Linux 3.14.25
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / devices / mtd_dataflash.c
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22
23 #include <linux/spi/spi.h>
24 #include <linux/spi/flash.h>
25
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28
29 /*
30  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
31  * each chip, which may be used for double buffered I/O; but this driver
32  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
33  *
34  * Sometimes DataFlash is packaged in MMC-format cards, although the
35  * MMC stack can't (yet?) distinguish between MMC and DataFlash
36  * protocols during enumeration.
37  */
38
39 /* reads can bypass the buffers */
40 #define OP_READ_CONTINUOUS      0xE8
41 #define OP_READ_PAGE            0xD2
42
43 /* group B requests can run even while status reports "busy" */
44 #define OP_READ_STATUS          0xD7    /* group B */
45
46 /* move data between host and buffer */
47 #define OP_READ_BUFFER1         0xD4    /* group B */
48 #define OP_READ_BUFFER2         0xD6    /* group B */
49 #define OP_WRITE_BUFFER1        0x84    /* group B */
50 #define OP_WRITE_BUFFER2        0x87    /* group B */
51
52 /* erasing flash */
53 #define OP_ERASE_PAGE           0x81
54 #define OP_ERASE_BLOCK          0x50
55
56 /* move data between buffer and flash */
57 #define OP_TRANSFER_BUF1        0x53
58 #define OP_TRANSFER_BUF2        0x55
59 #define OP_MREAD_BUFFER1        0xD4
60 #define OP_MREAD_BUFFER2        0xD6
61 #define OP_MWERASE_BUFFER1      0x83
62 #define OP_MWERASE_BUFFER2      0x86
63 #define OP_MWRITE_BUFFER1       0x88    /* sector must be pre-erased */
64 #define OP_MWRITE_BUFFER2       0x89    /* sector must be pre-erased */
65
66 /* write to buffer, then write-erase to flash */
67 #define OP_PROGRAM_VIA_BUF1     0x82
68 #define OP_PROGRAM_VIA_BUF2     0x85
69
70 /* compare buffer to flash */
71 #define OP_COMPARE_BUF1         0x60
72 #define OP_COMPARE_BUF2         0x61
73
74 /* read flash to buffer, then write-erase to flash */
75 #define OP_REWRITE_VIA_BUF1     0x58
76 #define OP_REWRITE_VIA_BUF2     0x59
77
78 /* newer chips report JEDEC manufacturer and device IDs; chip
79  * serial number and OTP bits; and per-sector writeprotect.
80  */
81 #define OP_READ_ID              0x9F
82 #define OP_READ_SECURITY        0x77
83 #define OP_WRITE_SECURITY_REVC  0x9A
84 #define OP_WRITE_SECURITY       0x9B    /* revision D */
85
86
87 struct dataflash {
88         uint8_t                 command[4];
89         char                    name[24];
90
91         unsigned short          page_offset;    /* offset in flash address */
92         unsigned int            page_size;      /* of bytes per page */
93
94         struct mutex            lock;
95         struct spi_device       *spi;
96
97         struct mtd_info         mtd;
98 };
99
100 #ifdef CONFIG_OF
101 static const struct of_device_id dataflash_dt_ids[] = {
102         { .compatible = "atmel,at45", },
103         { .compatible = "atmel,dataflash", },
104         { /* sentinel */ }
105 };
106 #endif
107
108 /* ......................................................................... */
109
110 /*
111  * Return the status of the DataFlash device.
112  */
113 static inline int dataflash_status(struct spi_device *spi)
114 {
115         /* NOTE:  at45db321c over 25 MHz wants to write
116          * a dummy byte after the opcode...
117          */
118         return spi_w8r8(spi, OP_READ_STATUS);
119 }
120
121 /*
122  * Poll the DataFlash device until it is READY.
123  * This usually takes 5-20 msec or so; more for sector erase.
124  */
125 static int dataflash_waitready(struct spi_device *spi)
126 {
127         int     status;
128
129         for (;;) {
130                 status = dataflash_status(spi);
131                 if (status < 0) {
132                         pr_debug("%s: status %d?\n",
133                                         dev_name(&spi->dev), status);
134                         status = 0;
135                 }
136
137                 if (status & (1 << 7))  /* RDY/nBSY */
138                         return status;
139
140                 msleep(3);
141         }
142 }
143
144 /* ......................................................................... */
145
146 /*
147  * Erase pages of flash.
