1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Core registration and callback routines for MTD
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
37 struct backing_dev_info *mtd_bdi;
39 #ifdef CONFIG_PM_SLEEP
41 static int mtd_cls_suspend(struct device *dev)
43 struct mtd_info *mtd = dev_get_drvdata(dev);
45 return mtd ? mtd_suspend(mtd) : 0;
48 static int mtd_cls_resume(struct device *dev)
50 struct mtd_info *mtd = dev_get_drvdata(dev);
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #define MTD_CLS_PM_OPS NULL
63 static struct class mtd_class = {
69 static DEFINE_IDR(mtd_idr);
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 struct mtd_info *__mtd_next_device(int i)
78 return idr_get_next(&mtd_idr, &i);
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 static LIST_HEAD(mtd_notifiers);
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
90 static void mtd_release(struct device *dev)
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
99 static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
102 struct mtd_info *mtd = dev_get_drvdata(dev);
127 case MTD_MLCNANDFLASH:
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
138 static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
141 struct mtd_info *mtd = dev_get_drvdata(dev);
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
147 static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
150 struct mtd_info *mtd = dev_get_drvdata(dev);
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
160 struct mtd_info *mtd = dev_get_drvdata(dev);
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
166 static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
169 struct mtd_info *mtd = dev_get_drvdata(dev);
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
188 struct mtd_info *mtd = dev_get_drvdata(dev);
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct mtd_info *mtd = dev_get_drvdata(dev);
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
213 static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
225 struct mtd_info *mtd = dev_get_drvdata(dev);
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
235 struct mtd_info *mtd = dev_get_drvdata(dev);
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
252 mtd->bitflip_threshold = bitflip_threshold;
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
262 struct mtd_info *mtd = dev_get_drvdata(dev);
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
310 static struct attribute *mtd_attrs[] = {
312 &dev_attr_flags.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
330 ATTRIBUTE_GROUPS(mtd);
332 static const struct device_type mtd_devtype = {
334 .groups = mtd_groups,
335 .release = mtd_release,
339 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
343 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
344 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
346 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
349 return NOMMU_MAP_COPY;
352 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
355 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
358 struct mtd_info *mtd;
360 mtd = container_of(n, struct mtd_info, reboot_notifier);
367 * mtd_wunit_to_pairing_info - get pairing information of a wunit
368 * @mtd: pointer to new MTD device info structure
369 * @wunit: write unit we are interested in
370 * @info: returned pairing information
372 * Retrieve pairing information associated to the wunit.
373 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
374 * paired together, and where programming a page may influence the page it is
376 * The notion of page is replaced by the term wunit (write-unit) to stay
377 * consistent with the ->writesize field.
379 * The @wunit argument can be extracted from an absolute offset using
380 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
383 * From the pairing info the MTD user can find all the wunits paired with
384 * @wunit using the following loop:
386 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
388 * mtd_pairing_info_to_wunit(mtd, &info);
392 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
393 struct mtd_pairing_info *info)
395 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
397 if (wunit < 0 || wunit >= npairs)
400 if (mtd->pairing && mtd->pairing->get_info)
401 return mtd->pairing->get_info(mtd, wunit, info);
408 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
411 * mtd_pairing_info_to_wunit - get wunit from pairing information
412 * @mtd: pointer to new MTD device info structure
413 * @info: pairing information struct
415 * Returns a positive number representing the wunit associated to the info
416 * struct, or a negative error code.
418 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
419 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
422 * It can also be used to only program the first page of each pair (i.e.
423 * page attached to group 0), which allows one to use an MLC NAND in
424 * software-emulated SLC mode:
427 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
428 * for (info.pair = 0; info.pair < npairs; info.pair++) {
429 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
430 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
431 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
434 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
435 const struct mtd_pairing_info *info)
437 int ngroups = mtd_pairing_groups(mtd);
438 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
440 if (!info || info->pair < 0 || info->pair >= npairs ||
441 info->group < 0 || info->group >= ngroups)
444 if (mtd->pairing && mtd->pairing->get_wunit)
445 return mtd->pairing->get_wunit(mtd, info);
449 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
452 * mtd_pairing_groups - get the number of pairing groups
453 * @mtd: pointer to new MTD device info structure
455 * Returns the number of pairing groups.
457 * This number is usually equal to the number of bits exposed by a single
458 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
459 * to iterate over all pages of a given pair.
