Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / nand / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets 
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1         0x00
28 #define CAFE_NAND_CTRL2         0x04
29 #define CAFE_NAND_CTRL3         0x08
30 #define CAFE_NAND_STATUS        0x0c
31 #define CAFE_NAND_IRQ           0x10
32 #define CAFE_NAND_IRQ_MASK      0x14
33 #define CAFE_NAND_DATA_LEN      0x18
34 #define CAFE_NAND_ADDR1         0x1c
35 #define CAFE_NAND_ADDR2         0x20
36 #define CAFE_NAND_TIMING1       0x24
37 #define CAFE_NAND_TIMING2       0x28
38 #define CAFE_NAND_TIMING3       0x2c
39 #define CAFE_NAND_NONMEM        0x30
40 #define CAFE_NAND_ECC_RESULT    0x3C
41 #define CAFE_NAND_DMA_CTRL      0x40
42 #define CAFE_NAND_DMA_ADDR0     0x44
43 #define CAFE_NAND_DMA_ADDR1     0x48
44 #define CAFE_NAND_ECC_SYN01     0x50
45 #define CAFE_NAND_ECC_SYN23     0x54
46 #define CAFE_NAND_ECC_SYN45     0x58
47 #define CAFE_NAND_ECC_SYN67     0x5c
48 #define CAFE_NAND_READ_DATA     0x1000
49 #define CAFE_NAND_WRITE_DATA    0x2000
50
51 #define CAFE_GLOBAL_CTRL        0x3004
52 #define CAFE_GLOBAL_IRQ         0x3008
53 #define CAFE_GLOBAL_IRQ_MASK    0x300c
54 #define CAFE_NAND_RESET         0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT        (1<<19)
58
59 struct cafe_priv {
60         struct nand_chip nand;
61         struct pci_dev *pdev;
62         void __iomem *mmio;
63         struct rs_control *rs;
64         uint32_t ctl1;
65         uint32_t ctl2;
66         int datalen;
67         int nr_data;
68         int data_pos;
69         int page_addr;
70         dma_addr_t dmaaddr;
71         unsigned char *dmabuf;
72 };
73
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79
80 static int debug = 0;
81 module_param(debug, int, 0644);
82
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
101
102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104         struct cafe_priv *cafe = mtd->priv;
105         int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
106         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107
108         cafe_writel(cafe, irqs, NAND_IRQ);
109
110         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113
114         return result;
115 }
116
117
118 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119 {
120         struct cafe_priv *cafe = mtd->priv;
121
122         if (usedma)
123                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124         else
125                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126
127         cafe->datalen += len;
128
129         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130                 len, cafe->datalen);
131 }
132
133 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134 {
135         struct cafe_priv *cafe = mtd->priv;
136
137         if (usedma)
138                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139         else
140                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141
142         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143                   len, cafe->datalen);
144         cafe->datalen += len;
145 }
146
147 static uint8_t cafe_read_byte(struct mtd_info *mtd)
148 {
149         struct cafe_priv *cafe = mtd->priv;
150         uint8_t d;
151
152         cafe_read_buf(mtd, &d, 1);
153         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154
155         return d;
156 }
157
158 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159                               int column, int page_addr)
160 {
161         struct cafe_priv *cafe = mtd->priv;
162         int adrbytes = 0;
163         uint32_t ctl1;
164         uint32_t doneint = 0x80000000;
165
166         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167                 command, column, page_addr);
168
169         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170                 /* Second half of a command we already calculated */
171                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172                 ctl1 = cafe->ctl1;
173                 cafe->ctl2 &= ~(1<<30);
174                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175                           cafe->ctl1, cafe->nr_data);
176                 goto do_command;
177         }
178         /* Reset ECC engine */
179         cafe_writel(cafe, 0, NAND_CTRL2);
180
181         /* Emulate NAND_CMD_READOOB on large-page chips */
182         if (mtd->writesize > 512 &&
183             command == NAND_CMD_READOOB) {
184                 column += mtd->writesize;
185                 command = NAND_CMD_READ0;
186         }
187
188         /* FIXME: Do we need to send read command before sending data
189            for small-page chips, to position the buffer correctly? */
190
191         if (column != -1) {
192                 cafe_writel(cafe, column, NAND_ADDR1);
193                 adrbytes = 2;
194                 if (page_addr != -1)
195                         goto write_adr2;
196         } else if (page_addr != -1) {
197                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198                 page_addr >>= 16;
199         write_adr2:
200                 cafe_writel(cafe, page_addr, NAND_ADDR2);
201                 adrbytes += 2;
202                 if (mtd->size > mtd->writesize << 16)
203                         adrbytes++;
