2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/math64.h>
20 #include <linux/of_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/spi/flash.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/partitions.h>
29 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
30 * each chip, which may be used for double buffered I/O; but this driver
31 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
33 * Sometimes DataFlash is packaged in MMC-format cards, although the
34 * MMC stack can't (yet?) distinguish between MMC and DataFlash
35 * protocols during enumeration.
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS 0xE8
40 #define OP_READ_PAGE 0xD2
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS 0xD7 /* group B */
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1 0xD4 /* group B */
47 #define OP_READ_BUFFER2 0xD6 /* group B */
48 #define OP_WRITE_BUFFER1 0x84 /* group B */
49 #define OP_WRITE_BUFFER2 0x87 /* group B */
52 #define OP_ERASE_PAGE 0x81
53 #define OP_ERASE_BLOCK 0x50
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1 0x53
57 #define OP_TRANSFER_BUF2 0x55
58 #define OP_MREAD_BUFFER1 0xD4
59 #define OP_MREAD_BUFFER2 0xD6
60 #define OP_MWERASE_BUFFER1 0x83
61 #define OP_MWERASE_BUFFER2 0x86
62 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1 0x82
67 #define OP_PROGRAM_VIA_BUF2 0x85
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1 0x60
71 #define OP_COMPARE_BUF2 0x61
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1 0x58
75 #define OP_REWRITE_VIA_BUF2 0x59
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78 * serial number and OTP bits; and per-sector writeprotect.
80 #define OP_READ_ID 0x9F
81 #define OP_READ_SECURITY 0x77
82 #define OP_WRITE_SECURITY_REVC 0x9A
83 #define OP_WRITE_SECURITY 0x9B /* revision D */
90 unsigned short page_offset; /* offset in flash address */
91 unsigned int page_size; /* of bytes per page */
94 struct spi_device *spi;
100 static const struct of_device_id dataflash_dt_ids[] = {
101 { .compatible = "atmel,at45", },
102 { .compatible = "atmel,dataflash", },
107 /* ......................................................................... */
110 * Return the status of the DataFlash device.
112 static inline int dataflash_status(struct spi_device *spi)
114 /* NOTE: at45db321c over 25 MHz wants to write
115 * a dummy byte after the opcode...
117 return spi_w8r8(spi, OP_READ_STATUS);
121 * Poll the DataFlash device until it is READY.
122 * This usually takes 5-20 msec or so; more for sector erase.
124 static int dataflash_waitready(struct spi_device *spi)
129 status = dataflash_status(spi);
131 pr_debug("%s: status %d?\n",
132 dev_name(&spi->dev), status);
136 if (status & (1 << 7)) /* RDY/nBSY */
143 /* ......................................................................... */
146 * Erase pages of flash.
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
150 struct dataflash *priv = mtd->priv;
151 struct spi_device *spi = priv->spi;
152 struct spi_transfer x = { .tx_dma = 0, };
153 struct spi_message msg;
154 unsigned blocksize = priv->page_size << 3;
158 pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
159 dev_name(&spi->dev), (long long)instr->addr,
160 (long long)instr->len);
162 div_u64_rem(instr->len, priv->page_size, &rem);
165 div_u64_rem(instr->addr, priv->page_size, &rem);
169 spi_message_init(&msg);
171 x.tx_buf = command = priv->command;
173 spi_message_add_tail(&x, &msg);
175 mutex_lock(&priv->lock);
176 while (instr->len > 0) {
177 unsigned int pageaddr;
181 /* Calculate flash page address; use block erase (for speed) if
182 * we're at a block boundary and need to erase the whole block.
184 pageaddr = div_u64(instr->addr, priv->page_size);
185 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
186 pageaddr = pageaddr << priv->page_offset;
188 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
189 command[1] = (uint8_t)(pageaddr >> 16);
190 command[2] = (uint8_t)(pageaddr >> 8);
193 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
194 do_block ? "block" : "page",
195 command[0], command[1], command[2], command[3],
198 status = spi_sync(spi, &msg);
199 (void) dataflash_waitready(spi);
202 printk(KERN_ERR "%s: erase %x, err %d\n",
203 dev_name(&spi->dev), pageaddr, status);
204 /* REVISIT: can retry instr->retries times; or
205 * giveup and instr->fail_addr = instr->addr;
211 instr->addr += blocksize;
212 instr->len -= blocksize;
214 instr->addr += priv->page_size;
215 instr->len -= priv->page_size;
218 mutex_unlock(&priv->lock);
220 /* Inform MTD subsystem that erase is complete */
221 instr->state = MTD_ERASE_DONE;
222 mtd_erase_callback(instr);
228 * Read from the DataFlash device.