148  */
149 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
150 {
151         struct dataflash        *priv = mtd->priv;
152         struct spi_device       *spi = priv->spi;
153         struct spi_transfer     x = { .tx_dma = 0, };
154         struct spi_message      msg;
155         unsigned                blocksize = priv->page_size << 3;
156         uint8_t                 *command;
157         uint32_t                rem;
158
159         pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
160               dev_name(&spi->dev), (long long)instr->addr,
161               (long long)instr->len);
162
163         div_u64_rem(instr->len, priv->page_size, &rem);
164         if (rem)
165                 return -EINVAL;
166         div_u64_rem(instr->addr, priv->page_size, &rem);
167         if (rem)
168                 return -EINVAL;
169
170         spi_message_init(&msg);
171
172         x.tx_buf = command = priv->command;
173         x.len = 4;
174         spi_message_add_tail(&x, &msg);
175
176         mutex_lock(&priv->lock);
177         while (instr->len > 0) {
178                 unsigned int    pageaddr;
179                 int             status;
180                 int             do_block;
181
182                 /* Calculate flash page address; use block erase (for speed) if
183                  * we're at a block boundary and need to erase the whole block.
184                  */
185                 pageaddr = div_u64(instr->addr, priv->page_size);
186                 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
187                 pageaddr = pageaddr << priv->page_offset;
188
189                 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
190                 command[1] = (uint8_t)(pageaddr >> 16);
191                 command[2] = (uint8_t)(pageaddr >> 8);
192                 command[3] = 0;
193
194                 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
195                         do_block ? "block" : "page",
196                         command[0], command[1], command[2], command[3],
197                         pageaddr);
198
199                 status = spi_sync(spi, &msg);
200                 (void) dataflash_waitready(spi);
201
202                 if (status < 0) {
203                         printk(KERN_ERR "%s: erase %x, err %d\n",
204                                 dev_name(&spi->dev), pageaddr, status);
205                         /* REVISIT:  can retry instr->retries times; or
206                          * giveup and instr->fail_addr = instr->addr;
207                          */
208                         continue;
209                 }
210
211                 if (do_block) {
212                         instr->addr += blocksize;
213                         instr->len -= blocksize;
214                 } else {
215                         instr->addr += priv->page_size;
216                         instr->len -= priv->page_size;
217                 }
218         }
219         mutex_unlock(&priv->lock);
220
221         /* Inform MTD subsystem that erase is complete */
222         instr->state = MTD_ERASE_DONE;
223         mtd_erase_callback(instr);
224
225         return 0;
226 }
227
228 /*
229  * Read from the DataFlash device.
230  *   from   : Start offset in flash device
231  *   len    : Amount to read
232  *   retlen : About of data actually read
233  *   buf    : Buffer containing the data
234  */
235 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
236                                size_t *retlen, u_char *buf)
237 {
238         struct dataflash        *priv = mtd->priv;
239         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
240         struct spi_message      msg;
241         unsigned int            addr;
242         uint8_t                 *command;
243         int                     status;
244
245         pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
246                         (unsigned)from, (unsigned)(from + len));
247
248         /* Calculate flash page/byte address */
249         addr = (((unsigned)from / priv->page_size) << priv->page_offset)
250                 + ((unsigned)from % priv->page_size);
251
252         command = priv->command;
253
254         pr_debug("READ: (%x) %x %x %x\n",
255                 command[0], command[1], command[2], command[3]);
256
257         spi_message_init(&msg);
258
259         x[0].tx_buf = command;
260         x[0].len = 8;
261         spi_message_add_tail(&x[0], &msg);
262
263         x[1].rx_buf = buf;
264         x[1].len = len;
265         spi_message_add_tail(&x[1], &msg);
266
267         mutex_lock(&priv->lock);
268
269         /* Continuous read, max clock = f(car) which may be less than
270          * the peak rate available.  Some chips support commands with
271          * fewer "don't care" bytes.  Both buffers stay unchanged.