204         }
205
206         cafe->data_pos = cafe->datalen = 0;
207
208         /* Set command valid bit, mask in the chip select bit  */
209         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210
211         /* Set RD or WR bits as appropriate */
212         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213                 ctl1 |= (1<<26); /* rd */
214                 /* Always 5 bytes, for now */
215                 cafe->datalen = 4;
216                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
217                 adrbytes = 1;
218         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220                 ctl1 |= 1<<26; /* rd */
221                 /* For now, assume just read to end of page */
222                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
223         } else if (command == NAND_CMD_SEQIN)
224                 ctl1 |= 1<<25; /* wr */
225
226         /* Set number of address bytes */
227         if (adrbytes)
228                 ctl1 |= ((adrbytes-1)|8) << 27;
229
230         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231                 /* Ignore the first command of a pair; the hardware
232                    deals with them both at once, later */
233                 cafe->ctl1 = ctl1;
234                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235                           cafe->ctl1, cafe->datalen);
236                 return;
237         }
238         /* RNDOUT and READ0 commands need a following byte */
239         if (command == NAND_CMD_RNDOUT)
240                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243
244  do_command:
245         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247
248         /* NB: The datasheet lies -- we really should be subtracting 1 here */
249         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250         cafe_writel(cafe, 0x90000000, NAND_IRQ);
251         if (usedma && (ctl1 & (3<<25))) {
252                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
253                 /* If WR or RD bits set, set up DMA */
254                 if (ctl1 & (1<<26)) {
255                         /* It's a read */
256                         dmactl |= (1<<29);
257                         /* ... so it's done when the DMA is done, not just
258                            the command. */
259                         doneint = 0x10000000;
260                 }
261                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262         }
263         cafe->datalen = 0;
264
265         if (unlikely(regdebug)) {
266                 int i;
267                 printk("About to write command %08x to register 0\n", ctl1);
268                 for (i=4; i< 0x5c; i+=4)
269                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270         }
271
272         cafe_writel(cafe, ctl1, NAND_CTRL1);
273         /* Apply this short delay always to ensure that we do wait tWB in
274          * any case on any machine. */
275         ndelay(100);
276
277         if (1) {
278                 int c;
279                 uint32_t irqs;
280
281                 for (c = 500000; c != 0; c--) {
282                         irqs = cafe_readl(cafe, NAND_IRQ);
283                         if (irqs & doneint)
284                                 break;
285                         udelay(1);
286                         if (!(c % 100000))
287                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288                         cpu_relax();
289                 }
290                 cafe_writel(cafe, doneint, NAND_IRQ);
291                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293         }
294
295         WARN_ON(cafe->ctl2 & (1<<30));
296
297         switch (command) {
298
299         case NAND_CMD_CACHEDPROG:
300         case NAND_CMD_PAGEPROG:
301         case NAND_CMD_ERASE1:
302         case NAND_CMD_ERASE2:
303         case NAND_CMD_SEQIN:
304         case NAND_CMD_RNDIN:
305         case NAND_CMD_STATUS:
306         case NAND_CMD_DEPLETE1:
307         case NAND_CMD_RNDOUT:
308         case NAND_CMD_STATUS_ERROR:
309         case NAND_CMD_STATUS_ERROR0:
310         case NAND_CMD_STATUS_ERROR1:
311         case NAND_CMD_STATUS_ERROR2:
312         case NAND_CMD_STATUS_ERROR3:
313                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314                 return;
315         }
316         nand_wait_ready(mtd);
317         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318 }
319
320 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 {
322         struct cafe_priv *cafe = mtd->priv;
323
324         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326         /* Mask the appropriate bit into the stored value of ctl1
327            which will be used by cafe_nand_cmdfunc() */
328         if (chipnr)
329                 cafe->ctl1 |= CTRL1_CHIPSELECT;
330         else
331                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 }
333
334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 {
336         struct mtd_info *mtd = id;
337         struct cafe_priv *cafe = mtd->priv;
338         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
339         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
340         if (!irqs)
341                 return IRQ_NONE;
342
343         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
