1 // SPDX-License-Identifier: GPL-2.0
3 * Common Flash Interface support:
4 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
6 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
7 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
8 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
10 * 2_by_8 routines added by Simon Munton
12 * 4_by_16 work by Carolyn J. Smith
14 * XIP support hooks by Vitaly Wool (based on code for Intel flash
17 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
19 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
27 #include <asm/byteorder.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/reboot.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
38 #include <linux/mtd/xip.h>
40 #define AMD_BOOTLOC_BUG
41 #define FORCE_WORD_WRITE 0
45 #define SST49LF004B 0x0060
46 #define SST49LF040B 0x0050
47 #define SST49LF008A 0x005a
48 #define AT49BV6416 0x00d6
49 #define S29GL064N_MN12 0x0c01
52 * Status Register bit description. Used by flash devices that don't
53 * support DQ polling (e.g. HyperFlash)
55 #define CFI_SR_DRB BIT(7)
56 #define CFI_SR_ESB BIT(5)
57 #define CFI_SR_PSB BIT(4)
58 #define CFI_SR_WBASB BIT(3)
59 #define CFI_SR_SLSB BIT(1)
62 CFI_QUIRK_DQ_TRUE_DATA = BIT(0),
65 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
68 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
70 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
71 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
72 static void cfi_amdstd_sync (struct mtd_info *);
73 static int cfi_amdstd_suspend (struct mtd_info *);
74 static void cfi_amdstd_resume (struct mtd_info *);
75 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
76 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
77 size_t *, struct otp_info *);
78 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
79 size_t *, struct otp_info *);
80 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
81 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
83 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
85 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
86 size_t *, const u_char *);
87 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
89 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
90 size_t *retlen, const u_char *buf);
92 static void cfi_amdstd_destroy(struct mtd_info *);
94 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
95 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
97 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
98 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
101 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
105 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
106 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
108 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
109 .probe = NULL, /* Not usable directly */
110 .destroy = cfi_amdstd_destroy,
111 .name = "cfi_cmdset_0002",
112 .module = THIS_MODULE
116 * Use status register to poll for Erase/write completion when DQ is not
117 * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
118 * CFI Primary Vendor-Specific Extended Query table 1.5
120 static int cfi_use_status_reg(struct cfi_private *cfi)
122 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
123 u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
125 return extp && extp->MinorVersion >= '5' &&
126 (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
129 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
132 struct cfi_private *cfi = map->fldrv_priv;
135 if (!cfi_use_status_reg(cfi))
138 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
139 cfi->device_type, NULL);
140 status = map_read(map, adr);
142 /* The error bits are invalid while the chip's busy */
143 if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
146 if (map_word_bitsset(map, status, CMD(0x3a))) {
147 unsigned long chipstatus = MERGESTATUS(status);
149 if (chipstatus & CFI_SR_ESB)
150 pr_err("%s erase operation failed, status %lx\n",
151 map->name, chipstatus);
152 if (chipstatus & CFI_SR_PSB)
153 pr_err("%s program operation failed, status %lx\n",
154 map->name, chipstatus);
155 if (chipstatus & CFI_SR_WBASB)
156 pr_err("%s buffer program command aborted, status %lx\n",
157 map->name, chipstatus);
158 if (chipstatus & CFI_SR_SLSB)
159 pr_err("%s sector write protected, status %lx\n",
160 map->name, chipstatus);
162 /* Erase/Program status bits are set on the operation failure */
163 if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
169 /* #define DEBUG_CFI_FEATURES */
172 #ifdef DEBUG_CFI_FEATURES
173 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
175 const char* erase_suspend[3] = {
176 "Not supported", "Read only", "Read/write"
178 const char* top_bottom[6] = {
179 "No WP", "8x8KiB sectors at top & bottom, no WP",
180 "Bottom boot", "Top boot",
181 "Uniform, Bottom WP", "Uniform, Top WP"
184 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
185 printk(" Address sensitive unlock: %s\n",
186 (extp->SiliconRevision & 1) ? "Not required" : "Required");
188 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
189 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
191 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
193 if (extp->BlkProt == 0)
194 printk(" Block protection: Not supported\n");
196 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
199 printk(" Temporary block unprotect: %s\n",
200 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
201 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
202 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
203 printk(" Burst mode: %s\n",
204 extp->BurstMode ? "Supported" : "Not supported");
205 if (extp->PageMode == 0)
206 printk(" Page mode: Not supported\n");
208 printk(" Page mode: %d word page\n", extp->PageMode << 2);
210 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
211 extp->VppMin >> 4, extp->VppMin & 0xf);
212 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
213 extp->VppMax >> 4, extp->VppMax & 0xf);
215 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
216 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
218 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
222 #ifdef AMD_BOOTLOC_BUG
223 /* Wheee. Bring me the head of someone at AMD. */
224 static void fixup_amd_bootblock(struct mtd_info *mtd)
226 struct map_info *map = mtd->priv;
227 struct cfi_private *cfi = map->fldrv_priv;
228 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
229 __u8 major = extp->MajorVersion;
230 __u8 minor = extp->MinorVersion;
232 if (((major << 8) | minor) < 0x3131) {
233 /* CFI version 1.0 => don't trust bootloc */
235 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
236 map->name, cfi->mfr, cfi->id);
238 /* AFAICS all 29LV400 with a bottom boot block have a device ID
239 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
240 * These were badly detected as they have the 0x80 bit set
241 * so treat them as a special case.