272          */
273         command[0] = OP_READ_CONTINUOUS;
274         command[1] = (uint8_t)(addr >> 16);
275         command[2] = (uint8_t)(addr >> 8);
276         command[3] = (uint8_t)(addr >> 0);
277         /* plus 4 "don't care" bytes */
278
279         status = spi_sync(priv->spi, &msg);
280         mutex_unlock(&priv->lock);
281
282         if (status >= 0) {
283                 *retlen = msg.actual_length - 8;
284                 status = 0;
285         } else
286                 pr_debug("%s: read %x..%x --> %d\n",
287                         dev_name(&priv->spi->dev),
288                         (unsigned)from, (unsigned)(from + len),
289                         status);
290         return status;
291 }
292
293 /*
294  * Write to the DataFlash device.
295  *   to     : Start offset in flash device
296  *   len    : Amount to write
297  *   retlen : Amount of data actually written
298  *   buf    : Buffer containing the data
299  */
300 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
301                                 size_t * retlen, const u_char * buf)
302 {
303         struct dataflash        *priv = mtd->priv;
304         struct spi_device       *spi = priv->spi;
305         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
306         struct spi_message      msg;
307         unsigned int            pageaddr, addr, offset, writelen;
308         size_t                  remaining = len;
309         u_char                  *writebuf = (u_char *) buf;
310         int                     status = -EINVAL;
311         uint8_t                 *command;
312
313         pr_debug("%s: write 0x%x..0x%x\n",
314                 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
315
316         spi_message_init(&msg);
317
318         x[0].tx_buf = command = priv->command;
319         x[0].len = 4;
320         spi_message_add_tail(&x[0], &msg);
321
322         pageaddr = ((unsigned)to / priv->page_size);
323         offset = ((unsigned)to % priv->page_size);
324         if (offset + len > priv->page_size)
325                 writelen = priv->page_size - offset;
326         else
327                 writelen = len;
328
329         mutex_lock(&priv->lock);
330         while (remaining > 0) {
331                 pr_debug("write @ %i:%i len=%i\n",
332                         pageaddr, offset, writelen);
333
334                 /* REVISIT:
335                  * (a) each page in a sector must be rewritten at least
336                  *     once every 10K sibling erase/program operations.
337                  * (b) for pages that are already erased, we could
338                  *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
339                  * (c) WRITE to buffer could be done while waiting for
340                  *     a previous MWRITE/MWERASE to complete ...
341                  * (d) error handling here seems to be mostly missing.
342                  *
343                  * Two persistent bits per page, plus a per-sector counter,
344                  * could support (a) and (b) ... we might consider using
345                  * the second half of sector zero, which is just one block,
346                  * to track that state.  (On AT91, that sector should also
347                  * support boot-from-DataFlash.)
348                  */
349
350                 addr = pageaddr << priv->page_offset;
351
352                 /* (1) Maybe transfer partial page to Buffer1 */
353                 if (writelen != priv->page_size) {
354                         command[0] = OP_TRANSFER_BUF1;
355                         command[1] = (addr & 0x00FF0000) >> 16;
356                         command[2] = (addr & 0x0000FF00) >> 8;
357                         command[3] = 0;
358
359                         pr_debug("TRANSFER: (%x) %x %x %x\n",
360                                 command[0], command[1], command[2], command[3]);
361
362                         status = spi_sync(spi, &msg);
363                         if (status < 0)
364                                 pr_debug("%s: xfer %u -> %d\n",
365                                         dev_name(&spi->dev), addr, status);
366
367                         (void) dataflash_waitready(priv->spi);
368                 }
369
370                 /* (2) Program full page via Buffer1 */
371                 addr += offset;
372                 command[0] = OP_PROGRAM_VIA_BUF1;
373                 command[1] = (addr & 0x00FF0000) >> 16;
374                 command[2] = (addr & 0x0000FF00) >> 8;
375                 command[3] = (addr & 0x000000FF);
376
377                 pr_debug("PROGRAM: (%x) %x %x %x\n",
378                         command[0], command[1], command[2], command[3]);
379
380                 x[1].tx_buf = writebuf;
381                 x[1].len = writelen;
382                 spi_message_add_tail(x + 1, &msg);
383                 status = spi_sync(spi, &msg);
384                 spi_transfer_del(x + 1);
385                 if (status < 0)
386                         pr_debug("%s: pgm %u/%u -> %d\n",
387                                 dev_name(&spi->dev), addr, writelen, status);
388
389                 (void) dataflash_waitready(priv->spi);
390
391
392 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
393
394                 /* (3) Compare to Buffer1 */
395                 addr = pageaddr << priv->page_offset;