461 int mtd_pairing_groups(struct mtd_info *mtd)
463 if (!mtd->pairing || !mtd->pairing->ngroups)
466 return mtd->pairing->ngroups;
468 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
470 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
471 void *val, size_t bytes)
473 struct mtd_info *mtd = priv;
477 err = mtd_read(mtd, offset, bytes, &retlen, val);
478 if (err && err != -EUCLEAN)
481 return retlen == bytes ? 0 : -EIO;
484 static int mtd_nvmem_add(struct mtd_info *mtd)
486 struct nvmem_config config = {};
489 config.dev = &mtd->dev;
490 config.name = mtd->name;
491 config.owner = THIS_MODULE;
492 config.reg_read = mtd_nvmem_reg_read;
493 config.size = mtd->size;
494 config.word_size = 1;
496 config.read_only = true;
497 config.root_only = true;
498 config.no_of_node = true;
501 mtd->nvmem = nvmem_register(&config);
502 if (IS_ERR(mtd->nvmem)) {
503 /* Just ignore if there is no NVMEM support in the kernel */
504 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
507 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
508 return PTR_ERR(mtd->nvmem);
515 static struct dentry *dfs_dir_mtd;
518 * add_mtd_device - register an MTD device
519 * @mtd: pointer to new MTD device info structure
521 * Add a device to the list of MTD devices present in the system, and
522 * notify each currently active MTD 'user' of its arrival. Returns
523 * zero on success or non-zero on failure.
526 int add_mtd_device(struct mtd_info *mtd)
528 struct mtd_notifier *not;
532 * May occur, for instance, on buggy drivers which call
533 * mtd_device_parse_register() multiple times on the same master MTD,
534 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
536 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
539 BUG_ON(mtd->writesize == 0);
542 * MTD drivers should implement ->_{write,read}() or
543 * ->_{write,read}_oob(), but not both.
545 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
546 (mtd->_read && mtd->_read_oob)))
549 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
550 !(mtd->flags & MTD_NO_ERASE)))
553 mutex_lock(&mtd_table_mutex);
555 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
564 /* default value if not set by driver */
565 if (mtd->bitflip_threshold == 0)
566 mtd->bitflip_threshold = mtd->ecc_strength;
568 if (is_power_of_2(mtd->erasesize))
569 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
571 mtd->erasesize_shift = 0;
573 if (is_power_of_2(mtd->writesize))
574 mtd->writesize_shift = ffs(mtd->writesize) - 1;
576 mtd->writesize_shift = 0;
578 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
579 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
581 /* Some chips always power up locked. Unlock them now */
582 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
583 error = mtd_unlock(mtd, 0, mtd->size);
584 if (error && error != -EOPNOTSUPP)
586 "%s: unlock failed, writes may not work\n",
588 /* Ignore unlock failures? */
592 /* Caller should have set dev.parent to match the
593 * physical device, if appropriate.
595 mtd->dev.type = &mtd_devtype;
596 mtd->dev.class = &mtd_class;
597 mtd->dev.devt = MTD_DEVT(i);
598 dev_set_name(&mtd->dev, "mtd%d", i);
599 dev_set_drvdata(&mtd->dev, mtd);
600 of_node_get(mtd_get_of_node(mtd));
601 error = device_register(&mtd->dev);
605 /* Add the nvmem provider */
606 error = mtd_nvmem_add(mtd);
610 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
611 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
612 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
613 pr_debug("mtd device %s won't show data in debugfs\n",
614 dev_name(&mtd->dev));
618 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
621 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
622 /* No need to get a refcount on the module containing
623 the notifier, since we hold the mtd_table_mutex */
624 list_for_each_entry(not, &mtd_notifiers, list)
627 mutex_unlock(&mtd_table_mutex);
628 /* We _know_ we aren't being removed, because
629 our caller is still holding us here. So none
630 of this try_ nonsense, and no bitching about it
632 __module_get(THIS_MODULE);
636 device_unregister(&mtd->dev);
638 of_node_put(mtd_get_of_node(mtd));
639 idr_remove(&mtd_idr, i);
641 mutex_unlock(&mtd_table_mutex);
646 * del_mtd_device - unregister an MTD device
647 * @mtd: pointer to MTD device info structure
649 * Remove a device from the list of MTD devices present in the system,
650 * and notify each currently active MTD 'user' of its departure.