243 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
245 /* Macronix added CFI to their 2nd generation
246 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
247 * Fujitsu, Spansion, EON, ESI and older Macronix)
250 * Therefore also check the manufacturer.
251 * This reduces the risk of false detection due to
252 * the 8-bit device ID.
254 (cfi->mfr == CFI_MFR_MACRONIX)) {
255 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
256 " detected\n", map->name);
257 extp->TopBottom = 2; /* bottom boot */
259 if (cfi->id & 0x80) {
260 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
261 extp->TopBottom = 3; /* top boot */
263 extp->TopBottom = 2; /* bottom boot */
266 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
267 " deduced %s from Device ID\n", map->name, major, minor,
268 extp->TopBottom == 2 ? "bottom" : "top");
273 #if !FORCE_WORD_WRITE
274 static void fixup_use_write_buffers(struct mtd_info *mtd)
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
279 if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201)
282 if (cfi->cfiq->BufWriteTimeoutTyp) {
283 pr_debug("Using buffer write method\n");
284 mtd->_write = cfi_amdstd_write_buffers;
287 #endif /* !FORCE_WORD_WRITE */
289 /* Atmel chips don't use the same PRI format as AMD chips */
290 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
294 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
295 struct cfi_pri_atmel atmel_pri;
297 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
298 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
300 if (atmel_pri.Features & 0x02)
301 extp->EraseSuspend = 2;
303 /* Some chips got it backwards... */
304 if (cfi->id == AT49BV6416) {
305 if (atmel_pri.BottomBoot)
310 if (atmel_pri.BottomBoot)
316 /* burst write mode not supported */
317 cfi->cfiq->BufWriteTimeoutTyp = 0;
318 cfi->cfiq->BufWriteTimeoutMax = 0;
321 static void fixup_use_secsi(struct mtd_info *mtd)
323 /* Setup for chips with a secsi area */
324 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
325 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
328 static void fixup_use_erase_chip(struct mtd_info *mtd)
330 struct map_info *map = mtd->priv;
331 struct cfi_private *cfi = map->fldrv_priv;
332 if ((cfi->cfiq->NumEraseRegions == 1) &&
333 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
334 mtd->_erase = cfi_amdstd_erase_chip;
340 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
343 static void fixup_use_atmel_lock(struct mtd_info *mtd)
345 mtd->_lock = cfi_atmel_lock;
346 mtd->_unlock = cfi_atmel_unlock;
347 mtd->flags |= MTD_POWERUP_LOCK;
350 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
352 struct map_info *map = mtd->priv;
353 struct cfi_private *cfi = map->fldrv_priv;
356 * These flashes report two separate eraseblock regions based on the
357 * sector_erase-size and block_erase-size, although they both operate on the
358 * same memory. This is not allowed according to CFI, so we just pick the
361 cfi->cfiq->NumEraseRegions = 1;
364 static void fixup_sst39vf(struct mtd_info *mtd)
366 struct map_info *map = mtd->priv;
367 struct cfi_private *cfi = map->fldrv_priv;
369 fixup_old_sst_eraseregion(mtd);
371 cfi->addr_unlock1 = 0x5555;
372 cfi->addr_unlock2 = 0x2AAA;
375 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
377 struct map_info *map = mtd->priv;
378 struct cfi_private *cfi = map->fldrv_priv;
380 fixup_old_sst_eraseregion(mtd);
382 cfi->addr_unlock1 = 0x555;
383 cfi->addr_unlock2 = 0x2AA;
385 cfi->sector_erase_cmd = CMD(0x50);
388 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
390 struct map_info *map = mtd->priv;
391 struct cfi_private *cfi = map->fldrv_priv;
393 fixup_sst39vf_rev_b(mtd);
396 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
397 * it should report a size of 8KBytes (0x0020*256).