396                 command[0] = OP_COMPARE_BUF1;
397                 command[1] = (addr & 0x00FF0000) >> 16;
398                 command[2] = (addr & 0x0000FF00) >> 8;
399                 command[3] = 0;
400
401                 pr_debug("COMPARE: (%x) %x %x %x\n",
402                         command[0], command[1], command[2], command[3]);
403
404                 status = spi_sync(spi, &msg);
405                 if (status < 0)
406                         pr_debug("%s: compare %u -> %d\n",
407                                 dev_name(&spi->dev), addr, status);
408
409                 status = dataflash_waitready(priv->spi);
410
411                 /* Check result of the compare operation */
412                 if (status & (1 << 6)) {
413                         printk(KERN_ERR "%s: compare page %u, err %d\n",
414                                 dev_name(&spi->dev), pageaddr, status);
415                         remaining = 0;
416                         status = -EIO;
417                         break;
418                 } else
419                         status = 0;
420
421 #endif  /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
422
423                 remaining = remaining - writelen;
424                 pageaddr++;
425                 offset = 0;
426                 writebuf += writelen;
427                 *retlen += writelen;
428
429                 if (remaining > priv->page_size)
430                         writelen = priv->page_size;
431                 else
432                         writelen = remaining;
433         }
434         mutex_unlock(&priv->lock);
435
436         return status;
437 }
438
439 /* ......................................................................... */
440
441 #ifdef CONFIG_MTD_DATAFLASH_OTP
442
443 static int dataflash_get_otp_info(struct mtd_info *mtd,
444                 struct otp_info *info, size_t len)
445 {
446         /* Report both blocks as identical:  bytes 0..64, locked.
447          * Unless the user block changed from all-ones, we can't
448          * tell whether it's still writable; so we assume it isn't.
449          */
450         info->start = 0;
451         info->length = 64;
452         info->locked = 1;
453         return sizeof(*info);
454 }
455
456 static ssize_t otp_read(struct spi_device *spi, unsigned base,
457                 uint8_t *buf, loff_t off, size_t len)
458 {
459         struct spi_message      m;
460         size_t                  l;
461         uint8_t                 *scratch;
462         struct spi_transfer     t;
463         int                     status;
464
465         if (off > 64)
466                 return -EINVAL;
467
468         if ((off + len) > 64)
469                 len = 64 - off;
470
471         spi_message_init(&m);
472
473         l = 4 + base + off + len;
474         scratch = kzalloc(l, GFP_KERNEL);
475         if (!scratch)
476                 return -ENOMEM;
477
478         /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
479          * IN:  ignore 4 bytes, data bytes 0..N (max 127)
480          */
481         scratch[0] = OP_READ_SECURITY;
482
483         memset(&t, 0, sizeof t);
484         t.tx_buf = scratch;
485         t.rx_buf = scratch;
486         t.len = l;
487         spi_message_add_tail(&t, &m);
488
489         dataflash_waitready(spi);
490
491         status = spi_sync(spi, &m);
492         if (status >= 0) {
493                 memcpy(buf, scratch + 4 + base + off, len);
494                 status = len;
495         }
496
497         kfree(scratch);
498         return status;
499 }
500
501 static int dataflash_read_fact_otp(struct mtd_info *mtd,
502                 loff_t from, size_t len, size_t *retlen, u_char *buf)
503 {
504         struct dataflash        *priv = mtd->priv;
505         int                     status;
506
507         /* 64 bytes, from 0..63 ... start at 64 on-chip */
508         mutex_lock(&priv->lock);
509         status = otp_read(priv->spi, 64, buf, from, len);
510         mutex_unlock(&priv->lock);
511
512         if (status < 0)
513                 return status;
514         *retlen = status;
515         return 0;
516 }
517
518 static int dataflash_read_user_otp(struct mtd_info *mtd,
519                 loff_t from, size_t len, size_t *retlen, u_char *buf)
520 {
521         struct dataflash        *priv = mtd->priv;
522         int                     status;
523
524         /* 64 bytes, from 0..63 ... start at 0 on-chip */
525         mutex_lock(&priv->lock);
526         status = otp_read(priv->spi, 0, buf, from, len);
527         mutex_unlock(&priv->lock);
528
529         if (status < 0)
530                 return status;
531         *retlen = status;
532         return 0;
533 }
534
535 static int dataflash_write_user_otp(struct mtd_info *mtd,
536                 loff_t from, size_t len, size_t *retlen, u_char *buf)
537 {
538         struct spi_message      m;
539         const size_t            l = 4 + 64;
540         uint8_t                 *scratch;
541         struct spi_transfer     t;
542         struct dataflash        *priv = mtd->priv;
543         int                     status;
544
545         if (len > 64)
546                 return -EINVAL;
547
548         /* Strictly speaking, we *could* truncate the write ... but
549          * let's not do that for the only write that's ever possible.