651 * Returns zero on success or 1 on failure, which currently will happen
652 * if the requested device does not appear to be present in the list.
655 int del_mtd_device(struct mtd_info *mtd)
658 struct mtd_notifier *not;
660 mutex_lock(&mtd_table_mutex);
662 debugfs_remove_recursive(mtd->dbg.dfs_dir);
664 if (idr_find(&mtd_idr, mtd->index) != mtd) {
669 /* No need to get a refcount on the module containing
670 the notifier, since we hold the mtd_table_mutex */
671 list_for_each_entry(not, &mtd_notifiers, list)
675 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
676 mtd->index, mtd->name, mtd->usecount);
679 /* Try to remove the NVMEM provider */
681 nvmem_unregister(mtd->nvmem);
683 device_unregister(&mtd->dev);
685 idr_remove(&mtd_idr, mtd->index);
686 of_node_put(mtd_get_of_node(mtd));
688 module_put(THIS_MODULE);
693 mutex_unlock(&mtd_table_mutex);
698 * Set a few defaults based on the parent devices, if not provided by the
701 static void mtd_set_dev_defaults(struct mtd_info *mtd)
703 if (mtd->dev.parent) {
704 if (!mtd->owner && mtd->dev.parent->driver)
705 mtd->owner = mtd->dev.parent->driver->owner;
707 mtd->name = dev_name(mtd->dev.parent);
709 pr_debug("mtd device won't show a device symlink in sysfs\n");
712 mtd->orig_flags = mtd->flags;
716 * mtd_device_parse_register - parse partitions and register an MTD device.
718 * @mtd: the MTD device to register
719 * @types: the list of MTD partition probes to try, see
720 * 'parse_mtd_partitions()' for more information
721 * @parser_data: MTD partition parser-specific data
722 * @parts: fallback partition information to register, if parsing fails;
723 * only valid if %nr_parts > %0
724 * @nr_parts: the number of partitions in parts, if zero then the full
725 * MTD device is registered if no partition info is found
727 * This function aggregates MTD partitions parsing (done by
728 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
729 * basically follows the most common pattern found in many MTD drivers:
731 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
733 * * Then It tries to probe partitions on MTD device @mtd using parsers
734 * specified in @types (if @types is %NULL, then the default list of parsers
735 * is used, see 'parse_mtd_partitions()' for more information). If none are
736 * found this functions tries to fallback to information specified in
738 * * If no partitions were found this function just registers the MTD device
741 * Returns zero in case of success and a negative error code in case of failure.
743 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
744 struct mtd_part_parser_data *parser_data,
745 const struct mtd_partition *parts,
750 mtd_set_dev_defaults(mtd);
752 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
753 ret = add_mtd_device(mtd);
758 /* Prefer parsed partitions over driver-provided fallback */
759 ret = parse_mtd_partitions(mtd, types, parser_data);
763 ret = add_mtd_partitions(mtd, parts, nr_parts);
764 else if (!device_is_registered(&mtd->dev))
765 ret = add_mtd_device(mtd);
773 * FIXME: some drivers unfortunately call this function more than once.
774 * So we have to check if we've already assigned the reboot notifier.
776 * Generally, we can make multiple calls work for most cases, but it
777 * does cause problems with parse_mtd_partitions() above (e.g.,
778 * cmdlineparts will register partitions more than once).
780 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
781 "MTD already registered\n");
782 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
783 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
784 register_reboot_notifier(&mtd->reboot_notifier);
788 if (ret && device_is_registered(&mtd->dev))
793 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
796 * mtd_device_unregister - unregister an existing MTD device.
798 * @master: the MTD device to unregister. This will unregister both the master
799 * and any partitions if registered.
801 int mtd_device_unregister(struct mtd_info *master)
806 unregister_reboot_notifier(&master->reboot_notifier);
808 err = del_mtd_partitions(master);
812 if (!device_is_registered(&master->dev))
815 return del_mtd_device(master);
817 EXPORT_SYMBOL_GPL(mtd_device_unregister);
820 * register_mtd_user - register a 'user' of MTD devices.
821 * @new: pointer to notifier info structure
823 * Registers a pair of callbacks function to be called upon addition
824 * or removal of MTD devices. Causes the 'add' callback to be immediately
825 * invoked for each MTD device currently present in the system.