344         return IRQ_HANDLED;
345 }
346
347 static void cafe_nand_bug(struct mtd_info *mtd)
348 {
349         BUG();
350 }
351
352 static int cafe_nand_write_oob(struct mtd_info *mtd,
353                                struct nand_chip *chip, int page)
354 {
355         int status = 0;
356
357         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
358         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
359         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
360         status = chip->waitfunc(mtd, chip);
361
362         return status & NAND_STATUS_FAIL ? -EIO : 0;
363 }
364
365 /* Don't use -- use nand_read_oob_std for now */
366 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
367                               int page)
368 {
369         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
370         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
371         return 0;
372 }
373 /**
374  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
375  * @mtd:        mtd info structure
376  * @chip:       nand chip info structure
377  * @buf:        buffer to store read data
378  * @oob_required:       caller expects OOB data read to chip->oob_poi
379  *
380  * The hw generator calculates the error syndrome automatically. Therefor
381  * we need a special oob layout and handling.
382  */
383 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
384                                uint8_t *buf, int oob_required, int page)
385 {
386         struct cafe_priv *cafe = mtd->priv;
387         unsigned int max_bitflips = 0;
388
389         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
390                      cafe_readl(cafe, NAND_ECC_RESULT),
391                      cafe_readl(cafe, NAND_ECC_SYN01));
392
393         chip->read_buf(mtd, buf, mtd->writesize);
394         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
395
396         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
397                 unsigned short syn[8], pat[4];
398                 int pos[4];
399                 u8 *oob = chip->oob_poi;
400                 int i, n;
401
402                 for (i=0; i<8; i+=2) {
403                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
404                         syn[i] = cafe->rs->index_of[tmp & 0xfff];
405                         syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
406                 }
407
408                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
409                                 pat);
410
411                 for (i = 0; i < n; i++) {
412                         int p = pos[i];
413
414                         /* The 12-bit symbols are mapped to bytes here */
415
416                         if (p > 1374) {
417                                 /* out of range */
418                                 n = -1374;
419                         } else if (p == 0) {
420                                 /* high four bits do not correspond to data */
421                                 if (pat[i] > 0xff)
422                                         n = -2048;
423                                 else
424                                         buf[0] ^= pat[i];
425                         } else if (p == 1365) {
426                                 buf[2047] ^= pat[i] >> 4;
427                                 oob[0] ^= pat[i] << 4;
428                         } else if (p > 1365) {
429                                 if ((p & 1) == 1) {
430                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
431                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
432                                 } else {
433                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
434                                         oob[3*p/2 - 2048] ^= pat[i];
435                                 }
436                         } else if ((p & 1) == 1) {
437                                 buf[3*p/2] ^= pat[i] >> 4;
438                                 buf[3*p/2 + 1] ^= pat[i] << 4;
439                         } else {
440                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
441                                 buf[3*p/2] ^= pat[i];
442                         }
443                 }
444
445                 if (n < 0) {
446                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
447                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
448                         for (i = 0; i < 0x5c; i += 4)
449                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
450                         mtd->ecc_stats.failed++;
451                 } else {
452                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
453                         mtd->ecc_stats.corrected += n;
454                         max_bitflips = max_t(unsigned int, max_bitflips, n);
455                 }
456         }
457
458         return max_bitflips;
459 }
460
461 static struct nand_ecclayout cafe_oobinfo_2048 = {
462         .eccbytes = 14,
463         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
464         .oobfree = {{14, 50}}
465 };
466
467 /* Ick. The BBT code really ought to be able to work this bit out
468    for itself from the above, at least for the 2KiB case */
469 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
470 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
471