550          */
551         if ((from + len) > 64)
552                 return -EINVAL;
553
554         /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
555          * IN:  ignore all
556          */
557         scratch = kzalloc(l, GFP_KERNEL);
558         if (!scratch)
559                 return -ENOMEM;
560         scratch[0] = OP_WRITE_SECURITY;
561         memcpy(scratch + 4 + from, buf, len);
562
563         spi_message_init(&m);
564
565         memset(&t, 0, sizeof t);
566         t.tx_buf = scratch;
567         t.len = l;
568         spi_message_add_tail(&t, &m);
569
570         /* Write the OTP bits, if they've not yet been written.
571          * This modifies SRAM buffer1.
572          */
573         mutex_lock(&priv->lock);
574         dataflash_waitready(priv->spi);
575         status = spi_sync(priv->spi, &m);
576         mutex_unlock(&priv->lock);
577
578         kfree(scratch);
579
580         if (status >= 0) {
581                 status = 0;
582                 *retlen = len;
583         }
584         return status;
585 }
586
587 static char *otp_setup(struct mtd_info *device, char revision)
588 {
589         device->_get_fact_prot_info = dataflash_get_otp_info;
590         device->_read_fact_prot_reg = dataflash_read_fact_otp;
591         device->_get_user_prot_info = dataflash_get_otp_info;
592         device->_read_user_prot_reg = dataflash_read_user_otp;
593
594         /* rev c parts (at45db321c and at45db1281 only!) use a
595          * different write procedure; not (yet?) implemented.
596          */
597         if (revision > 'c')
598                 device->_write_user_prot_reg = dataflash_write_user_otp;
599
600         return ", OTP";
601 }
602
603 #else
604
605 static char *otp_setup(struct mtd_info *device, char revision)
606 {
607         return " (OTP)";
608 }
609
610 #endif
611
612 /* ......................................................................... */
613
614 /*
615  * Register DataFlash device with MTD subsystem.
