }
430
431                 out_be32(&lbc->fcr, fcr);
432                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
433                 return;
434         }
435
436         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
437         case NAND_CMD_PAGEPROG: {
438                 int full_page;
439                 dev_vdbg(priv->dev,
440                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
442
443                 /* if the write did not start at 0 or is not a full page
444                  * then set the exact length, otherwise use a full page
445                  * write so the HW generates the ECC.
446                  */
447                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
448                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
449                         out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
450                         full_page = 0;
451                 } else {
452                         out_be32(&lbc->fbcr, 0);
453                         full_page = 1;
454                 }
455
456                 fsl_elbc_run_command(mtd);
457
458                 /* Read back the page in order to fill in the ECC for the
459                  * caller.  Is this really needed?
460                  */
461                 if (full_page && elbc_fcm_ctrl->oob_poi) {
462                         out_be32(&lbc->fbcr, 3);
463                         set_addr(mtd, 6, page_addr, 1);
464
465                         elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
466
467                         fsl_elbc_do_read(chip, 1);
468                         fsl_elbc_run_command(mtd);
469
470                         memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
471                                 &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
472                         elbc_fcm_ctrl->index += 3;
473                 }
474
475                 elbc_fcm_ctrl->oob_poi = NULL;
476                 return;
477         }
478
479         /* CMD_STATUS must read the status byte while CEB is active */
480         /* Note - it does not wait for the ready line */
481         case NAND_CMD_STATUS:
482                 out_be32(&lbc->fir,
483                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
484                          (FIR_OP_RBW << FIR_OP1_SHIFT));
485                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
486                 out_be32(&lbc->fbcr, 1);
487                 set_addr(mtd, 0, 0, 0);
488                 elbc_fcm_ctrl->read_bytes = 1;
489
490                 fsl_elbc_run_command(mtd);
491
492                 /* The chip always seems to report that it is
493                  * write-protected, even when it is not.
494                  */
495                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
496                 return;
497
498         /* RESET without waiting for the ready line */
499         case NAND_CMD_RESET:
500                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
502                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
503                 fsl_elbc_run_command(mtd);
504                 return;
505
506         default:
507                 dev_err(priv->dev,
508                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
509                         command);
510         }
511 }
512
513 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
514 {
515         /* The hardware does not seem to support multiple
516          * chips per bank.
517          */
518 }
519
520 /*
521  * Write buf to the FCM Controller Data Buffer
522  */
523 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
524 {
525         struct nand_chip *chip = mtd->priv;
526         struct fsl_elbc_mtd *priv = chip->priv;
527         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
528         unsigned int bufsize = mtd->writesize + mtd->oobsize;
529
530         if (len <= 0) {
531                 dev_err(priv->dev, "write_buf of %d bytes", len);
532                 elbc_fcm_ctrl->status = 0;
533                 return;
534         }
535
536         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
537                 dev_err(priv->dev,
538                         "write_buf beyond end of buffer "
539                         "(%d requested, %u available)\n",
540                         len, bufsize - elbc_fcm_ctrl->index);
541                 len = bufsize - elbc_fcm_ctrl->index;
542         }
543
544         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
545         /*
546          * This is workaround for the weird elbc hangs during nand write,
547          * Scott Wood says: "...perhaps difference in how long it takes a
548          * write to make it through the localbus compared to a write to IMMR
549          * is causing problems, and sync isn't helping for some reason."
550          * Reading back the last byte helps though.
551          */
552         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
553
554         elbc_fcm_ctrl->index += len;
555 }
556
557 /*
558  * read a byte from either the FCM hardware buffer if it has any data left
559  * otherwise issue a command to read a single byte.
