Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / mtdconcat.c
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34
35 #include <asm/div64.h>
36
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44         struct mtd_info mtd;
45         int num_subdev;
46         struct mtd_info **subdev;
47 };
48
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
54         ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69             size_t * retlen, u_char * buf)
70 {
71         struct mtd_concat *concat = CONCAT(mtd);
72         int ret = 0, err;
73         int i;
74
75         for (i = 0; i < concat->num_subdev; i++) {
76                 struct mtd_info *subdev = concat->subdev[i];
77                 size_t size, retsize;
78
79                 if (from >= subdev->size) {
80                         /* Not destined for this subdev */
81                         size = 0;
82                         from -= subdev->size;
83                         continue;
84                 }
85                 if (from + len > subdev->size)
86                         /* First part goes into this subdev */
87                         size = subdev->size - from;
88                 else
89                         /* Entire transaction goes into this subdev */
90                         size = len;
91
92                 err = mtd_read(subdev, from, size, &retsize, buf);
93
94                 /* Save information about bitflips! */
95                 if (unlikely(err)) {
96                         if (mtd_is_eccerr(err)) {
97                                 mtd->ecc_stats.failed++;
98                                 ret = err;
99                         } else if (mtd_is_bitflip(err)) {
100                                 mtd->ecc_stats.corrected++;
101                                 /* Do not overwrite -EBADMSG !! */
102                                 if (!ret)
103                                         ret = err;
104                         } else
105                                 return err;
106                 }
107
108                 *retlen += retsize;
109                 len -= size;
110                 if (len == 0)
111                         return ret;
112
113                 buf += size;
114                 from = 0;
115         }
116         return -EINVAL;
117 }
118
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121              size_t * retlen, const u_char * buf)
122 {
123         struct mtd_concat *concat = CONCAT(mtd);
124         int err = -EINVAL;
125         int i;
126
127         for (i = 0; i < concat->num_subdev; i++) {
128                 struct mtd_info *subdev = concat->subdev[i];
129                 size_t size, retsize;
130
131                 if (to >= subdev->size) {
132                         size = 0;
133                         to -= subdev->size;
134                         continue;
135                 }
136                 if (to + len > subdev->size)
137                         size = subdev->size - to;
138                 else
139                         size = len;
140
141                 err = mtd_write(subdev, to, size, &retsize, buf);
142                 if (err)
143                         break;
144
145                 *retlen += retsize;
146                 len -= size;
147                 if (len == 0)
148                         break;
149
150                 err = -EINVAL;
151                 buf += size;
152                 to = 0;
153         }
154         return err;
155 }
156
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159                 unsigned long count, loff_t to, size_t * retlen)
160 {
161         struct mtd_concat *concat = CONCAT(mtd);
162         struct kvec *vecs_copy;
163         unsigned long entry_low, entry_high;
164         size_t total_len = 0;
165         int i;
166         int err = -EINVAL;
167
168         /* Calculate total length of data */
169         for (i = 0; i < count; i++)
170                 total_len += vecs[i].iov_len;
171
172         /* Check alignment */
173         if (mtd->writesize > 1) {
174                 uint64_t __to = to;
175                 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176                         return -EINVAL;
177         }
178
179         /* make a copy of vecs */
180         vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181         if (!vecs_copy)
182                 return -ENOMEM;
183
184         entry_low = 0;
185         for (i = 0; i < concat->num_subdev; i++) {
186                 struct mtd_info *subdev = concat->subdev[i];
187                 size_t size, wsize, retsize, old_iov_len;
188
189                 if (to >= subdev->size) {
190                         to -= subdev->size;
191                         continue;
192                 }
193
194                 size = min_t(uint64_t, total_len, subdev->size - to);
195                 wsize = size; /* store for future use */
196
197                 entry_high = entry_low;
198                 while (entry_high < count) {
199                         if (size <= vecs_copy[entry_high].iov_len)
200                                 break;
201                         size -= vecs_copy[entry_high++].iov_len;
202                 }
203
204                 old_iov_len = vecs_copy[entry_high].iov_len;