616  */
617 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
618                              int pagesize, int pageoffset, char revision)
619 {
620         struct dataflash                *priv;
621         struct mtd_info                 *device;
622         struct mtd_part_parser_data     ppdata;
623         struct flash_platform_data      *pdata = dev_get_platdata(&spi->dev);
624         char                            *otp_tag = "";
625         int                             err = 0;
626
627         priv = kzalloc(sizeof *priv, GFP_KERNEL);
628         if (!priv)
629                 return -ENOMEM;
630
631         mutex_init(&priv->lock);
632         priv->spi = spi;
633         priv->page_size = pagesize;
634         priv->page_offset = pageoffset;
635
636         /* name must be usable with cmdlinepart */
637         sprintf(priv->name, "spi%d.%d-%s",
638                         spi->master->bus_num, spi->chip_select,
639                         name);
640
641         device = &priv->mtd;
642         device->name = (pdata && pdata->name) ? pdata->name : priv->name;
643         device->size = nr_pages * pagesize;
644         device->erasesize = pagesize;
645         device->writesize = pagesize;
646         device->owner = THIS_MODULE;
647         device->type = MTD_DATAFLASH;
648         device->flags = MTD_WRITEABLE;
649         device->_erase = dataflash_erase;
650         device->_read = dataflash_read;
651         device->_write = dataflash_write;
652         device->priv = priv;
653
654         device->dev.parent = &spi->dev;
655
656         if (revision >= 'c')
657                 otp_tag = otp_setup(device, revision);
658
659         dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
660                         name, (long long)((device->size + 1023) >> 10),
661                         pagesize, otp_tag);
662         spi_set_drvdata(spi, priv);
663
664         ppdata.of_node = spi->dev.of_node;
665         err = mtd_device_parse_register(device, NULL, &ppdata,
666                         pdata ? pdata->parts : NULL,
667                         pdata ? pdata->nr_parts : 0);
668
669         if (!err)
670                 return 0;
671
672         kfree(priv);
673         return err;
674 }
675
676 static inline int add_dataflash(struct spi_device *spi, char *name,
677                                 int nr_pages, int pagesize, int pageoffset)
678 {
679         return add_dataflash_otp(spi, name, nr_pages, pagesize,
680                         pageoffset, 0);
681 }
682
683 struct flash_info {
684         char            *name;
685
686         /* JEDEC id has a high byte of zero plus three data bytes:
687          * the manufacturer id, then a two byte device id.
688          */
689         uint32_t        jedec_id;
690
691         /* The size listed here is what works with OP_ERASE_PAGE. */
692         unsigned        nr_pages;
693         uint16_t        pagesize;
694         uint16_t        pageoffset;
695
696         uint16_t        flags;
697 #define SUP_POW2PS      0x0002          /* supports 2^N byte pages */
698 #define IS_POW2PS       0x0001          /* uses 2^N byte pages */
699 };
700
701 static struct flash_info dataflash_data[] = {
702
703         /*
704          * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
705          * one with IS_POW2PS and the other without.  The entry with the
706          * non-2^N byte page size can't name exact chip revisions without
707          * losing backwards compatibility for cmdlinepart.
708          *
709          * These newer chips also support 128-byte security registers (with
710          * 64 bytes one-time-programmable) and software write-protection.
711          */
712         { "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
713         { "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
714
715         { "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
716         { "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
717
718         { "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
719         { "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
720
721         { "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
722         { "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
723
724         { "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
725         { "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
726
727         { "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},           /* rev C */
728
729         { "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
730         { "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
731
732         { "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
733         { "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
734 };
735
736 static struct flash_info *jedec_probe(struct spi_device *spi)
737 {
738         int                     tmp;
739         uint8_t                 code = OP_READ_ID;
740         uint8_t                 id[3];
741         uint32_t                jedec;
742         struct flash_info       *info;
743         int status;
744
745         /* JEDEC also defines an optional "extended device information"
746          * string for after vendor-specific data, after the three bytes
747          * we use here.  Supporting some chips might require using it.
748          *
749          * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
750          * That's not an error; only rev C and newer chips handle it, and
751          * only Atmel sells these chips.
752          */
753         tmp = spi_write_then_read(spi, &code, 1, id, 3);
754         if (tmp < 0) {
755                 pr_debug("%s: error %d reading JEDEC ID\n",
756                         dev_name(&spi->dev), tmp);
757                 return ERR_PTR(tmp);
758         }
759         if (id[0] != 0x1f)
760                 return NULL;
761
762         jedec = id[0];
763         jedec = jedec << 8;
764         jedec |= id[1];
765         jedec = jedec << 8;
766         jedec |= id[2];
767
768         for (tmp = 0, info = dataflash_data;
769                         tmp < ARRAY_SIZE(dataflash_data);
770                         tmp++, info++) {
771                 if (info->jedec_id == jedec) {
772                         pr_debug("%s: OTP, sector protect%s\n",
773                                 dev_name(&spi->dev),
774                                 (info->flags & SUP_POW2PS)
775                                         ? ", binary pagesize" : ""
776                                 );
777                         if (info->flags & SUP_POW2PS) {
778                                 status = dataflash_status(spi);
779                                 if (status < 0) {
780                                         pr_debug("%s: status error %d\n",
781                                                 dev_name(&spi->dev), status);
782                                         return ERR_PTR(status);
783                                 }
784                                 if (status & 0x1) {
785                                         if (info->flags & IS_POW2PS)
786                                                 return info;
787                                 } else {
788                                         if (!(info->flags & IS_POW2PS))
789                                                 return info;
790                                 }
791                         } else
792                                 return info;
793                 }
794         }
795
796         /*
797          * Treat other chips as errors ... we won't know the right page
798          * size (it might be binary) even when we can tell which density
799          * class is involved (legacy chip id scheme).