472 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
473 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
474
475
476 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
477         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
478                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
479         .offs = 14,
480         .len = 4,
481         .veroffs = 18,
482         .maxblocks = 4,
483         .pattern = cafe_bbt_pattern_2048
484 };
485
486 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
487         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
488                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
489         .offs = 14,
490         .len = 4,
491         .veroffs = 18,
492         .maxblocks = 4,
493         .pattern = cafe_mirror_pattern_2048
494 };
495
496 static struct nand_ecclayout cafe_oobinfo_512 = {
497         .eccbytes = 14,
498         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
499         .oobfree = {{14, 2}}
500 };
501
502 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
503         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
504                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
505         .offs = 14,
506         .len = 1,
507         .veroffs = 15,
508         .maxblocks = 4,
509         .pattern = cafe_bbt_pattern_512
510 };
511
512 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
513         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
514                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
515         .offs = 14,
516         .len = 1,
517         .veroffs = 15,
518         .maxblocks = 4,
519         .pattern = cafe_mirror_pattern_512
520 };
521
522
523 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
524                                           struct nand_chip *chip,
525                                           const uint8_t *buf, int oob_required)
526 {
527         struct cafe_priv *cafe = mtd->priv;
528
529         chip->write_buf(mtd, buf, mtd->writesize);
530         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
531
532         /* Set up ECC autogeneration */
533         cafe->ctl2 |= (1<<30);
534 }
535
536 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
537                                 const uint8_t *buf, int oob_required, int page,
538                                 int cached, int raw)
539 {
540         int status;
541
542         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
543
544         if (unlikely(raw))
545                 chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
546         else
547                 chip->ecc.write_page(mtd, chip, buf, oob_required);
548
549         /*
550          * Cached progamming disabled for now, Not sure if its worth the
551          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
552          */
553         cached = 0;
554
555         if (!cached || !(chip->options & NAND_CACHEPRG)) {
556
557                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
558                 status = chip->waitfunc(mtd, chip);
559                 /*
560                  * See if operation failed and additional status checks are
561                  * available
562                  */
563                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
564                         status = chip->errstat(mtd, chip, FL_WRITING, status,
565                                                page);
566
567                 if (status & NAND_STATUS_FAIL)
568                         return -EIO;
569         } else {
570                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
571                 status = chip->waitfunc(mtd, chip);
572         }
573
574 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
575         /* Send command to read back the data */
576         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
577
578         if (chip->verify_buf(mtd, buf, mtd->writesize))
579                 return -EIO;
580 #endif
581         return 0;
582 }
583
584 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
585 {
586         return 0;
587 }
588
589 /* F_2[X]/(X**6+X+1)  */
590 static unsigned short __devinit gf64_mul(u8 a, u8 b)
591 {
592         u8 c;
593         unsigned int i;
594
595         c = 0;
596         for (i = 0; i < 6; i++) {
597                 if (a & 1)
598                         c ^= b;
599                 a >>= 1;
600                 b <<= 1;
601                 if ((b & 0x40) != 0)
602                         b ^= 0x43;
603         }
604
605         return c;
606 }
607
608 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
609 static u16 __devinit gf4096_mul(u16 a, u16 b)
610 {
611         u8 ah, al, bh, bl, ch, cl;
612
613         ah = a >> 6;
614         al = a & 0x3f;
615         bh = b >> 6;
616         bl = b & 0x3f;
617
618         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
619         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
620
621         return (ch << 6) ^ cl;
622 }
623
624 static int __devinit cafe_mul(int x)
625 {
626         if (x == 0)
627                 return 1;
628         return gf4096_mul(x, 0xe01);
629 }
630
631 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
632                                      const struct pci_device_id *ent)
633 {
634         struct mtd_info *mtd;