399 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
400 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
404 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
406 struct map_info *map = mtd->priv;
407 struct cfi_private *cfi = map->fldrv_priv;
409 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
410 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
411 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
416 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
418 struct map_info *map = mtd->priv;
419 struct cfi_private *cfi = map->fldrv_priv;
421 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
422 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
423 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
428 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
430 struct map_info *map = mtd->priv;
431 struct cfi_private *cfi = map->fldrv_priv;
434 * S29NS512P flash uses more than 8bits to report number of sectors,
435 * which is not permitted by CFI.
437 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
438 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
442 static void fixup_quirks(struct mtd_info *mtd)
444 struct map_info *map = mtd->priv;
445 struct cfi_private *cfi = map->fldrv_priv;
447 if (cfi->mfr == CFI_MFR_AMD && cfi->id == S29GL064N_MN12)
448 cfi->quirks |= CFI_QUIRK_DQ_TRUE_DATA;
451 /* Used to fix CFI-Tables of chips without Extended Query Tables */
452 static struct cfi_fixup cfi_nopri_fixup_table[] = {
453 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
454 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
455 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
456 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
457 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
458 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
459 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
460 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
464 static struct cfi_fixup cfi_fixup_table[] = {
465 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
466 #ifdef AMD_BOOTLOC_BUG
467 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
468 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
469 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
471 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
472 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
473 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
474 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
475 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
476 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
477 { CFI_MFR_AMD, S29GL064N_MN12, fixup_s29gl064n_sectors },
478 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
479 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
480 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
481 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
482 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
483 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
484 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
485 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
486 #if !FORCE_WORD_WRITE
487 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
489 { CFI_MFR_ANY, CFI_ID_ANY, fixup_quirks },
492 static struct cfi_fixup jedec_fixup_table[] = {
493 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
494 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
495 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
499 static struct cfi_fixup fixup_table[] = {
500 /* The CFI vendor ids and the JEDEC vendor IDs appear
501 * to be common. It is like the devices id's are as
502 * well. This table is to pick all cases where
503 * we know that is the case.
505 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
506 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
511 static void cfi_fixup_major_minor(struct cfi_private *cfi,
512 struct cfi_pri_amdstd *extp)
514 if (cfi->mfr == CFI_MFR_SAMSUNG) {
515 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
516 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
518 * Samsung K8P2815UQB and K8D6x16UxM chips
519 * report major=0 / minor=0.
520 * K8D3x16UxC chips report major=3 / minor=3.
522 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
523 " Extended Query version to 1.%c\n",
525 extp->MajorVersion = '1';
530 * SST 38VF640x chips report major=0xFF / minor=0xFF.
532 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
533 extp->MajorVersion = '1';
534 extp->MinorVersion = '0';
538 static int is_m29ew(struct cfi_private *cfi)
540 if (cfi->mfr == CFI_MFR_INTEL &&
541 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
542 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
548 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
549 * Some revisions of the M29EW suffer from erase suspend hang ups. In
550 * particular, it can occur when the sequence
551 * Erase Confirm -> Suspend -> Program -> Resume
552 * causes a lockup due to internal timing issues. The consequence is that the
553 * erase cannot be resumed without inserting a dummy command after programming
554 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
555 * that writes an F0 command code before the RESUME command.
557 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
560 struct cfi_private *cfi = map->fldrv_priv;
561 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
563 map_write(map, CMD(0xF0), adr);
567 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
569 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
570 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
571 * command is issued after an ERASE RESUME operation without waiting for a
572 * minimum delay. The result is that once the ERASE seems to be completed
573 * (no bits are toggling), the contents of the Flash memory block on which
574 * the erase was ongoing could be inconsistent with the expected values
575 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
576 * values), causing a consequent failure of the ERASE operation.