800          */
801         dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
802         return ERR_PTR(-ENODEV);
803 }
804
805 /*
806  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
807  * or else the ID code embedded in the status bits:
808  *
809  *   Device      Density         ID code          #Pages PageSize  Offset
810  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
811  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
812  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
813  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
814  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
815  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
816  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
817  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
818  */
819 static int dataflash_probe(struct spi_device *spi)
820 {
821         int status;
822         struct flash_info       *info;
823
824         /*
825          * Try to detect dataflash by JEDEC ID.
826          * If it succeeds we know we have either a C or D part.
827          * D will support power of 2 pagesize option.
828          * Both support the security register, though with different
829          * write procedures.
830          */
831         info = jedec_probe(spi);
832         if (IS_ERR(info))
833                 return PTR_ERR(info);
834         if (info != NULL)
835                 return add_dataflash_otp(spi, info->name, info->nr_pages,
836                                 info->pagesize, info->pageoffset,
837                                 (info->flags & SUP_POW2PS) ? 'd' : 'c');
838
839         /*
840          * Older chips support only legacy commands, identifing
841          * capacity using bits in the status byte.
842          */
843         status = dataflash_status(spi);
844         if (status <= 0 || status == 0xff) {
845                 pr_debug("%s: status error %d\n",
846                                 dev_name(&spi->dev), status);
847                 if (status == 0 || status == 0xff)
848                         status = -ENODEV;
849                 return status;
850         }
851
852         /* if there's a device there, assume it's dataflash.
853          * board setup should have set spi->max_speed_max to
854          * match f(car) for continuous reads, mode 0 or 3.
855          */
856         switch (status & 0x3c) {
857         case 0x0c:      /* 0 0 1 1 x x */
858                 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
859                 break;
860         case 0x14:      /* 0 1 0 1 x x */
861                 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
862                 break;
863         case 0x1c:      /* 0 1 1 1 x x */
864                 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
865                 break;
866         case 0x24:      /* 1 0 0 1 x x */
867                 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
868                 break;
869         case 0x2c:      /* 1 0 1 1 x x */
870                 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
871                 break;
872         case 0x34:      /* 1 1 0 1 x x */
873                 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
874                 break;
875         case 0x38:      /* 1 1 1 x x x */
876         case 0x3c:
877                 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
878                 break;
879         /* obsolete AT45DB1282 not (yet?) supported */
880         default:
881                 dev_info(&spi->dev, "unsupported device (%x)\n",
882                                 status & 0x3c);
883                 status = -ENODEV;
884         }
885
886         if (status < 0)
887                 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
888                                 status);
889
890         return status;
891 }
892
893 static int dataflash_remove(struct spi_device *spi)
894 {
895         struct dataflash        *flash = spi_get_drvdata(spi);
896         int                     status;
897
898         pr_debug("%s: remove\n", dev_name(&spi->dev));
899
900         status = mtd_device_unregister(&flash->mtd);
901         if (status == 0)
902                 kfree(flash);
903         return status;
904 }
905
906 static struct spi_driver dataflash_driver = {
907         .driver = {
908                 .name           = "mtd_dataflash",
909                 .owner          = THIS_MODULE,
910                 .of_match_table = of_match_ptr(dataflash_dt_ids),
911         },
912
913         .probe          = dataflash_probe,
914         .remove         = dataflash_remove,
915
916         /* FIXME:  investigate suspend and resume... */
917 };
918
919 module_spi_driver(dataflash_driver);
920
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Andrew Victor, David Brownell");
923 MODULE_DESCRIPTION("MTD DataFlash driver");
924 MODULE_ALIAS("spi:mtd_dataflash");