2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
13 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
27 #define CAFE_NAND_CTRL1 0x00
28 #define CAFE_NAND_CTRL2 0x04
29 #define CAFE_NAND_CTRL3 0x08
30 #define CAFE_NAND_STATUS 0x0c
31 #define CAFE_NAND_IRQ 0x10
32 #define CAFE_NAND_IRQ_MASK 0x14
33 #define CAFE_NAND_DATA_LEN 0x18
34 #define CAFE_NAND_ADDR1 0x1c
35 #define CAFE_NAND_ADDR2 0x20
36 #define CAFE_NAND_TIMING1 0x24
37 #define CAFE_NAND_TIMING2 0x28
38 #define CAFE_NAND_TIMING3 0x2c
39 #define CAFE_NAND_NONMEM 0x30
40 #define CAFE_NAND_ECC_RESULT 0x3C
41 #define CAFE_NAND_DMA_CTRL 0x40
42 #define CAFE_NAND_DMA_ADDR0 0x44
43 #define CAFE_NAND_DMA_ADDR1 0x48
44 #define CAFE_NAND_ECC_SYN01 0x50
45 #define CAFE_NAND_ECC_SYN23 0x54
46 #define CAFE_NAND_ECC_SYN45 0x58
47 #define CAFE_NAND_ECC_SYN67 0x5c
48 #define CAFE_NAND_READ_DATA 0x1000
49 #define CAFE_NAND_WRITE_DATA 0x2000
51 #define CAFE_GLOBAL_CTRL 0x3004
52 #define CAFE_GLOBAL_IRQ 0x3008
53 #define CAFE_GLOBAL_IRQ_MASK 0x300c
54 #define CAFE_NAND_RESET 0x3034
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT (1<<19)
60 struct nand_chip nand;
63 struct rs_control *rs;
71 unsigned char *dmabuf;
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
81 module_param(debug, int, 0644);
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
89 static unsigned int numtimings;
91 module_param_array(timing, int, &numtimings, 0644);
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
102 static int cafe_device_ready(struct mtd_info *mtd)
104 struct nand_chip *chip = mtd_to_nand(mtd);
105 struct cafe_priv *cafe = nand_get_controller_data(chip);
106 int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109 cafe_writel(cafe, irqs, NAND_IRQ);
111 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
121 struct nand_chip *chip = mtd_to_nand(mtd);
122 struct cafe_priv *cafe = nand_get_controller_data(chip);
125 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
127 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
129 cafe->datalen += len;
131 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
135 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
137 struct nand_chip *chip = mtd_to_nand(mtd);
138 struct cafe_priv *cafe = nand_get_controller_data(chip);
141 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
143 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
145 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
147 cafe->datalen += len;
150 static uint8_t cafe_read_byte(struct mtd_info *mtd)
152 struct nand_chip *chip = mtd_to_nand(mtd);
153 struct cafe_priv *cafe = nand_get_controller_data(chip);
156 cafe_read_buf(mtd, &d, 1);
157 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
162 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
163 int column, int page_addr)
165 struct nand_chip *chip = mtd_to_nand(mtd);
166 struct cafe_priv *cafe = nand_get_controller_data(chip);
169 uint32_t doneint = 0x80000000;
171 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
172 command, column, page_addr);
174 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
175 /* Second half of a command we already calculated */
176 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
178 cafe->ctl2 &= ~(1<<30);
179 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
180 cafe->ctl1, cafe->nr_data);
183 /* Reset ECC engine */
184 cafe_writel(cafe, 0, NAND_CTRL2);
186 /* Emulate NAND_CMD_READOOB on large-page chips */
187 if (mtd->writesize > 512 &&
188 command == NAND_CMD_READOOB) {
189 column += mtd->writesize;
190 command = NAND_CMD_READ0;
193 /* FIXME: Do we need to send read command before sending data
194 for small-page chips, to position the buffer correctly? */
197 cafe_writel(cafe, column, NAND_ADDR1);
201 } else if (page_addr != -1) {
202 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
205 cafe_writel(cafe, page_addr, NAND_ADDR2);
207 if (mtd->size > mtd->writesize << 16)
211 cafe->data_pos = cafe->datalen = 0;
213 /* Set command valid bit, mask in the chip select bit */
214 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
216 /* Set RD or WR bits as appropriate */
217 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
218 ctl1 |= (1<<26); /* rd */
219 /* Always 5 bytes, for now */
221 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
223 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
224 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
225 ctl1 |= 1<<26; /* rd */
226 /* For now, assume just read to end of page */
227 cafe->datalen = mtd->writesize + mtd->oobsize - column;
228 } else if (command == NAND_CMD_SEQIN)
229 ctl1 |= 1<<25; /* wr */
231 /* Set number of address bytes */
233 ctl1 |= ((adrbytes-1)|8) << 27;
235 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
236 /* Ignore the first command of a pair; the hardware
237 deals with them both at once, later */
239 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
240 cafe->ctl1, cafe->datalen);
243 /* RNDOUT and READ0 commands need a following byte */
244 if (command == NAND_CMD_RNDOUT)
245 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
246 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