635         struct cafe_priv *cafe;
636         uint32_t ctrl;
637         int err = 0;
638
639         /* Very old versions shared the same PCI ident for all three
640            functions on the chip. Verify the class too... */
641         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
642                 return -ENODEV;
643
644         err = pci_enable_device(pdev);
645         if (err)
646                 return err;
647
648         pci_set_master(pdev);
649
650         mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
651         if (!mtd) {
652                 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
653                 return  -ENOMEM;
654         }
655         cafe = (void *)(&mtd[1]);
656
657         mtd->dev.parent = &pdev->dev;
658         mtd->priv = cafe;
659         mtd->owner = THIS_MODULE;
660
661         cafe->pdev = pdev;
662         cafe->mmio = pci_iomap(pdev, 0, 0);
663         if (!cafe->mmio) {
664                 dev_warn(&pdev->dev, "failed to iomap\n");
665                 err = -ENOMEM;
666                 goto out_free_mtd;
667         }
668         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
669                                           &cafe->dmaaddr, GFP_KERNEL);
670         if (!cafe->dmabuf) {
671                 err = -ENOMEM;
672                 goto out_ior;
673         }
674         cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
675
676         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
677         if (!cafe->rs) {
678                 err = -ENOMEM;
679                 goto out_ior;
680         }
681
682         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
683         cafe->nand.dev_ready = cafe_device_ready;
684         cafe->nand.read_byte = cafe_read_byte;
685         cafe->nand.read_buf = cafe_read_buf;
686         cafe->nand.write_buf = cafe_write_buf;
687         cafe->nand.select_chip = cafe_select_chip;
688
689         cafe->nand.chip_delay = 0;
690
691         /* Enable the following for a flash based bad block table */
692         cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
693         cafe->nand.options = NAND_OWN_BUFFERS;
694
695         if (skipbbt) {
696                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
697                 cafe->nand.block_bad = cafe_nand_block_bad;
698         }
699
700         if (numtimings && numtimings != 3) {
701                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
702         }
703
704         if (numtimings == 3) {
705                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
706                              timing[0], timing[1], timing[2]);
707         } else {
708                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
709                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
710                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
711
712                 if (timing[0] | timing[1] | timing[2]) {
713                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
714                                      timing[0], timing[1], timing[2]);
715                 } else {
716                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
717                         timing[0] = timing[1] = timing[2] = 0xffffffff;
718                 }
719         }
720
721         /* Start off by resetting the NAND controller completely */
722         cafe_writel(cafe, 1, NAND_RESET);
723         cafe_writel(cafe, 0, NAND_RESET);
724
725         cafe_writel(cafe, timing[0], NAND_TIMING1);
726         cafe_writel(cafe, timing[1], NAND_TIMING2);
727         cafe_writel(cafe, timing[2], NAND_TIMING3);
728
729         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
730         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
731                           "CAFE NAND", mtd);
732         if (err) {
733                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
734                 goto out_free_dma;
735         }
736
737         /* Disable master reset, enable NAND clock */
738         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
739         ctrl &= 0xffffeff0;
740         ctrl |= 0x00007000;
741         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
742         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
743         cafe_writel(cafe, 0, NAND_DMA_CTRL);
744
745         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
746         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
747
748         /* Set up DMA address */
749         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
750         if (sizeof(cafe->dmaaddr) > 4)
751                 /* Shift in two parts to shut the compiler up */
752                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753         else
754                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
755
756         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
757                 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
758
759         /* Enable NAND IRQ in global IRQ mask register */
760         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
761         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
762                 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
763
764         /* Scan to find existence of the device */
765         if (nand_scan_ident(mtd, 2, NULL)) {