205                 vecs_copy[entry_high].iov_len = size;
206
207                 err = mtd_writev(subdev, &vecs_copy[entry_low],
208                                  entry_high - entry_low + 1, to, &retsize);
209
210                 vecs_copy[entry_high].iov_len = old_iov_len - size;
211                 vecs_copy[entry_high].iov_base += size;
212
213                 entry_low = entry_high;
214
215                 if (err)
216                         break;
217
218                 *retlen += retsize;
219                 total_len -= wsize;
220
221                 if (total_len == 0)
222                         break;
223
224                 err = -EINVAL;
225                 to = 0;
226         }
227
228         kfree(vecs_copy);
229         return err;
230 }
231
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235         struct mtd_concat *concat = CONCAT(mtd);
236         struct mtd_oob_ops devops = *ops;
237         int i, err, ret = 0;
238
239         ops->retlen = ops->oobretlen = 0;
240
241         for (i = 0; i < concat->num_subdev; i++) {
242                 struct mtd_info *subdev = concat->subdev[i];
243
244                 if (from >= subdev->size) {
245                         from -= subdev->size;
246                         continue;
247                 }
248
249                 /* partial read ? */
250                 if (from + devops.len > subdev->size)
251                         devops.len = subdev->size - from;
252
253                 err = mtd_read_oob(subdev, from, &devops);
254                 ops->retlen += devops.retlen;
255                 ops->oobretlen += devops.oobretlen;
256
257                 /* Save information about bitflips! */
258                 if (unlikely(err)) {
259                         if (mtd_is_eccerr(err)) {
260                                 mtd->ecc_stats.failed++;
261                                 ret = err;
262                         } else if (mtd_is_bitflip(err)) {
263                                 mtd->ecc_stats.corrected++;
264                                 /* Do not overwrite -EBADMSG !! */
265                                 if (!ret)
266                                         ret = err;
267                         } else
268                                 return err;
269                 }
270
271                 if (devops.datbuf) {
272                         devops.len = ops->len - ops->retlen;
273                         if (!devops.len)
274                                 return ret;
275                         devops.datbuf += devops.retlen;
276                 }
277                 if (devops.oobbuf) {
278                         devops.ooblen = ops->ooblen - ops->oobretlen;
279                         if (!devops.ooblen)
280                                 return ret;
281                         devops.oobbuf += ops->oobretlen;
282                 }
283
284                 from = 0;
285         }
286         return -EINVAL;
287 }
288
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292         struct mtd_concat *concat = CONCAT(mtd);
293         struct mtd_oob_ops devops = *ops;
294         int i, err;
295
296         if (!(mtd->flags & MTD_WRITEABLE))
297                 return -EROFS;
298
299         ops->retlen = ops->oobretlen = 0;
300
301         for (i = 0; i < concat->num_subdev; i++) {
302                 struct mtd_info *subdev = concat->subdev[i];
303
304                 if (to >= subdev->size) {
305                         to -= subdev->size;
306                         continue;
307                 }
308
309                 /* partial write ? */
310                 if (to + devops.len > subdev->size)
311                         devops.len = subdev->size - to;
312
313                 err = mtd_write_oob(subdev, to, &devops);
314                 ops->retlen += devops.oobretlen;
315                 if (err)
316                         return err;
317
318                 if (devops.datbuf) {
319                         devops.len = ops->len - ops->retlen;
320                         if (!devops.len)
321                                 return 0;
322                         devops.datbuf += devops.retlen;
323                 }
324                 if (devops.oobbuf) {
325                         devops.ooblen = ops->ooblen - ops->oobretlen;
326                         if (!devops.ooblen)
327                                 return 0;
328                         devops.oobbuf += devops.oobretlen;
329                 }
330                 to = 0;
331         }
332         return -EINVAL;
333 }
334
335 static void concat_erase_callback(struct erase_info *instr)
336 {
337         wake_up((wait_queue_head_t *) instr->priv);
338 }
339
340 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
341 {
342         int err;
343         wait_queue_head_t waitq;
344         DECLARE_WAITQUEUE(wait, current);
345
346         /*
347          * This code was stol^H^H^H^Hinspired by mtdchar.c
348          */
349         init_waitqueue_head(&waitq);
350
351         erase->mtd = mtd;
352         erase->callback = concat_erase_callback;
353         erase->priv = (unsigned long) &waitq;
354
355         /*
356          * FIXME: Allow INTERRUPTIBLE. Which means
357          * not having the wait_queue head on the stack.