827 void register_mtd_user (struct mtd_notifier *new)
829 struct mtd_info *mtd;
831 mutex_lock(&mtd_table_mutex);
833 list_add(&new->list, &mtd_notifiers);
835 __module_get(THIS_MODULE);
837 mtd_for_each_device(mtd)
840 mutex_unlock(&mtd_table_mutex);
842 EXPORT_SYMBOL_GPL(register_mtd_user);
845 * unregister_mtd_user - unregister a 'user' of MTD devices.
846 * @old: pointer to notifier info structure
848 * Removes a callback function pair from the list of 'users' to be
849 * notified upon addition or removal of MTD devices. Causes the
850 * 'remove' callback to be immediately invoked for each MTD device
851 * currently present in the system.
853 int unregister_mtd_user (struct mtd_notifier *old)
855 struct mtd_info *mtd;
857 mutex_lock(&mtd_table_mutex);
859 module_put(THIS_MODULE);
861 mtd_for_each_device(mtd)
864 list_del(&old->list);
865 mutex_unlock(&mtd_table_mutex);
868 EXPORT_SYMBOL_GPL(unregister_mtd_user);
871 * get_mtd_device - obtain a validated handle for an MTD device
872 * @mtd: last known address of the required MTD device
873 * @num: internal device number of the required MTD device
875 * Given a number and NULL address, return the num'th entry in the device
876 * table, if any. Given an address and num == -1, search the device table
877 * for a device with that address and return if it's still present. Given
878 * both, return the num'th driver only if its address matches. Return
881 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
883 struct mtd_info *ret = NULL, *other;
886 mutex_lock(&mtd_table_mutex);
889 mtd_for_each_device(other) {
895 } else if (num >= 0) {
896 ret = idr_find(&mtd_idr, num);
897 if (mtd && mtd != ret)
906 err = __get_mtd_device(ret);
910 mutex_unlock(&mtd_table_mutex);
913 EXPORT_SYMBOL_GPL(get_mtd_device);
916 int __get_mtd_device(struct mtd_info *mtd)
920 if (!try_module_get(mtd->owner))
923 if (mtd->_get_device) {
924 err = mtd->_get_device(mtd);
927 module_put(mtd->owner);
934 EXPORT_SYMBOL_GPL(__get_mtd_device);
937 * get_mtd_device_nm - obtain a validated handle for an MTD device by
939 * @name: MTD device name to open
941 * This function returns MTD device description structure in case of
942 * success and an error code in case of failure.
944 struct mtd_info *get_mtd_device_nm(const char *name)
947 struct mtd_info *mtd = NULL, *other;
949 mutex_lock(&mtd_table_mutex);
951 mtd_for_each_device(other) {
952 if (!strcmp(name, other->name)) {
961 err = __get_mtd_device(mtd);
965 mutex_unlock(&mtd_table_mutex);
969 mutex_unlock(&mtd_table_mutex);
972 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
974 void put_mtd_device(struct mtd_info *mtd)
976 mutex_lock(&mtd_table_mutex);
977 __put_mtd_device(mtd);
978 mutex_unlock(&mtd_table_mutex);
981 EXPORT_SYMBOL_GPL(put_mtd_device);
983 void __put_mtd_device(struct mtd_info *mtd)
986 BUG_ON(mtd->usecount < 0);
988 if (mtd->_put_device)
989 mtd->_put_device(mtd);
991 module_put(mtd->owner);
993 EXPORT_SYMBOL_GPL(__put_mtd_device);
996 * Erase is an synchronous operation. Device drivers are epected to return a
997 * negative error code if the operation failed and update instr->fail_addr
998 * to point the portion that was not properly erased.