766                 err = -ENXIO;
767                 goto out_irq;
768         }
769
770         cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
771         if (mtd->writesize == 2048)
772                 cafe->ctl2 |= 1<<29; /* 2KiB page size */
773
774         /* Set up ECC according to the type of chip we found */
775         if (mtd->writesize == 2048) {
776                 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
777                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
778                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
779         } else if (mtd->writesize == 512) {
780                 cafe->nand.ecc.layout = &cafe_oobinfo_512;
781                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
782                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783         } else {
784                 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
785                        mtd->writesize);
786                 goto out_irq;
787         }
788         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
789         cafe->nand.ecc.size = mtd->writesize;
790         cafe->nand.ecc.bytes = 14;
791         cafe->nand.ecc.strength = 4;
792         cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
793         cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
794         cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
795         cafe->nand.write_page = cafe_nand_write_page;
796         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
797         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
798         cafe->nand.ecc.read_page = cafe_nand_read_page;
799         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
800
801         err = nand_scan_tail(mtd);
802         if (err)
803                 goto out_irq;
804
805         pci_set_drvdata(pdev, mtd);
806
807         mtd->name = "cafe_nand";
808         mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
809
810         goto out;
811
812  out_irq:
813         /* Disable NAND IRQ in global IRQ mask register */
814         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
815         free_irq(pdev->irq, mtd);
816  out_free_dma:
817         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
818  out_ior:
819         pci_iounmap(pdev, cafe->mmio);
820  out_free_mtd:
821         kfree(mtd);
822  out:
823         return err;
824 }
825
826 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
827 {
828         struct mtd_info *mtd = pci_get_drvdata(pdev);
829         struct cafe_priv *cafe = mtd->priv;
830
831         /* Disable NAND IRQ in global IRQ mask register */
832         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
833         free_irq(pdev->irq, mtd);
834         nand_release(mtd);
835         free_rs(cafe->rs);
836         pci_iounmap(pdev, cafe->mmio);
837         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
838         kfree(mtd);
839 }
840
841 static const struct pci_device_id cafe_nand_tbl[] = {
842         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
843           PCI_ANY_ID, PCI_ANY_ID },
844         { }
845 };
846
847 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
848
849 static int cafe_nand_resume(struct pci_dev *pdev)
850 {
851         uint32_t ctrl;
852         struct mtd_info *mtd = pci_get_drvdata(pdev);
853         struct cafe_priv *cafe = mtd->priv;
854
855        /* Start off by resetting the NAND controller completely */
856         cafe_writel(cafe, 1, NAND_RESET);
857         cafe_writel(cafe, 0, NAND_RESET);
858         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
859
860         /* Restore timing configuration */
861         cafe_writel(cafe, timing[0], NAND_TIMING1);
862         cafe_writel(cafe, timing[1], NAND_TIMING2);
863         cafe_writel(cafe, timing[2], NAND_TIMING3);
864
865         /* Disable master reset, enable NAND clock */
866         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
867         ctrl &= 0xffffeff0;
868         ctrl |= 0x00007000;
869         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
870         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
871         cafe_writel(cafe, 0, NAND_DMA_CTRL);
872         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
873         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
874
875         /* Set up DMA address */
876         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
877         if (sizeof(cafe->dmaaddr) > 4)
878         /* Shift in two parts to shut the compiler up */
879                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
880         else
881                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
882
883         /* Enable NAND IRQ in global IRQ mask register */
884         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
885         return 0;
886 }
887
888 static struct pci_driver cafe_nand_pci_driver = {
889         .name = "CAFÉ NAND",
890         .id_table = cafe_nand_tbl,
891         .probe = cafe_nand_probe,
892         .remove = __devexit_p(cafe_nand_remove),
893         .resume = cafe_nand_resume,
894 };
895
896 module_pci_driver(cafe_nand_pci_driver);
897
898 MODULE_LICENSE("GPL");
899 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
900 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");