358          */
359         err = mtd_erase(mtd, erase);
360         if (!err) {
361                 set_current_state(TASK_UNINTERRUPTIBLE);
362                 add_wait_queue(&waitq, &wait);
363                 if (erase->state != MTD_ERASE_DONE
364                     && erase->state != MTD_ERASE_FAILED)
365                         schedule();
366                 remove_wait_queue(&waitq, &wait);
367                 set_current_state(TASK_RUNNING);
368
369                 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
370         }
371         return err;
372 }
373
374 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
375 {
376         struct mtd_concat *concat = CONCAT(mtd);
377         struct mtd_info *subdev;
378         int i, err;
379         uint64_t length, offset = 0;
380         struct erase_info *erase;
381
382         /*
383          * Check for proper erase block alignment of the to-be-erased area.
384          * It is easier to do this based on the super device's erase
385          * region info rather than looking at each particular sub-device
386          * in turn.
387          */
388         if (!concat->mtd.numeraseregions) {
389                 /* the easy case: device has uniform erase block size */
390                 if (instr->addr & (concat->mtd.erasesize - 1))
391                         return -EINVAL;
392                 if (instr->len & (concat->mtd.erasesize - 1))
393                         return -EINVAL;
394         } else {
395                 /* device has variable erase size */
396                 struct mtd_erase_region_info *erase_regions =
397                     concat->mtd.eraseregions;
398
399                 /*
400                  * Find the erase region where the to-be-erased area begins:
401                  */
402                 for (i = 0; i < concat->mtd.numeraseregions &&
403                      instr->addr >= erase_regions[i].offset; i++) ;
404                 --i;
405
406                 /*
407                  * Now erase_regions[i] is the region in which the
408                  * to-be-erased area begins. Verify that the starting
409                  * offset is aligned to this region's erase size:
410                  */
411                 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
412                         return -EINVAL;
413
414                 /*
415                  * now find the erase region where the to-be-erased area ends:
416                  */
417                 for (; i < concat->mtd.numeraseregions &&
418                      (instr->addr + instr->len) >= erase_regions[i].offset;
419                      ++i) ;
420                 --i;
421                 /*
422                  * check if the ending offset is aligned to this region's erase size
423                  */
424                 if (i < 0 || ((instr->addr + instr->len) &
425                                         (erase_regions[i].erasesize - 1)))
426                         return -EINVAL;
427         }
428
429         /* make a local copy of instr to avoid modifying the caller's struct */
430         erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
431
432         if (!erase)
433                 return -ENOMEM;
434
435         *erase = *instr;
436         length = instr->len;
437
438         /*
439          * find the subdevice where the to-be-erased area begins, adjust
440          * starting offset to be relative to the subdevice start
441          */
442         for (i = 0; i < concat->num_subdev; i++) {
443                 subdev = concat->subdev[i];
444                 if (subdev->size <= erase->addr) {
445                         erase->addr -= subdev->size;
446                         offset += subdev->size;
447                 } else {
448                         break;
449                 }
450         }
451
452         /* must never happen since size limit has been verified above */
453         BUG_ON(i >= concat->num_subdev);
454
455         /* now do the erase: */
456         err = 0;
457         for (; length > 0; i++) {
458                 /* loop for all subdevices affected by this request */
459                 subdev = concat->subdev[i];     /* get current subdevice */
460
461                 /* limit length to subdevice's size: */
462                 if (erase->addr + length > subdev->size)
463                         erase->len = subdev->size - erase->addr;
464                 else
465                         erase->len = length;
466
467                 length -= erase->len;
468                 if ((err = concat_dev_erase(subdev, erase))) {
469                         /* sanity check: should never happen since
470                          * block alignment has been checked above */
471                         BUG_ON(err == -EINVAL);
472                         if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
473                                 instr->fail_addr = erase->fail_addr + offset;
474                         break;
475                 }
476                 /*
477                  * erase->addr specifies the offset of the area to be
478                  * erased *within the current subdevice*. It can be
479                  * non-zero only the first time through this loop, i.e.