560  */
561 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd->priv;
564         struct fsl_elbc_mtd *priv = chip->priv;
565         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
566
567         /* If there are still bytes in the FCM, then use the next byte. */
568         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
569                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
570
571         dev_err(priv->dev, "read_byte beyond end of buffer\n");
572         return ERR_BYTE;
573 }
574
575 /*
576  * Read from the FCM Controller Data Buffer
577  */
578 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
579 {
580         struct nand_chip *chip = mtd->priv;
581         struct fsl_elbc_mtd *priv = chip->priv;
582         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583         int avail;
584
585         if (len < 0)
586                 return;
587
588         avail = min((unsigned int)len,
589                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
590         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
591         elbc_fcm_ctrl->index += avail;
592
593         if (len > avail)
594                 dev_err(priv->dev,
595                         "read_buf beyond end of buffer "
596                         "(%d requested, %d available)\n",
597                         len, avail);
598 }
599
600 /*
601  * Verify buffer against the FCM Controller Data Buffer
602  */
603 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
604 {
605         struct nand_chip *chip = mtd->priv;
606         struct fsl_elbc_mtd *priv = chip->priv;
607         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
608         int i;
609
610         if (len < 0) {
611                 dev_err(priv->dev, "write_buf of %d bytes", len);
612                 return -EINVAL;
613         }
614
615         if ((unsigned int)len >
616                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
617                 dev_err(priv->dev,
618                         "verify_buf beyond end of buffer "
619                         "(%d requested, %u available)\n",
620                         len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
621
622                 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
623                 return -EINVAL;
624         }
625
626         for (i = 0; i < len; i++)
627                 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
628                                 != buf[i])
629                         break;
630
631         elbc_fcm_ctrl->index += len;
632         return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
633 }
634
635 /* This function is called after Program and Erase Operations to
636  * check for success or failure.
637  */
638 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
639 {
640         struct fsl_elbc_mtd *priv = chip->priv;
641         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
642
643         if (elbc_fcm_ctrl->status != LTESR_CC)
644                 return NAND_STATUS_FAIL;
645
646         /* The chip always seems to report that it is
647          * write-protected, even when it is not.
648          */
649         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
650 }
651
652 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
653 {
654         struct nand_chip *chip = mtd->priv;
655         struct fsl_elbc_mtd *priv = chip->priv;
656         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
657         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
658         unsigned int al;
659
660         /* calculate FMR Address Length field */
661         al = 0;
662         if (chip->pagemask & 0xffff0000)
663                 al++;
664         if (chip->pagemask & 0xff000000)
665                 al++;
666
667         /* add to ECCM mode set in fsl_elbc_init */
668         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
669                      (al << FMR_AL_SHIFT);
670
671         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
672                 chip->numchips);
673         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
674                 chip->chipsize);
675         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
676                 chip->pagemask);
677         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
678                 chip->chip_delay);
679         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
680                 chip->badblockpos);
681         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
682                 chip->chip_shift);
683         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
684                 chip->page_shift);
685         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
686                 chip->phys_erase_shift);
687         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
688                 chip->ecclayout);
689         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
690                 chip->ecc.mode);
691         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
692                 chip->ecc.steps);
693         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
694                 chip->ecc.bytes);
695         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
696                 chip->ecc.total);
697         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
698                 chip->ecc.layout);
699         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
700         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
701         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
702                 mtd->erasesize);
703         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
704                 mtd->writesize);
705         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
706                 mtd->oobsize);
707
708         /* adjust Option Register and ECC to match Flash page size */
709         if (mtd->writesize == 512) {
710                 priv->page_size = 0;
711                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
712         } else if (mtd->writesize == 2048) {
713                 priv->page_size = 1;
714                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
715                 /* adjust ecc setup if needed */
716                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
717                     BR_DECC_CHK_GEN) {
718                         chip->ecc.size = 512;
719                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
720                                            &fsl_elbc_oob_lp_eccm1 :
721                                            &fsl_elbc_oob_lp_eccm0;
722                         chip->badblock_pattern = &largepage_memorybased;
723                 }
724         } else {
725                 dev_err(priv->dev,
726                         "fsl_elbc_init: page size %d is not supported\n",
727                         mtd->writesize);
728                 return -1;
729         }
730
731         return 0;
732 }
733
734 static int fsl_elbc_read_page(struct mtd_info *mtd,
735                               struct nand_chip *chip,
736                               uint8_t *buf,
737                               int page)
738 {
739         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
740         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
741
742         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
743                 mtd->ecc_stats.failed++;
744
745         return 0;
746 }
747
748 /* ECC will be calculated automatically, and errors will be detected in
749  * waitfunc.