1000 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1002 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1004 if (!mtd->erasesize || !mtd->_erase)
1007 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1009 if (!(mtd->flags & MTD_WRITEABLE))
1015 ledtrig_mtd_activity();
1016 return mtd->_erase(mtd, instr);
1018 EXPORT_SYMBOL_GPL(mtd_erase);
1021 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1023 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1024 void **virt, resource_size_t *phys)
1032 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1036 return mtd->_point(mtd, from, len, retlen, virt, phys);
1038 EXPORT_SYMBOL_GPL(mtd_point);
1040 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1041 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1045 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1049 return mtd->_unpoint(mtd, from, len);
1051 EXPORT_SYMBOL_GPL(mtd_unpoint);
1054 * Allow NOMMU mmap() to directly map the device (if not NULL)
1055 * - return the address to which the offset maps
1056 * - return -ENOSYS to indicate refusal to do the mapping
1058 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1059 unsigned long offset, unsigned long flags)
1065 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1068 if (retlen != len) {
1069 mtd_unpoint(mtd, offset, retlen);
1072 return (unsigned long)virt;
1074 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1076 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1079 struct mtd_oob_ops ops = {
1085 ret = mtd_read_oob(mtd, from, &ops);
1086 *retlen = ops.retlen;
1090 EXPORT_SYMBOL_GPL(mtd_read);
1092 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1095 struct mtd_oob_ops ops = {
1097 .datbuf = (u8 *)buf,
1101 ret = mtd_write_oob(mtd, to, &ops);
1102 *retlen = ops.retlen;
1106 EXPORT_SYMBOL_GPL(mtd_write);
1109 * In blackbox flight recorder like scenarios we want to make successful writes
1110 * in interrupt context. panic_write() is only intended to be called when its
1111 * known the kernel is about to panic and we need the write to succeed. Since
1112 * the kernel is not going to be running for much longer, this function can
1113 * break locks and delay to ensure the write succeeds (but not sleep).
1115 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1119 if (!mtd->_panic_write)
1121 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1123 if (!(mtd->flags & MTD_WRITEABLE))
1127 if (!mtd->oops_panic_write)
1128 mtd->oops_panic_write = true;
1130 return mtd->_panic_write(mtd, to, len, retlen, buf);
1132 EXPORT_SYMBOL_GPL(mtd_panic_write);
1134 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1135 struct mtd_oob_ops *ops)
1138 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1139 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1148 if (offs < 0 || offs + ops->len > mtd->size)
1154 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1157 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1158 mtd_div_by_ws(offs, mtd)) *
1159 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1160 if (ops->ooblen > maxooblen)
1167 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1170 ops->retlen = ops->oobretlen = 0;
1172 ret_code = mtd_check_oob_ops(mtd, from, ops);
1176 ledtrig_mtd_activity();
1178 /* Check the validity of a potential fallback on mtd->_read */
1179 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1183 ret_code = mtd->_read_oob(mtd, from, ops);
1185 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1189 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1190 * similar to mtd->_read(), returning a non-negative integer
1191 * representing max bitflips. In other cases, mtd->_read_oob() may
1192 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1194 if (unlikely(ret_code < 0))
1196 if (mtd->ecc_strength == 0)
1197 return 0; /* device lacks ecc */
1198 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1200 EXPORT_SYMBOL_GPL(mtd_read_oob);
1202 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1203 struct mtd_oob_ops *ops)
1207 ops->retlen = ops->oobretlen = 0;
1209 if (!(mtd->flags & MTD_WRITEABLE))
1212 ret = mtd_check_oob_ops(mtd, to, ops);
1216 ledtrig_mtd_activity();
1218 /* Check the validity of a potential fallback on mtd->_write */
1219 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1222 if (mtd->_write_oob)
1223 return mtd->_write_oob(mtd, to, ops);
1225 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1228 EXPORT_SYMBOL_GPL(mtd_write_oob);
1231 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1232 * @mtd: MTD device structure
1233 * @section: ECC section. Depending on the layout you may have all the ECC
1234 * bytes stored in a single contiguous section, or one section
1235 * per ECC chunk (and sometime several sections for a single ECC
1237 * @oobecc: OOB region struct filled with the appropriate ECC position
1240 * This function returns ECC section information in the OOB area. If you want
1241 * to get all the ECC bytes information, then you should call
1242 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1244 * Returns zero on success, a negative error code otherwise.
1246 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1247 struct mtd_oob_region *oobecc)
1249 memset(oobecc, 0, sizeof(*oobecc));
1251 if (!mtd || section < 0)
1254 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1257 return mtd->ooblayout->ecc(mtd, section, oobecc);
1259 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1262 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1264 * @mtd: MTD device structure
1265 * @section: Free section you are interested in. Depending on the layout
1266 * you may have all the free bytes stored in a single contiguous
1267 * section, or one section per ECC chunk plus an extra section
1268 * for the remaining bytes (or other funky layout).
1269 * @oobfree: OOB region struct filled with the appropriate free position
1272 * This function returns free bytes position in the OOB area. If you want
1273 * to get all the free bytes information, then you should call
1274 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1276 * Returns zero on success, a negative error code otherwise.