480                  * for the first subdevice where blocks need to be erased.
481                  * All the following erases must begin at the start of the
482                  * current subdevice, i.e. at offset zero.
483                  */
484                 erase->addr = 0;
485                 offset += subdev->size;
486         }
487         instr->state = erase->state;
488         kfree(erase);
489         if (err)
490                 return err;
491
492         if (instr->callback)
493                 instr->callback(instr);
494         return 0;
495 }
496
497 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
498 {
499         struct mtd_concat *concat = CONCAT(mtd);
500         int i, err = -EINVAL;
501
502         for (i = 0; i < concat->num_subdev; i++) {
503                 struct mtd_info *subdev = concat->subdev[i];
504                 uint64_t size;
505
506                 if (ofs >= subdev->size) {
507                         size = 0;
508                         ofs -= subdev->size;
509                         continue;
510                 }
511                 if (ofs + len > subdev->size)
512                         size = subdev->size - ofs;
513                 else
514                         size = len;
515
516                 err = mtd_lock(subdev, ofs, size);
517                 if (err)
518                         break;
519
520                 len -= size;
521                 if (len == 0)
522                         break;
523
524                 err = -EINVAL;
525                 ofs = 0;
526         }
527
528         return err;
529 }
530
531 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
532 {
533         struct mtd_concat *concat = CONCAT(mtd);
534         int i, err = 0;
535
536         for (i = 0; i < concat->num_subdev; i++) {
537                 struct mtd_info *subdev = concat->subdev[i];
538                 uint64_t size;
539
540                 if (ofs >= subdev->size) {
541                         size = 0;
542                         ofs -= subdev->size;
543                         continue;
544                 }
545                 if (ofs + len > subdev->size)
546                         size = subdev->size - ofs;
547                 else
548                         size = len;
549
550                 err = mtd_unlock(subdev, ofs, size);
551                 if (err)
552                         break;
553
554                 len -= size;
555                 if (len == 0)
556                         break;
557
558                 err = -EINVAL;
559                 ofs = 0;
560         }
561
562         return err;
563 }
564
565 static void concat_sync(struct mtd_info *mtd)
566 {
567         struct mtd_concat *concat = CONCAT(mtd);
568         int i;
569
570         for (i = 0; i < concat->num_subdev; i++) {
571                 struct mtd_info *subdev = concat->subdev[i];
572                 mtd_sync(subdev);
573         }
574 }
575
576 static int concat_suspend(struct mtd_info *mtd)
577 {
578         struct mtd_concat *concat = CONCAT(mtd);
579         int i, rc = 0;
580
581         for (i = 0; i < concat->num_subdev; i++) {
582                 struct mtd_info *subdev = concat->subdev[i];
583                 if ((rc = mtd_suspend(subdev)) < 0)
584                         return rc;
585         }
586         return rc;
587 }
588
589 static void concat_resume(struct mtd_info *mtd)
590 {
591         struct mtd_concat *concat = CONCAT(mtd);
592         int i;
593
594         for (i = 0; i < concat->num_subdev; i++) {
595                 struct mtd_info *subdev = concat->subdev[i];
596                 mtd_resume(subdev);
597         }
598 }
599
600 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
601 {
602         struct mtd_concat *concat = CONCAT(mtd);
603         int i, res = 0;
604
605         if (!mtd_can_have_bb(concat->subdev[0]))
606                 return res;
607
608         for (i = 0; i < concat->num_subdev; i++) {
609                 struct mtd_info *subdev = concat->subdev[i];
610
611                 if (ofs >= subdev->size) {
612                         ofs -= subdev->size;
613                         continue;
614                 }
615
616                 res = mtd_block_isbad(subdev, ofs);
617                 break;
618         }
619
620         return res;
621 }
622
623 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
624 {
625         struct mtd_concat *concat = CONCAT(mtd);
626         int i, err = -EINVAL;
627
628         for (i = 0; i < concat->num_subdev; i++) {
629                 struct mtd_info *subdev = concat->subdev[i];
630
631                 if (ofs >= subdev->size) {
632                         ofs -= subdev->size;
633                         continue;
634                 }
635