247 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
250 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
251 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
253 /* NB: The datasheet lies -- we really should be subtracting 1 here */
254 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
255 cafe_writel(cafe, 0x90000000, NAND_IRQ);
256 if (usedma && (ctl1 & (3<<25))) {
257 uint32_t dmactl = 0xc0000000 + cafe->datalen;
258 /* If WR or RD bits set, set up DMA */
259 if (ctl1 & (1<<26)) {
262 /* ... so it's done when the DMA is done, not just
264 doneint = 0x10000000;
266 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
270 if (unlikely(regdebug)) {
272 printk("About to write command %08x to register 0\n", ctl1);
273 for (i=4; i< 0x5c; i+=4)
274 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
277 cafe_writel(cafe, ctl1, NAND_CTRL1);
278 /* Apply this short delay always to ensure that we do wait tWB in
279 * any case on any machine. */
286 for (c = 500000; c != 0; c--) {
287 irqs = cafe_readl(cafe, NAND_IRQ);
292 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
295 cafe_writel(cafe, doneint, NAND_IRQ);
296 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
297 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
300 WARN_ON(cafe->ctl2 & (1<<30));
304 case NAND_CMD_CACHEDPROG:
305 case NAND_CMD_PAGEPROG:
306 case NAND_CMD_ERASE1:
307 case NAND_CMD_ERASE2:
310 case NAND_CMD_STATUS:
311 case NAND_CMD_RNDOUT:
312 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315 nand_wait_ready(mtd);
316 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
319 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 struct nand_chip *chip = mtd_to_nand(mtd);
322 struct cafe_priv *cafe = nand_get_controller_data(chip);
324 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
326 /* Mask the appropriate bit into the stored value of ctl1
327 which will be used by cafe_nand_cmdfunc() */
329 cafe->ctl1 |= CTRL1_CHIPSELECT;
331 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
336 struct mtd_info *mtd = id;
337 struct nand_chip *chip = mtd_to_nand(mtd);
338 struct cafe_priv *cafe = nand_get_controller_data(chip);
339 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
344 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
348 static void cafe_nand_bug(struct mtd_info *mtd)
353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354 struct nand_chip *chip, int page)
358 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361 status = chip->waitfunc(mtd, chip);
363 return status & NAND_STATUS_FAIL ? -EIO : 0;
366 /* Don't use -- use nand_read_oob_std for now */
367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
375 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
376 * @mtd: mtd info structure
377 * @chip: nand chip info structure
378 * @buf: buffer to store read data
379 * @oob_required: caller expects OOB data read to chip->oob_poi
381 * The hw generator calculates the error syndrome automatically. Therefore
382 * we need a special oob layout and handling.
384 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385 uint8_t *buf, int oob_required, int page)
387 struct cafe_priv *cafe = nand_get_controller_data(chip);
388 unsigned int max_bitflips = 0;
390 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
391 cafe_readl(cafe, NAND_ECC_RESULT),
392 cafe_readl(cafe, NAND_ECC_SYN01));
394 chip->read_buf(mtd, buf, mtd->writesize);
395 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
397 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
398 unsigned short syn[8], pat[4];
400 u8 *oob = chip->oob_poi;
403 for (i=0; i<8; i+=2) {
404 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
405 syn[i] = cafe->rs->index_of[tmp & 0xfff];
406 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
409 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
412 for (i = 0; i < n; i++) {
415 /* The 12-bit symbols are mapped to bytes here */
421 /* high four bits do not correspond to data */
426 } else if (p == 1365) {
427 buf[2047] ^= pat[i] >> 4;
428 oob[0] ^= pat[i] << 4;
429 } else if (p > 1365) {
431 oob[3*p/2 - 2048] ^= pat[i] >> 4;
432 oob[3*p/2 - 2047] ^= pat[i] << 4;
434 oob[3*p/2 - 2049] ^= pat[i] >> 8;
435 oob[3*p/2 - 2048] ^= pat[i];
437 } else if ((p & 1) == 1) {
438 buf[3*p/2] ^= pat[i] >> 4;
439 buf[3*p/2 + 1] ^= pat[i] << 4;
441 buf[3*p/2 - 1] ^= pat[i] >> 8;
442 buf[3*p/2] ^= pat[i];
447 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
448 cafe_readl(cafe, NAND_ADDR2) * 2048);
449 for (i = 0; i < 0x5c; i += 4)
450 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
451 mtd->ecc_stats.failed++;
453 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
454 mtd->ecc_stats.corrected += n;
455 max_bitflips = max_t(unsigned int, max_bitflips, n);
462 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
463 struct mtd_oob_region *oobregion)
465 struct nand_chip *chip = mtd_to_nand(mtd);
470 oobregion->offset = 0;
471 oobregion->length = chip->ecc.total;
476 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
477 struct mtd_oob_region *oobregion)
479 struct nand_chip *chip = mtd_to_nand(mtd);
484 oobregion->offset = chip->ecc.total;
485 oobregion->length = mtd->oobsize - chip->ecc.total;