229 * from : Start offset in flash device
230 * len : Amount to read
231 * retlen : About of data actually read
232 * buf : Buffer containing the data
234 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
235 size_t *retlen, u_char *buf)
237 struct dataflash *priv = mtd->priv;
238 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
239 struct spi_message msg;
244 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
245 (unsigned)from, (unsigned)(from + len));
247 /* Calculate flash page/byte address */
248 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
249 + ((unsigned)from % priv->page_size);
251 command = priv->command;
253 pr_debug("READ: (%x) %x %x %x\n",
254 command[0], command[1], command[2], command[3]);
256 spi_message_init(&msg);
258 x[0].tx_buf = command;
260 spi_message_add_tail(&x[0], &msg);
264 spi_message_add_tail(&x[1], &msg);
266 mutex_lock(&priv->lock);
268 /* Continuous read, max clock = f(car) which may be less than
269 * the peak rate available. Some chips support commands with
270 * fewer "don't care" bytes. Both buffers stay unchanged.
272 command[0] = OP_READ_CONTINUOUS;
273 command[1] = (uint8_t)(addr >> 16);
274 command[2] = (uint8_t)(addr >> 8);
275 command[3] = (uint8_t)(addr >> 0);
276 /* plus 4 "don't care" bytes */
278 status = spi_sync(priv->spi, &msg);
279 mutex_unlock(&priv->lock);
282 *retlen = msg.actual_length - 8;
285 pr_debug("%s: read %x..%x --> %d\n",
286 dev_name(&priv->spi->dev),
287 (unsigned)from, (unsigned)(from + len),
293 * Write to the DataFlash device.
294 * to : Start offset in flash device
295 * len : Amount to write
296 * retlen : Amount of data actually written
297 * buf : Buffer containing the data
299 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
300 size_t * retlen, const u_char * buf)
302 struct dataflash *priv = mtd->priv;
303 struct spi_device *spi = priv->spi;
304 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
305 struct spi_message msg;
306 unsigned int pageaddr, addr, offset, writelen;
307 size_t remaining = len;
308 u_char *writebuf = (u_char *) buf;
309 int status = -EINVAL;
312 pr_debug("%s: write 0x%x..0x%x\n",
313 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
315 spi_message_init(&msg);
317 x[0].tx_buf = command = priv->command;
319 spi_message_add_tail(&x[0], &msg);
321 pageaddr = ((unsigned)to / priv->page_size);
322 offset = ((unsigned)to % priv->page_size);
323 if (offset + len > priv->page_size)
324 writelen = priv->page_size - offset;
328 mutex_lock(&priv->lock);
329 while (remaining > 0) {
330 pr_debug("write @ %i:%i len=%i\n",
331 pageaddr, offset, writelen);
334 * (a) each page in a sector must be rewritten at least
335 * once every 10K sibling erase/program operations.
336 * (b) for pages that are already erased, we could
337 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
338 * (c) WRITE to buffer could be done while waiting for
339 * a previous MWRITE/MWERASE to complete ...
340 * (d) error handling here seems to be mostly missing.
342 * Two persistent bits per page, plus a per-sector counter,
343 * could support (a) and (b) ... we might consider using
344 * the second half of sector zero, which is just one block,
345 * to track that state. (On AT91, that sector should also
346 * support boot-from-DataFlash.)