636                 err = mtd_block_markbad(subdev, ofs);
637                 if (!err)
638                         mtd->ecc_stats.badblocks++;
639                 break;
640         }
641
642         return err;
643 }
644
645 /*
646  * try to support NOMMU mmaps on concatenated devices
647  * - we don't support subdev spanning as we can't guarantee it'll work
648  */
649 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
650                                               unsigned long len,
651                                               unsigned long offset,
652                                               unsigned long flags)
653 {
654         struct mtd_concat *concat = CONCAT(mtd);
655         int i;
656
657         for (i = 0; i < concat->num_subdev; i++) {
658                 struct mtd_info *subdev = concat->subdev[i];
659
660                 if (offset >= subdev->size) {
661                         offset -= subdev->size;
662                         continue;
663                 }
664
665                 return mtd_get_unmapped_area(subdev, len, offset, flags);
666         }
667
668         return (unsigned long) -ENOSYS;
669 }
670
671 /*
672  * This function constructs a virtual MTD device by concatenating
673  * num_devs MTD devices. A pointer to the new device object is
674  * stored to *new_dev upon success. This function does _not_
675  * register any devices: this is the caller's responsibility.
676  */
677 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
678                                    int num_devs,        /* number of subdevices      */
679                                    const char *name)
680 {                               /* name for the new device   */
681         int i;
682         size_t size;
683         struct mtd_concat *concat;
684         uint32_t max_erasesize, curr_erasesize;
685         int num_erase_region;
686         int max_writebufsize = 0;
687
688         printk(KERN_NOTICE "Concatenating MTD devices:\n");
689         for (i = 0; i < num_devs; i++)
690                 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
691         printk(KERN_NOTICE "into device \"%s\"\n", name);
692
693         /* allocate the device structure */
694         size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
695         concat = kzalloc(size, GFP_KERNEL);
696         if (!concat) {
697                 printk
698                     ("memory allocation error while creating concatenated device \"%s\"\n",
699                      name);
700                 return NULL;
701         }
702         concat->subdev = (struct mtd_info **) (concat + 1);
703
704         /*
705          * Set up the new "super" device's MTD object structure, check for
706          * incompatibilities between the subdevices.
707          */
708         concat->mtd.type = subdev[0]->type;
709         concat->mtd.flags = subdev[0]->flags;
710         concat->mtd.size = subdev[0]->size;
711         concat->mtd.erasesize = subdev[0]->erasesize;
712         concat->mtd.writesize = subdev[0]->writesize;
713
714         for (i = 0; i < num_devs; i++)
715                 if (max_writebufsize < subdev[i]->writebufsize)
716                         max_writebufsize = subdev[i]->writebufsize;
717         concat->mtd.writebufsize = max_writebufsize;
718
719         concat->mtd.subpage_sft = subdev[0]->subpage_sft;
720         concat->mtd.oobsize = subdev[0]->oobsize;
721         concat->mtd.oobavail = subdev[0]->oobavail;
722         if (subdev[0]->_writev)
723                 concat->mtd._writev = concat_writev;
724         if (subdev[0]->_read_oob)
725                 concat->mtd._read_oob = concat_read_oob;
726         if (subdev[0]->_write_oob)
727                 concat->mtd._write_oob = concat_write_oob;
728         if (subdev[0]->_block_isbad)
729                 concat->mtd._block_isbad = concat_block_isbad;
730         if (subdev[0]->_block_markbad)
731                 concat->mtd._block_markbad = concat_block_markbad;
732
733         concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
734
735         concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
736
737         concat->subdev[0] = subdev[0];
738
739         for (i = 1; i < num_devs; i++) {
740                 if (concat->mtd.type != subdev[i]->type) {
741                         kfree(concat);
742                         printk("Incompatible device type on \"%s\"\n",
743                                subdev[i]->name);
744                         return NULL;
745                 }
746                 if (concat->mtd.flags != subdev[i]->flags) {
747                         /*
748                          * Expect all flags except MTD_WRITEABLE to be
749                          * equal on all subdevices.