490 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
491 .ecc = cafe_ooblayout_ecc,
492 .free = cafe_ooblayout_free,
495 /* Ick. The BBT code really ought to be able to work this bit out
496 for itself from the above, at least for the 2KiB case */
497 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
498 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
500 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
501 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
504 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
505 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
506 | NAND_BBT_2BIT | NAND_BBT_VERSION,
511 .pattern = cafe_bbt_pattern_2048
514 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
515 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
516 | NAND_BBT_2BIT | NAND_BBT_VERSION,
521 .pattern = cafe_mirror_pattern_2048
524 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
525 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
526 | NAND_BBT_2BIT | NAND_BBT_VERSION,
531 .pattern = cafe_bbt_pattern_512
534 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
535 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
536 | NAND_BBT_2BIT | NAND_BBT_VERSION,
541 .pattern = cafe_mirror_pattern_512
545 static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
546 struct nand_chip *chip,
547 const uint8_t *buf, int oob_required,
550 struct cafe_priv *cafe = nand_get_controller_data(chip);
552 chip->write_buf(mtd, buf, mtd->writesize);
553 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
555 /* Set up ECC autogeneration */
556 cafe->ctl2 |= (1<<30);
561 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
566 /* F_2[X]/(X**6+X+1) */
567 static unsigned short gf64_mul(u8 a, u8 b)
573 for (i = 0; i < 6; i++) {
585 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
586 static u16 gf4096_mul(u16 a, u16 b)
588 u8 ah, al, bh, bl, ch, cl;
595 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
596 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
598 return (ch << 6) ^ cl;
601 static int cafe_mul(int x)
605 return gf4096_mul(x, 0xe01);
608 static int cafe_nand_probe(struct pci_dev *pdev,
609 const struct pci_device_id *ent)
611 struct mtd_info *mtd;
612 struct cafe_priv *cafe;
616 struct nand_buffers *nbuf;
618 /* Very old versions shared the same PCI ident for all three
619 functions on the chip. Verify the class too... */
620 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
623 err = pci_enable_device(pdev);
627 pci_set_master(pdev);
629 cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
633 mtd = nand_to_mtd(&cafe->nand);
634 mtd->dev.parent = &pdev->dev;
635 nand_set_controller_data(&cafe->nand, cafe);
638 cafe->mmio = pci_iomap(pdev, 0, 0);
640 dev_warn(&pdev->dev, "failed to iomap\n");
645 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
651 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
652 cafe->nand.dev_ready = cafe_device_ready;
653 cafe->nand.read_byte = cafe_read_byte;
654 cafe->nand.read_buf = cafe_read_buf;
655 cafe->nand.write_buf = cafe_write_buf;
656 cafe->nand.select_chip = cafe_select_chip;
657 cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp;
658 cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp;
660 cafe->nand.chip_delay = 0;
662 /* Enable the following for a flash based bad block table */
663 cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
664 cafe->nand.options = NAND_OWN_BUFFERS;
667 cafe->nand.options |= NAND_SKIP_BBTSCAN;
668 cafe->nand.block_bad = cafe_nand_block_bad;
671 if (numtimings && numtimings != 3) {
672 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
675 if (numtimings == 3) {
676 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
677 timing[0], timing[1], timing[2]);
679 timing[0] = cafe_readl(cafe, NAND_TIMING1);
680 timing[1] = cafe_readl(cafe, NAND_TIMING2);
681 timing[2] = cafe_readl(cafe, NAND_TIMING3);
683 if (timing[0] | timing[1] | timing[2]) {
684 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
685 timing[0], timing[1], timing[2]);
687 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
688 timing[0] = timing[1] = timing[2] = 0xffffffff;
692 /* Start off by resetting the NAND controller completely */
693 cafe_writel(cafe, 1, NAND_RESET);
694 cafe_writel(cafe, 0, NAND_RESET);
696 cafe_writel(cafe, timing[0], NAND_TIMING1);
697 cafe_writel(cafe, timing[1], NAND_TIMING2);
698 cafe_writel(cafe, timing[2], NAND_TIMING3);
700 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
701 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
704 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
708 /* Disable master reset, enable NAND clock */
709 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
712 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
713 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
714 cafe_writel(cafe, 0, NAND_DMA_CTRL);
716 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
717 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
719 /* Enable NAND IRQ in global IRQ mask register */
720 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
721 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