1278 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1279 struct mtd_oob_region *oobfree)
1281 memset(oobfree, 0, sizeof(*oobfree));
1283 if (!mtd || section < 0)
1286 if (!mtd->ooblayout || !mtd->ooblayout->free)
1289 return mtd->ooblayout->free(mtd, section, oobfree);
1291 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1294 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1295 * @mtd: mtd info structure
1296 * @byte: the byte we are searching for
1297 * @sectionp: pointer where the section id will be stored
1298 * @oobregion: used to retrieve the ECC position
1299 * @iter: iterator function. Should be either mtd_ooblayout_free or
1300 * mtd_ooblayout_ecc depending on the region type you're searching for
1302 * This function returns the section id and oobregion information of a
1303 * specific byte. For example, say you want to know where the 4th ECC byte is
1304 * stored, you'll use:
1306 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1308 * Returns zero on success, a negative error code otherwise.
1310 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1311 int *sectionp, struct mtd_oob_region *oobregion,
1312 int (*iter)(struct mtd_info *,
1314 struct mtd_oob_region *oobregion))
1316 int pos = 0, ret, section = 0;
1318 memset(oobregion, 0, sizeof(*oobregion));
1321 ret = iter(mtd, section, oobregion);
1325 if (pos + oobregion->length > byte)
1328 pos += oobregion->length;
1333 * Adjust region info to make it start at the beginning at the
1336 oobregion->offset += byte - pos;
1337 oobregion->length -= byte - pos;
1338 *sectionp = section;
1344 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1346 * @mtd: mtd info structure
1347 * @eccbyte: the byte we are searching for
1348 * @sectionp: pointer where the section id will be stored
1349 * @oobregion: OOB region information
1351 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1354 * Returns zero on success, a negative error code otherwise.
1356 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1358 struct mtd_oob_region *oobregion)
1360 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1363 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1366 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1367 * @mtd: mtd info structure
1368 * @buf: destination buffer to store OOB bytes
1369 * @oobbuf: OOB buffer
1370 * @start: first byte to retrieve
1371 * @nbytes: number of bytes to retrieve
1372 * @iter: section iterator
1374 * Extract bytes attached to a specific category (ECC or free)
1375 * from the OOB buffer and copy them into buf.
1377 * Returns zero on success, a negative error code otherwise.
1379 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1380 const u8 *oobbuf, int start, int nbytes,
1381 int (*iter)(struct mtd_info *,
1383 struct mtd_oob_region *oobregion))
1385 struct mtd_oob_region oobregion;
1388 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1394 cnt = min_t(int, nbytes, oobregion.length);
1395 memcpy(buf, oobbuf + oobregion.offset, cnt);
1402 ret = iter(mtd, ++section, &oobregion);
1409 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1410 * @mtd: mtd info structure
1411 * @buf: source buffer to get OOB bytes from
1412 * @oobbuf: OOB buffer
1413 * @start: first OOB byte to set
1414 * @nbytes: number of OOB bytes to set
1415 * @iter: section iterator
1417 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1418 * is selected by passing the appropriate iterator.
1420 * Returns zero on success, a negative error code otherwise.
1422 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1423 u8 *oobbuf, int start, int nbytes,
1424 int (*iter)(struct mtd_info *,
1426 struct mtd_oob_region *oobregion))
1428 struct mtd_oob_region oobregion;
1431 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1437 cnt = min_t(int, nbytes, oobregion.length);
1438 memcpy(oobbuf + oobregion.offset, buf, cnt);
1445 ret = iter(mtd, ++section, &oobregion);
1452 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1453 * @mtd: mtd info structure
1454 * @iter: category iterator
1456 * Count the number of bytes in a given category.
1458 * Returns a positive value on success, a negative error code otherwise.
1460 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1461 int (*iter)(struct mtd_info *,
1463 struct mtd_oob_region *oobregion))
1465 struct mtd_oob_region oobregion;
1466 int section = 0, ret, nbytes = 0;
1469 ret = iter(mtd, section++, &oobregion);
1476 nbytes += oobregion.length;
1483 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1484 * @mtd: mtd info structure
1485 * @eccbuf: destination buffer to store ECC bytes
1486 * @oobbuf: OOB buffer
1487 * @start: first ECC byte to retrieve
1488 * @nbytes: number of ECC bytes to retrieve
1490 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1492 * Returns zero on success, a negative error code otherwise.