750                          */
751                         if ((concat->mtd.flags ^ subdev[i]->
752                              flags) & ~MTD_WRITEABLE) {
753                                 kfree(concat);
754                                 printk("Incompatible device flags on \"%s\"\n",
755                                        subdev[i]->name);
756                                 return NULL;
757                         } else
758                                 /* if writeable attribute differs,
759                                    make super device writeable */
760                                 concat->mtd.flags |=
761                                     subdev[i]->flags & MTD_WRITEABLE;
762                 }
763
764                 /* only permit direct mapping if the BDIs are all the same
765                  * - copy-mapping is still permitted
766                  */
767                 if (concat->mtd.backing_dev_info !=
768                     subdev[i]->backing_dev_info)
769                         concat->mtd.backing_dev_info =
770                                 &default_backing_dev_info;
771
772                 concat->mtd.size += subdev[i]->size;
773                 concat->mtd.ecc_stats.badblocks +=
774                         subdev[i]->ecc_stats.badblocks;
775                 if (concat->mtd.writesize   !=  subdev[i]->writesize ||
776                     concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
777                     concat->mtd.oobsize    !=  subdev[i]->oobsize ||
778                     !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
779                     !concat->mtd._write_oob != !subdev[i]->_write_oob) {
780                         kfree(concat);
781                         printk("Incompatible OOB or ECC data on \"%s\"\n",
782                                subdev[i]->name);
783                         return NULL;
784                 }
785                 concat->subdev[i] = subdev[i];
786
787         }
788
789         concat->mtd.ecclayout = subdev[0]->ecclayout;
790
791         concat->num_subdev = num_devs;
792         concat->mtd.name = name;
793
794         concat->mtd._erase = concat_erase;
795         concat->mtd._read = concat_read;
796         concat->mtd._write = concat_write;
797         concat->mtd._sync = concat_sync;
798         concat->mtd._lock = concat_lock;
799         concat->mtd._unlock = concat_unlock;
800         concat->mtd._suspend = concat_suspend;
801         concat->mtd._resume = concat_resume;
802         concat->mtd._get_unmapped_area = concat_get_unmapped_area;
803
804         /*
805          * Combine the erase block size info of the subdevices:
806          *
807          * first, walk the map of the new device and see how
808          * many changes in erase size we have
809          */
810         max_erasesize = curr_erasesize = subdev[0]->erasesize;
811         num_erase_region = 1;
812         for (i = 0; i < num_devs; i++) {
813                 if (subdev[i]->numeraseregions == 0) {
814                         /* current subdevice has uniform erase size */
815                         if (subdev[i]->erasesize != curr_erasesize) {
816                                 /* if it differs from the last subdevice's erase size, count it */
817                                 ++num_erase_region;
818                                 curr_erasesize = subdev[i]->erasesize;
819                                 if (curr_erasesize > max_erasesize)
820                                         max_erasesize = curr_erasesize;
821                         }
822                 } else {
823                         /* current subdevice has variable erase size */
824                         int j;
825                         for (j = 0; j < subdev[i]->numeraseregions; j++) {
826
827                                 /* walk the list of erase regions, count any changes */
828                                 if (subdev[i]->eraseregions[j].erasesize !=
829                                     curr_erasesize) {
830                                         ++num_erase_region;
831                                         curr_erasesize =
832                                             subdev[i]->eraseregions[j].