722 cafe_readl(cafe, GLOBAL_CTRL),
723 cafe_readl(cafe, GLOBAL_IRQ_MASK));
725 /* Do not use the DMA for the nand_scan_ident() */
729 /* Scan to find existence of the device */
730 err = nand_scan_ident(mtd, 2, NULL);
734 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
735 2112 + sizeof(struct nand_buffers) +
736 mtd->writesize + mtd->oobsize,
737 &cafe->dmaaddr, GFP_KERNEL);
742 cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
744 /* Set up DMA address */
745 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
746 if (sizeof(cafe->dmaaddr) > 4)
747 /* Shift in two parts to shut the compiler up */
748 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
750 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
752 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
753 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
755 /* this driver does not need the @ecccalc and @ecccode */
756 nbuf->ecccalc = NULL;
757 nbuf->ecccode = NULL;
758 nbuf->databuf = (uint8_t *)(nbuf + 1);
760 /* Restore the DMA flag */
763 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
764 if (mtd->writesize == 2048)
765 cafe->ctl2 |= 1<<29; /* 2KiB page size */
767 /* Set up ECC according to the type of chip we found */
768 mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
769 if (mtd->writesize == 2048) {
770 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
771 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
772 } else if (mtd->writesize == 512) {
773 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
774 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
776 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
780 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
781 cafe->nand.ecc.size = mtd->writesize;
782 cafe->nand.ecc.bytes = 14;
783 cafe->nand.ecc.strength = 4;
784 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
785 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
786 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
787 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
788 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
789 cafe->nand.ecc.read_page = cafe_nand_read_page;
790 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
792 err = nand_scan_tail(mtd);
796 pci_set_drvdata(pdev, mtd);
798 mtd->name = "cafe_nand";
799 mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
804 dma_free_coherent(&cafe->pdev->dev,
805 2112 + sizeof(struct nand_buffers) +
806 mtd->writesize + mtd->oobsize,
807 cafe->dmabuf, cafe->dmaaddr);
809 /* Disable NAND IRQ in global IRQ mask register */
810 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
811 free_irq(pdev->irq, mtd);
813 pci_iounmap(pdev, cafe->mmio);
820 static void cafe_nand_remove(struct pci_dev *pdev)
822 struct mtd_info *mtd = pci_get_drvdata(pdev);
823 struct nand_chip *chip = mtd_to_nand(mtd);
824 struct cafe_priv *cafe = nand_get_controller_data(chip);
826 /* Disable NAND IRQ in global IRQ mask register */
827 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
828 free_irq(pdev->irq, mtd);
831 pci_iounmap(pdev, cafe->mmio);
832 dma_free_coherent(&cafe->pdev->dev,
833 2112 + sizeof(struct nand_buffers) +
834 mtd->writesize + mtd->oobsize,
835 cafe->dmabuf, cafe->dmaaddr);
839 static const struct pci_device_id cafe_nand_tbl[] = {
840 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
841 PCI_ANY_ID, PCI_ANY_ID },
845 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
847 static int cafe_nand_resume(struct pci_dev *pdev)
850 struct mtd_info *mtd = pci_get_drvdata(pdev);
851 struct nand_chip *chip = mtd_to_nand(mtd);
852 struct cafe_priv *cafe = nand_get_controller_data(chip);
854 /* Start off by resetting the NAND controller completely */
855 cafe_writel(cafe, 1, NAND_RESET);
856 cafe_writel(cafe, 0, NAND_RESET);
857 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
859 /* Restore timing configuration */
860 cafe_writel(cafe, timing[0], NAND_TIMING1);
861 cafe_writel(cafe, timing[1], NAND_TIMING2);
862 cafe_writel(cafe, timing[2], NAND_TIMING3);
864 /* Disable master reset, enable NAND clock */
865 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
868 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
869 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
870 cafe_writel(cafe, 0, NAND_DMA_CTRL);
871 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
872 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
874 /* Set up DMA address */
875 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
876 if (sizeof(cafe->dmaaddr) > 4)
877 /* Shift in two parts to shut the compiler up */
878 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
880 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
882 /* Enable NAND IRQ in global IRQ mask register */
883 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
887 static struct pci_driver cafe_nand_pci_driver = {
889 .id_table = cafe_nand_tbl,
890 .probe = cafe_nand_probe,
891 .remove = cafe_nand_remove,
892 .resume = cafe_nand_resume,
895 module_pci_driver(cafe_nand_pci_driver);
897 MODULE_LICENSE("GPL");
898 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
899 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");