577 * The occurrence of this issue could be high, especially when file system
578 * operations on the Flash are intensive. As a result, it is recommended
579 * that a patch be applied. Intensive file system operations can cause many
580 * calls to the garbage routine to free Flash space (also by erasing physical
581 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
582 * commands can occur. The problem disappears when a delay is inserted after
583 * the RESUME command by using the udelay() function available in Linux.
584 * The DELAY value must be tuned based on the customer's platform.
585 * The maximum value that fixes the problem in all cases is 500us.
586 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
588 * We have chosen 500µs because this latency is acceptable.
590 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
593 * Resolving the Delay After Resume Issue see Micron TN-13-07
594 * Worst case delay must be 500µs but 30-50µs should be ok as well
600 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
602 struct cfi_private *cfi = map->fldrv_priv;
603 struct device_node __maybe_unused *np = map->device_node;
604 struct mtd_info *mtd;
607 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
611 mtd->type = MTD_NORFLASH;
613 /* Fill in the default mtd operations */
614 mtd->_erase = cfi_amdstd_erase_varsize;
615 mtd->_write = cfi_amdstd_write_words;
616 mtd->_read = cfi_amdstd_read;
617 mtd->_sync = cfi_amdstd_sync;
618 mtd->_suspend = cfi_amdstd_suspend;
619 mtd->_resume = cfi_amdstd_resume;
620 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
621 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
622 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
623 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
624 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
625 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
626 mtd->flags = MTD_CAP_NORFLASH;
627 mtd->name = map->name;
629 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
631 pr_debug("MTD %s(): write buffer size %d\n", __func__,
634 mtd->_panic_write = cfi_amdstd_panic_write;
635 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
637 if (cfi->cfi_mode==CFI_MODE_CFI){
638 unsigned char bootloc;
639 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
640 struct cfi_pri_amdstd *extp;
642 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
645 * It's a real CFI chip, not one for which the probe
646 * routine faked a CFI structure.
648 cfi_fixup_major_minor(cfi, extp);
651 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
652 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
653 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
654 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
655 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
657 if (extp->MajorVersion != '1' ||
658 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
659 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
660 "version %c.%c (%#02x/%#02x).\n",
661 extp->MajorVersion, extp->MinorVersion,
662 extp->MajorVersion, extp->MinorVersion);
668 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
669 extp->MajorVersion, extp->MinorVersion);
671 /* Install our own private info structure */
672 cfi->cmdset_priv = extp;
674 /* Apply cfi device specific fixups */
675 cfi_fixup(mtd, cfi_fixup_table);
677 #ifdef DEBUG_CFI_FEATURES
678 /* Tell the user about it in lots of lovely detail */
679 cfi_tell_features(extp);
683 if (np && of_property_read_bool(
684 np, "use-advanced-sector-protection")
685 && extp->BlkProtUnprot == 8) {
686 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
687 mtd->_lock = cfi_ppb_lock;
688 mtd->_unlock = cfi_ppb_unlock;
689 mtd->_is_locked = cfi_ppb_is_locked;
693 bootloc = extp->TopBottom;
694 if ((bootloc < 2) || (bootloc > 5)) {
695 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
696 "bank location (%d). Assuming bottom.\n",
701 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
702 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
704 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
705 int j = (cfi->cfiq->NumEraseRegions-1)-i;
707 swap(cfi->cfiq->EraseRegionInfo[i],
708 cfi->cfiq->EraseRegionInfo[j]);
711 /* Set the default CFI lock/unlock addresses */
712 cfi->addr_unlock1 = 0x555;
713 cfi->addr_unlock2 = 0x2aa;
715 cfi_fixup(mtd, cfi_nopri_fixup_table);
717 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
723 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
724 /* Apply jedec specific fixups */
725 cfi_fixup(mtd, jedec_fixup_table);
727 /* Apply generic fixups */
728 cfi_fixup(mtd, fixup_table);
730 for (i=0; i< cfi->numchips; i++) {
731 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
732 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
733 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
735 * First calculate the timeout max according to timeout field
736 * of struct cfi_ident that probed from chip's CFI aera, if