349 addr = pageaddr << priv->page_offset;
351 /* (1) Maybe transfer partial page to Buffer1 */
352 if (writelen != priv->page_size) {
353 command[0] = OP_TRANSFER_BUF1;
354 command[1] = (addr & 0x00FF0000) >> 16;
355 command[2] = (addr & 0x0000FF00) >> 8;
358 pr_debug("TRANSFER: (%x) %x %x %x\n",
359 command[0], command[1], command[2], command[3]);
361 status = spi_sync(spi, &msg);
363 pr_debug("%s: xfer %u -> %d\n",
364 dev_name(&spi->dev), addr, status);
366 (void) dataflash_waitready(priv->spi);
369 /* (2) Program full page via Buffer1 */
371 command[0] = OP_PROGRAM_VIA_BUF1;
372 command[1] = (addr & 0x00FF0000) >> 16;
373 command[2] = (addr & 0x0000FF00) >> 8;
374 command[3] = (addr & 0x000000FF);
376 pr_debug("PROGRAM: (%x) %x %x %x\n",
377 command[0], command[1], command[2], command[3]);
379 x[1].tx_buf = writebuf;
381 spi_message_add_tail(x + 1, &msg);
382 status = spi_sync(spi, &msg);
383 spi_transfer_del(x + 1);
385 pr_debug("%s: pgm %u/%u -> %d\n",
386 dev_name(&spi->dev), addr, writelen, status);
388 (void) dataflash_waitready(priv->spi);
391 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
393 /* (3) Compare to Buffer1 */
394 addr = pageaddr << priv->page_offset;
395 command[0] = OP_COMPARE_BUF1;
396 command[1] = (addr & 0x00FF0000) >> 16;
397 command[2] = (addr & 0x0000FF00) >> 8;
400 pr_debug("COMPARE: (%x) %x %x %x\n",
401 command[0], command[1], command[2], command[3]);
403 status = spi_sync(spi, &msg);
405 pr_debug("%s: compare %u -> %d\n",
406 dev_name(&spi->dev), addr, status);
408 status = dataflash_waitready(priv->spi);
410 /* Check result of the compare operation */
411 if (status & (1 << 6)) {
412 printk(KERN_ERR "%s: compare page %u, err %d\n",
413 dev_name(&spi->dev), pageaddr, status);
420 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
422 remaining = remaining - writelen;
425 writebuf += writelen;
428 if (remaining > priv->page_size)
429 writelen = priv->page_size;
431 writelen = remaining;
433 mutex_unlock(&priv->lock);
438 /* ......................................................................... */
440 #ifdef CONFIG_MTD_DATAFLASH_OTP
442 static int dataflash_get_otp_info(struct mtd_info *mtd,
443 struct otp_info *info, size_t len)
445 /* Report both blocks as identical: bytes 0..64, locked.
446 * Unless the user block changed from all-ones, we can't
447 * tell whether it's still writable; so we assume it isn't.
452 return sizeof(*info);
455 static ssize_t otp_read(struct spi_device *spi, unsigned base,
456 uint8_t *buf, loff_t off, size_t len)
458 struct spi_message m;
461 struct spi_transfer t;
467 if ((off + len) > 64)
470 spi_message_init(&m);
472 l = 4 + base + off + len;
473 scratch = kzalloc(l, GFP_KERNEL);
477 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
478 * IN: ignore 4 bytes, data bytes 0..N (max 127)
480 scratch[0] = OP_READ_SECURITY;
482 memset(&t, 0, sizeof t);
486 spi_message_add_tail(&t, &m);
488 dataflash_waitready(spi);
490 status = spi_sync(spi, &m);
492 memcpy(buf, scratch + 4 + base + off, len);
500 static int dataflash_read_fact_otp(struct mtd_info *mtd,
501 loff_t from, size_t len, size_t *retlen, u_char *buf)
503 struct dataflash *priv = mtd->priv;
506 /* 64 bytes, from 0..63 ... start at 64 on-chip */
507 mutex_lock(&priv->lock);
508 status = otp_read(priv->spi, 64, buf, from, len);
509 mutex_unlock(&priv->lock);
517 static int dataflash_read_user_otp(struct mtd_info *mtd,
518 loff_t from, size_t len, size_t *retlen, u_char *buf)
520 struct dataflash *priv = mtd->priv;
523 /* 64 bytes, from 0..63 ... start at 0 on-chip */
524 mutex_lock(&priv->lock);
525 status = otp_read(priv->spi, 0, buf, from, len);
526 mutex_unlock(&priv->lock);
534 static int dataflash_write_user_otp(struct mtd_info *mtd,
535 loff_t from, size_t len, size_t *retlen, u_char *buf)
537 struct spi_message m;
538 const size_t l = 4 + 64;
540 struct spi_transfer t;
541 struct dataflash *priv = mtd->priv;
547 /* Strictly speaking, we *could* truncate the write ... but
548 * let's not do that for the only write that's ever possible.