833                                             erasesize;
834                                         if (curr_erasesize > max_erasesize)
835                                                 max_erasesize = curr_erasesize;
836                                 }
837                         }
838                 }
839         }
840
841         if (num_erase_region == 1) {
842                 /*
843                  * All subdevices have the same uniform erase size.
844                  * This is easy:
845                  */
846                 concat->mtd.erasesize = curr_erasesize;
847                 concat->mtd.numeraseregions = 0;
848         } else {
849                 uint64_t tmp64;
850
851                 /*
852                  * erase block size varies across the subdevices: allocate
853                  * space to store the data describing the variable erase regions
854                  */
855                 struct mtd_erase_region_info *erase_region_p;
856                 uint64_t begin, position;
857
858                 concat->mtd.erasesize = max_erasesize;
859                 concat->mtd.numeraseregions = num_erase_region;
860                 concat->mtd.eraseregions = erase_region_p =
861                     kmalloc(num_erase_region *
862                             sizeof (struct mtd_erase_region_info), GFP_KERNEL);
863                 if (!erase_region_p) {
864                         kfree(concat);
865                         printk
866                             ("memory allocation error while creating erase region list"
867                              " for device \"%s\"\n", name);
868                         return NULL;
869                 }
870
871                 /*
872                  * walk the map of the new device once more and fill in
873                  * in erase region info:
874                  */
875                 curr_erasesize = subdev[0]->erasesize;
876                 begin = position = 0;
877                 for (i = 0; i < num_devs; i++) {
878                         if (subdev[i]->numeraseregions == 0) {
879                                 /* current subdevice has uniform erase size */
880                                 if (subdev[i]->erasesize != curr_erasesize) {
881                                         /*
882                                          *  fill in an mtd_erase_region_info structure for the area
883                                          *  we have walked so far:
884                                          */
885                                         erase_region_p->offset = begin;
886                                         erase_region_p->erasesize =
887                                             curr_erasesize;
888                                         tmp64 = position - begin;
889                                         do_div(tmp64, curr_erasesize);
890                                         erase_region_p->numblocks = tmp64;
891                                         begin = position;
892
893                                         curr_erasesize = subdev[i]->erasesize;
894                                         ++erase_region_p;
895                                 }
896                                 position += subdev[i]->size;
897                         } else {
898                                 /* current subdevice has variable erase size */
899                                 int j;
900                                 for (j = 0; j < subdev[i]->numeraseregions; j++) {
901                                         /* walk the list of erase regions, count any changes */
902                                         if (subdev[i]->eraseregions[j].
903                                             erasesize != curr_erasesize) {
904                                                 erase_region_p->offset = begin;
905                                                 erase_region_p->erasesize =
906                                                     curr_erasesize;
907                                                 tmp64 = position - begin;
908                                                 do_div(tmp64, curr_erasesize);
909                                                 erase_region_p->numblocks = tmp64;
910                                                 begin = position;
911
912                                                 curr_erasesize =
913                                                     subdev[i]->eraseregions[j].
914                                                     erasesize;
915                                                 ++erase_region_p;
916                                         }
917                                         position +=
918                                             subdev[i]->eraseregions[j].
919                                             numblocks * (uint64_t)curr_erasesize;
920                                 }
921                         }
922                 }
923                 /* Now write the final entry */
924                 erase_region_p->offset = begin;
925                 erase_region_p->erasesize = curr_erasesize;
926                 tmp64 = position - begin;
927                 do_div(tmp64, curr_erasesize);
928                 erase_region_p->numblocks = tmp64;
929         }
930
931         return &concat->mtd;
932 }
933
934 /*
935  * This function destroys an MTD object obtained from concat_mtd_devs()
936  */
937
938 void mtd_concat_destroy(struct mtd_info *mtd)
939 {
940         struct mtd_concat *concat = CONCAT(mtd);
941         if (concat->mtd.numeraseregions)
942                 kfree(concat->mtd.eraseregions);
943         kfree(concat);
944 }
945
946 EXPORT_SYMBOL(mtd_concat_create);
947 EXPORT_SYMBOL(mtd_concat_destroy);
948
949 MODULE_LICENSE("GPL");
950 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
951 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");