750  */
751 static void fsl_elbc_write_page(struct mtd_info *mtd,
752                                 struct nand_chip *chip,
753                                 const uint8_t *buf)
754 {
755         struct fsl_elbc_mtd *priv = chip->priv;
756         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
757
758         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
759         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
760
761         elbc_fcm_ctrl->oob_poi = chip->oob_poi;
762 }
763
764 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
765 {
766         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
767         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
768         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
769         struct nand_chip *chip = &priv->chip;
770
771         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
772
773         /* Fill in fsl_elbc_mtd structure */
774         priv->mtd.priv = chip;
775         priv->mtd.owner = THIS_MODULE;
776
777         /* Set the ECCM according to the settings in bootloader.*/
778         priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
779
780         /* fill in nand_chip structure */
781         /* set up function call table */
782         chip->read_byte = fsl_elbc_read_byte;
783         chip->write_buf = fsl_elbc_write_buf;
784         chip->read_buf = fsl_elbc_read_buf;
785         chip->verify_buf = fsl_elbc_verify_buf;
786         chip->select_chip = fsl_elbc_select_chip;
787         chip->cmdfunc = fsl_elbc_cmdfunc;
788         chip->waitfunc = fsl_elbc_wait;
789
790         chip->bbt_td = &bbt_main_descr;
791         chip->bbt_md = &bbt_mirror_descr;
792
793         /* set up nand options */
794         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
795                         NAND_USE_FLASH_BBT;
796
797         chip->controller = &elbc_fcm_ctrl->controller;
798         chip->priv = priv;
799
800         chip->ecc.read_page = fsl_elbc_read_page;
801         chip->ecc.write_page = fsl_elbc_write_page;
802
803         /* If CS Base Register selects full hardware ECC then use it */
804         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
805             BR_DECC_CHK_GEN) {
806                 chip->ecc.mode = NAND_ECC_HW;
807                 /* put in small page settings and adjust later if needed */
808                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
809                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
810                 chip->ecc.size = 512;
811                 chip->ecc.bytes = 3;
812         } else {
813                 /* otherwise fall back to default software ECC */
814                 chip->ecc.mode = NAND_ECC_SOFT;
815         }
816
817         return 0;
818 }
819
820 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
821 {
822         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
823         nand_release(&priv->mtd);
824
825         kfree(priv->mtd.name);
826
827         if (priv->vbase)
828                 iounmap(priv->vbase);
829
830         elbc_fcm_ctrl->chips[priv->bank] = NULL;
831         kfree(priv);
832         kfree(elbc_fcm_ctrl);
833         return 0;
834 }
835
836 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
837
838 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
839 {
840         struct fsl_lbc_regs __iomem *lbc;
841         struct fsl_elbc_mtd *priv;
842         struct resource res;
843         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
844
845 #ifdef CONFIG_MTD_PARTITIONS
846         static const char *part_probe_types[]
847                 = { "cmdlinepart", "RedBoot", NULL };
848         struct mtd_partition *parts;
849 #endif
850         int ret;
851         int bank;
852         struct device *dev;
853         struct device_node *node = pdev->dev.of_node;
854
855         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
856                 return -ENODEV;
857         lbc = fsl_lbc_ctrl_dev->regs;
858         dev = fsl_lbc_ctrl_dev->dev;
859
860         /* get, allocate and map the memory resource */
861         ret = of_address_to_resource(node, 0, &res);
862         if (ret) {
863                 dev_err(dev, "failed to get resource\n");
864                 return ret;
865         }
866
867         /* find which chip select it is connected to */
868         for (bank = 0; bank < MAX_BANKS; bank++)
869                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
870                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
871                     (in_be32(&lbc->bank[bank].br) &
872                      in_be32(&lbc->bank[bank].or) & BR_BA)
873                      == fsl_lbc_addr(res.start))
874                         break;