550 if ((from + len) > 64)
553 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
556 scratch = kzalloc(l, GFP_KERNEL);
559 scratch[0] = OP_WRITE_SECURITY;
560 memcpy(scratch + 4 + from, buf, len);
562 spi_message_init(&m);
564 memset(&t, 0, sizeof t);
567 spi_message_add_tail(&t, &m);
569 /* Write the OTP bits, if they've not yet been written.
570 * This modifies SRAM buffer1.
572 mutex_lock(&priv->lock);
573 dataflash_waitready(priv->spi);
574 status = spi_sync(priv->spi, &m);
575 mutex_unlock(&priv->lock);
586 static char *otp_setup(struct mtd_info *device, char revision)
588 device->_get_fact_prot_info = dataflash_get_otp_info;
589 device->_read_fact_prot_reg = dataflash_read_fact_otp;
590 device->_get_user_prot_info = dataflash_get_otp_info;
591 device->_read_user_prot_reg = dataflash_read_user_otp;
593 /* rev c parts (at45db321c and at45db1281 only!) use a
594 * different write procedure; not (yet?) implemented.
597 device->_write_user_prot_reg = dataflash_write_user_otp;
604 static char *otp_setup(struct mtd_info *device, char revision)
611 /* ......................................................................... */
614 * Register DataFlash device with MTD subsystem.
616 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
617 int pagesize, int pageoffset, char revision)
619 struct dataflash *priv;
620 struct mtd_info *device;
621 struct mtd_part_parser_data ppdata;
622 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
626 priv = kzalloc(sizeof *priv, GFP_KERNEL);
630 mutex_init(&priv->lock);
632 priv->page_size = pagesize;
633 priv->page_offset = pageoffset;
635 /* name must be usable with cmdlinepart */
636 sprintf(priv->name, "spi%d.%d-%s",
637 spi->master->bus_num, spi->chip_select,
641 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
642 device->size = nr_pages * pagesize;
643 device->erasesize = pagesize;
644 device->writesize = pagesize;
645 device->owner = THIS_MODULE;
646 device->type = MTD_DATAFLASH;
647 device->flags = MTD_WRITEABLE;
648 device->_erase = dataflash_erase;
649 device->_read = dataflash_read;
650 device->_write = dataflash_write;
653 device->dev.parent = &spi->dev;
656 otp_tag = otp_setup(device, revision);
658 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
659 name, (long long)((device->size + 1023) >> 10),
661 spi_set_drvdata(spi, priv);
663 ppdata.of_node = spi->dev.of_node;
664 err = mtd_device_parse_register(device, NULL, &ppdata,
665 pdata ? pdata->parts : NULL,
666 pdata ? pdata->nr_parts : 0);
675 static inline int add_dataflash(struct spi_device *spi, char *name,
676 int nr_pages, int pagesize, int pageoffset)
678 return add_dataflash_otp(spi, name, nr_pages, pagesize,
685 /* JEDEC id has a high byte of zero plus three data bytes:
686 * the manufacturer id, then a two byte device id.
690 /* The size listed here is what works with OP_ERASE_PAGE. */
696 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
697 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
700 static struct flash_info dataflash_data[] = {
703 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
704 * one with IS_POW2PS and the other without. The entry with the
705 * non-2^N byte page size can't name exact chip revisions without
706 * losing backwards compatibility for cmdlinepart.
708 * These newer chips also support 128-byte security registers (with
709 * 64 bytes one-time-programmable) and software write-protection.