1494 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1495 const u8 *oobbuf, int start, int nbytes)
1497 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1500 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1503 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1504 * @mtd: mtd info structure
1505 * @eccbuf: source buffer to get ECC bytes from
1506 * @oobbuf: OOB buffer
1507 * @start: first ECC byte to set
1508 * @nbytes: number of ECC bytes to set
1510 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1512 * Returns zero on success, a negative error code otherwise.
1514 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1515 u8 *oobbuf, int start, int nbytes)
1517 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1520 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1523 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1524 * @mtd: mtd info structure
1525 * @databuf: destination buffer to store ECC bytes
1526 * @oobbuf: OOB buffer
1527 * @start: first ECC byte to retrieve
1528 * @nbytes: number of ECC bytes to retrieve
1530 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1532 * Returns zero on success, a negative error code otherwise.
1534 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1535 const u8 *oobbuf, int start, int nbytes)
1537 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1538 mtd_ooblayout_free);
1540 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1543 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1544 * @mtd: mtd info structure
1545 * @databuf: source buffer to get data bytes from
1546 * @oobbuf: OOB buffer
1547 * @start: first ECC byte to set
1548 * @nbytes: number of ECC bytes to set
1550 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1552 * Returns zero on success, a negative error code otherwise.
1554 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1555 u8 *oobbuf, int start, int nbytes)
1557 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1558 mtd_ooblayout_free);
1560 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1563 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1564 * @mtd: mtd info structure
1566 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1568 * Returns zero on success, a negative error code otherwise.
1570 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1572 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1574 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1577 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1578 * @mtd: mtd info structure
1580 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1582 * Returns zero on success, a negative error code otherwise.
1584 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1586 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1588 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1591 * Method to access the protection register area, present in some flash
1592 * devices. The user data is one time programmable but the factory data is read
1595 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1596 struct otp_info *buf)
1598 if (!mtd->_get_fact_prot_info)
1602 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1604 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1606 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1607 size_t *retlen, u_char *buf)
1610 if (!mtd->_read_fact_prot_reg)
1614 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1616 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1618 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1619 struct otp_info *buf)
1621 if (!mtd->_get_user_prot_info)
1625 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1627 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1629 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1630 size_t *retlen, u_char *buf)
1633 if (!mtd->_read_user_prot_reg)
1637 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1639 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1641 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1642 size_t *retlen, u_char *buf)
1647 if (!mtd->_write_user_prot_reg)
1651 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1656 * If no data could be written at all, we are out of memory and
1657 * must return -ENOSPC.
1659 return (*retlen) ? 0 : -ENOSPC;
1661 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1663 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1665 if (!mtd->_lock_user_prot_reg)
1669 return mtd->_lock_user_prot_reg(mtd, from, len);
1671 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1673 /* Chip-supported device locking */
1674 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1678 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1682 return mtd->_lock(mtd, ofs, len);
1684 EXPORT_SYMBOL_GPL(mtd_lock);
1686 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1690 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1694 return mtd->_unlock(mtd, ofs, len);
1696 EXPORT_SYMBOL_GPL(mtd_unlock);
1698 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1700 if (!mtd->_is_locked)
1702 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1706 return mtd->_is_locked(mtd, ofs, len);
1708 EXPORT_SYMBOL_GPL(mtd_is_locked);
1710 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1712 if (ofs < 0 || ofs >= mtd->size)
1714 if (!mtd->_block_isreserved)
1716 return mtd->_block_isreserved(mtd, ofs);
1718 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1720 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1722 if (ofs < 0 || ofs >= mtd->size)
1724 if (!mtd->_block_isbad)
1726 return mtd->_block_isbad(mtd, ofs);
1728 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1730 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1732 if (!mtd->_block_markbad)
1734 if (ofs < 0 || ofs >= mtd->size)
1736 if (!(mtd->flags & MTD_WRITEABLE))
1738 return mtd->_block_markbad(mtd, ofs);
1740 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1743 * default_mtd_writev - the default writev method
1744 * @mtd: mtd device description object pointer
1745 * @vecs: the vectors to write
1746 * @count: count of vectors in @vecs
1747 * @to: the MTD device offset to write to
1748 * @retlen: on exit contains the count of bytes written to the MTD device.