875
876         if (bank >= MAX_BANKS) {
877                 dev_err(dev, "address did not match any chip selects\n");
878                 return -ENODEV;
879         }
880
881         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
882         if (!priv)
883                 return -ENOMEM;
884
885         mutex_lock(&fsl_elbc_nand_mutex);
886         if (!fsl_lbc_ctrl_dev->nand) {
887                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
888                 if (!elbc_fcm_ctrl) {
889                         dev_err(dev, "failed to allocate memory\n");
890                         mutex_unlock(&fsl_elbc_nand_mutex);
891                         ret = -ENOMEM;
892                         goto err;
893                 }
894                 elbc_fcm_ctrl->counter++;
895
896                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
897                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
898                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
899         } else {
900                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
901         }
902         mutex_unlock(&fsl_elbc_nand_mutex);
903
904         elbc_fcm_ctrl->chips[bank] = priv;
905         priv->bank = bank;
906         priv->ctrl = fsl_lbc_ctrl_dev;
907         priv->dev = dev;
908
909         priv->vbase = ioremap(res.start, resource_size(&res));
910         if (!priv->vbase) {
911                 dev_err(dev, "failed to map chip region\n");
912                 ret = -ENOMEM;
913                 goto err;
914         }
915
916         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
917         if (!priv->mtd.name) {
918                 ret = -ENOMEM;
919                 goto err;
920         }
921
922         ret = fsl_elbc_chip_init(priv);
923         if (ret)
924                 goto err;
925
926         ret = nand_scan_ident(&priv->mtd, 1, NULL);
927         if (ret)
928                 goto err;
929
930         ret = fsl_elbc_chip_init_tail(&priv->mtd);
931         if (ret)
932                 goto err;
933
934         ret = nand_scan_tail(&priv->mtd);
935         if (ret)
936                 goto err;
937
938 #ifdef CONFIG_MTD_PARTITIONS
939         /* First look for RedBoot table or partitions on the command
940          * line, these take precedence over device tree information */
941         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
942         if (ret < 0)
943                 goto err;
944
945 #ifdef CONFIG_MTD_OF_PARTS
946         if (ret == 0) {
947                 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
948                 if (ret < 0)
949                         goto err;
950         }
951 #endif
952
953         if (ret > 0)
954                 add_mtd_partitions(&priv->mtd, parts, ret);
955         else
956 #endif
957                 add_mtd_device(&priv->mtd);
958
959         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
960                (unsigned long long)res.start, priv->bank);
961         return 0;
962
963 err:
964         fsl_elbc_chip_remove(priv);
965         return ret;
966 }
967
968 static int fsl_elbc_nand_remove(struct platform_device *pdev)
969 {
970         int i;
971         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
972         for (i = 0; i < MAX_BANKS; i++)
973                 if (elbc_fcm_ctrl->chips[i])
974                         fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
975
976         mutex_lock(&fsl_elbc_nand_mutex);
977         elbc_fcm_ctrl->counter--;
978         if (!elbc_fcm_ctrl->counter) {
979                 fsl_lbc_ctrl_dev->nand = NULL;
980                 kfree(elbc_fcm_ctrl);
981         }
982         mutex_unlock(&fsl_elbc_nand_mutex);
983
984         return 0;
985
986 }
987
988 static const struct of_device_id fsl_elbc_nand_match[] = {
989         { .compatible = "fsl,elbc-fcm-nand", },
990         {}
991 };
992
993 static struct platform_driver fsl_elbc_nand_driver = {
994         .driver = {
995                 .name = "fsl,elbc-fcm-nand",
996                 .owner = THIS_MODULE,
997                 .of_match_table = fsl_elbc_nand_match,
998         },
999         .probe = fsl_elbc_nand_probe,
1000         .remove = fsl_elbc_nand_remove,
1001 };
1002
1003 static int __init fsl_elbc_nand_init(void)
1004 {
1005         return platform_driver_register(&fsl_elbc_nand_driver);
1006 }
1007
1008 static void __exit fsl_elbc_nand_exit(void)
1009 {
1010         platform_driver_unregister(&fsl_elbc_nand_driver);
1011 }
1012
1013 module_init(fsl_elbc_nand_init);
1014 module_exit(fsl_elbc_nand_exit);
1015
1016 MODULE_LICENSE("GPL");
1017 MODULE_AUTHOR("Freescale");
1018 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");