711 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
712 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
714 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
715 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
717 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
718 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
720 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
721 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
723 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
724 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
726 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
728 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
729 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
731 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
732 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
735 static struct flash_info *jedec_probe(struct spi_device *spi)
738 uint8_t code = OP_READ_ID;
741 struct flash_info *info;
744 /* JEDEC also defines an optional "extended device information"
745 * string for after vendor-specific data, after the three bytes
746 * we use here. Supporting some chips might require using it.
748 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
749 * That's not an error; only rev C and newer chips handle it, and
750 * only Atmel sells these chips.
752 tmp = spi_write_then_read(spi, &code, 1, id, 3);
754 pr_debug("%s: error %d reading JEDEC ID\n",
755 dev_name(&spi->dev), tmp);
767 for (tmp = 0, info = dataflash_data;
768 tmp < ARRAY_SIZE(dataflash_data);
770 if (info->jedec_id == jedec) {
771 pr_debug("%s: OTP, sector protect%s\n",
773 (info->flags & SUP_POW2PS)
774 ? ", binary pagesize" : ""
776 if (info->flags & SUP_POW2PS) {
777 status = dataflash_status(spi);
779 pr_debug("%s: status error %d\n",
780 dev_name(&spi->dev), status);
781 return ERR_PTR(status);
784 if (info->flags & IS_POW2PS)
787 if (!(info->flags & IS_POW2PS))
796 * Treat other chips as errors ... we won't know the right page
797 * size (it might be binary) even when we can tell which density
798 * class is involved (legacy chip id scheme).
800 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
801 return ERR_PTR(-ENODEV);
805 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
806 * or else the ID code embedded in the status bits:
808 * Device Density ID code #Pages PageSize Offset
809 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
810 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
811 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
812 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
813 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
814 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
815 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
816 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
818 static int dataflash_probe(struct spi_device *spi)
821 struct flash_info *info;
824 * Try to detect dataflash by JEDEC ID.
825 * If it succeeds we know we have either a C or D part.
826 * D will support power of 2 pagesize option.
827 * Both support the security register, though with different
830 info = jedec_probe(spi);
832 return PTR_ERR(info);
834 return add_dataflash_otp(spi, info->name, info->nr_pages,
835 info->pagesize, info->pageoffset,
836 (info->flags & SUP_POW2PS) ? 'd' : 'c');
839 * Older chips support only legacy commands, identifing
840 * capacity using bits in the status byte.
842 status = dataflash_status(spi);
843 if (status <= 0 || status == 0xff) {
844 pr_debug("%s: status error %d\n",
845 dev_name(&spi->dev), status);
846 if (status == 0 || status == 0xff)
851 /* if there's a device there, assume it's dataflash.
852 * board setup should have set spi->max_speed_max to
853 * match f(car) for continuous reads, mode 0 or 3.
855 switch (status & 0x3c) {
856 case 0x0c: /* 0 0 1 1 x x */
857 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
859 case 0x14: /* 0 1 0 1 x x */
860 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
862 case 0x1c: /* 0 1 1 1 x x */
863 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
865 case 0x24: /* 1 0 0 1 x x */
866 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
868 case 0x2c: /* 1 0 1 1 x x */
869 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
871 case 0x34: /* 1 1 0 1 x x */
872 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
874 case 0x38: /* 1 1 1 x x x */
876 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
878 /* obsolete AT45DB1282 not (yet?) supported */
880 dev_info(&spi->dev, "unsupported device (%x)\n",
886 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
892 static int dataflash_remove(struct spi_device *spi)
894 struct dataflash *flash = spi_get_drvdata(spi);
897 pr_debug("%s: remove\n", dev_name(&spi->dev));
899 status = mtd_device_unregister(&flash->mtd);
905 static struct spi_driver dataflash_driver = {
907 .name = "mtd_dataflash",
908 .owner = THIS_MODULE,
909 .of_match_table = of_match_ptr(dataflash_dt_ids),
912 .probe = dataflash_probe,
913 .remove = dataflash_remove,
915 /* FIXME: investigate suspend and resume... */
918 module_spi_driver(dataflash_driver);
920 MODULE_LICENSE("GPL");
921 MODULE_AUTHOR("Andrew Victor, David Brownell");
922 MODULE_DESCRIPTION("MTD DataFlash driver");
923 MODULE_ALIAS("spi:mtd_dataflash");