1750 * This function returns zero in case of success and a negative error code in
1753 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1754 unsigned long count, loff_t to, size_t *retlen)
1757 size_t totlen = 0, thislen;
1760 for (i = 0; i < count; i++) {
1761 if (!vecs[i].iov_len)
1763 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1766 if (ret || thislen != vecs[i].iov_len)
1768 to += vecs[i].iov_len;
1775 * mtd_writev - the vector-based MTD write method
1776 * @mtd: mtd device description object pointer
1777 * @vecs: the vectors to write
1778 * @count: count of vectors in @vecs
1779 * @to: the MTD device offset to write to
1780 * @retlen: on exit contains the count of bytes written to the MTD device.
1782 * This function returns zero in case of success and a negative error code in
1785 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1786 unsigned long count, loff_t to, size_t *retlen)
1789 if (!(mtd->flags & MTD_WRITEABLE))
1792 return default_mtd_writev(mtd, vecs, count, to, retlen);
1793 return mtd->_writev(mtd, vecs, count, to, retlen);
1795 EXPORT_SYMBOL_GPL(mtd_writev);
1798 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1799 * @mtd: mtd device description object pointer
1800 * @size: a pointer to the ideal or maximum size of the allocation, points
1801 * to the actual allocation size on success.
1803 * This routine attempts to allocate a contiguous kernel buffer up to
1804 * the specified size, backing off the size of the request exponentially
1805 * until the request succeeds or until the allocation size falls below
1806 * the system page size. This attempts to make sure it does not adversely
1807 * impact system performance, so when allocating more than one page, we
1808 * ask the memory allocator to avoid re-trying, swapping, writing back
1809 * or performing I/O.
1811 * Note, this function also makes sure that the allocated buffer is aligned to
1812 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1814 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1815 * to handle smaller (i.e. degraded) buffer allocations under low- or
1816 * fragmented-memory situations where such reduced allocations, from a
1817 * requested ideal, are allowed.
1819 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1821 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1823 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1824 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1827 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1829 while (*size > min_alloc) {
1830 kbuf = kmalloc(*size, flags);
1835 *size = ALIGN(*size, mtd->writesize);
1839 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1840 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1842 return kmalloc(*size, GFP_KERNEL);
1844 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1846 #ifdef CONFIG_PROC_FS
1848 /*====================================================================*/
1849 /* Support for /proc/mtd */
1851 static int mtd_proc_show(struct seq_file *m, void *v)
1853 struct mtd_info *mtd;
1855 seq_puts(m, "dev: size erasesize name\n");
1856 mutex_lock(&mtd_table_mutex);
1857 mtd_for_each_device(mtd) {
1858 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1859 mtd->index, (unsigned long long)mtd->size,
1860 mtd->erasesize, mtd->name);
1862 mutex_unlock(&mtd_table_mutex);
1865 #endif /* CONFIG_PROC_FS */
1867 /*====================================================================*/
1870 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1872 struct backing_dev_info *bdi;
1875 bdi = bdi_alloc(GFP_KERNEL);
1877 return ERR_PTR(-ENOMEM);
1881 * We put '-0' suffix to the name to get the same name format as we
1882 * used to get. Since this is called only once, we get a unique name.
1884 ret = bdi_register(bdi, "%.28s-0", name);
1888 return ret ? ERR_PTR(ret) : bdi;
1891 static struct proc_dir_entry *proc_mtd;
1893 static int __init init_mtd(void)
1897 ret = class_register(&mtd_class);
1901 mtd_bdi = mtd_bdi_init("mtd");
1902 if (IS_ERR(mtd_bdi)) {
1903 ret = PTR_ERR(mtd_bdi);
1907 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1909 ret = init_mtdchar();
1913 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1919 remove_proc_entry("mtd", NULL);
1922 class_unregister(&mtd_class);
1924 pr_err("Error registering mtd class or bdi: %d\n", ret);
1928 static void __exit cleanup_mtd(void)
1930 debugfs_remove_recursive(dfs_dir_mtd);
1933 remove_proc_entry("mtd", NULL);
1934 class_unregister(&mtd_class);
1936 idr_destroy(&mtd_idr);
1939 module_init(init_mtd);
1940 module_exit(cleanup_mtd);
1942 MODULE_LICENSE("GPL");
1943 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1944 MODULE_DESCRIPTION("Core MTD registration and access routines");