737 * available. Specify a minimum of 2000us, in case the CFI data
740 if (cfi->cfiq->BufWriteTimeoutTyp &&
741 cfi->cfiq->BufWriteTimeoutMax)
742 cfi->chips[i].buffer_write_time_max =
743 1 << (cfi->cfiq->BufWriteTimeoutTyp +
744 cfi->cfiq->BufWriteTimeoutMax);
746 cfi->chips[i].buffer_write_time_max = 0;
748 cfi->chips[i].buffer_write_time_max =
749 max(cfi->chips[i].buffer_write_time_max, 2000);
751 cfi->chips[i].ref_point_counter = 0;
752 init_waitqueue_head(&(cfi->chips[i].wq));
755 map->fldrv = &cfi_amdstd_chipdrv;
757 return cfi_amdstd_setup(mtd);
759 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
760 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
761 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
762 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
763 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
765 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
767 struct map_info *map = mtd->priv;
768 struct cfi_private *cfi = map->fldrv_priv;
769 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
770 unsigned long offset = 0;
773 printk(KERN_NOTICE "number of %s chips: %d\n",
774 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
775 /* Select the correct geometry setup */
776 mtd->size = devsize * cfi->numchips;
778 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
779 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
780 sizeof(struct mtd_erase_region_info),
782 if (!mtd->eraseregions)
785 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
786 unsigned long ernum, ersize;
787 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
788 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
790 if (mtd->erasesize < ersize) {
791 mtd->erasesize = ersize;
793 for (j=0; j<cfi->numchips; j++) {
794 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
795 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
796 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
798 offset += (ersize * ernum);
800 if (offset != devsize) {
802 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
806 __module_get(THIS_MODULE);
807 register_reboot_notifier(&mtd->reboot_notifier);
811 kfree(mtd->eraseregions);
813 kfree(cfi->cmdset_priv);
818 * Return true if the chip is ready and has the correct value.
820 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
821 * non-suspended sector) and is indicated by no toggle bits toggling.
823 * Error are indicated by toggling bits or bits held with the wrong value,
824 * or with bits toggling.
826 * Note that anything more complicated than checking if no bits are toggling
827 * (including checking DQ5 for an error status) is tricky to get working
828 * correctly and is therefore not done (particularly with interleaved chips
829 * as each chip must be checked independently of the others).
831 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
832 unsigned long addr, map_word *expected)
834 struct cfi_private *cfi = map->fldrv_priv;
838 if (cfi_use_status_reg(cfi)) {
839 map_word ready = CMD(CFI_SR_DRB);
841 * For chips that support status register, check device
844 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
845 cfi->device_type, NULL);
846 curd = map_read(map, addr);
848 return map_word_andequal(map, curd, ready, ready);
851 oldd = map_read(map, addr);
852 curd = map_read(map, addr);
854 ret = map_word_equal(map, oldd, curd);
856 if (!ret || !expected)
859 return map_word_equal(map, curd, *expected);
862 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
863 unsigned long addr, map_word *expected)
865 struct cfi_private *cfi = map->fldrv_priv;
866 map_word *datum = expected;
868 if (cfi->quirks & CFI_QUIRK_DQ_TRUE_DATA)
871 return chip_ready(map, chip, addr, datum);
874 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
876 DECLARE_WAITQUEUE(wait, current);
877 struct cfi_private *cfi = map->fldrv_priv;
879 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
882 timeo = jiffies + HZ;
884 switch (chip->state) {
888 if (chip_ready(map, chip, adr, NULL))
891 if (time_after(jiffies, timeo)) {
892 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
895 mutex_unlock(&chip->mutex);
897 mutex_lock(&chip->mutex);
898 /* Someone else might have been playing with it. */
909 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
910 !(mode == FL_READY || mode == FL_POINT ||
911 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
914 /* Do not allow suspend iff read/write to EB address */
915 if ((adr & chip->in_progress_block_mask) ==
916 chip->in_progress_block_addr)
920 /* It's harmless to issue the Erase-Suspend and Erase-Resume
921 * commands when the erase algorithm isn't in progress. */
922 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
923 chip->oldstate = FL_ERASING;
924 chip->state = FL_ERASE_SUSPENDING;
925 chip->erase_suspended = 1;
927 if (chip_ready(map, chip, adr, NULL))
930 if (time_after(jiffies, timeo)) {
931 /* Should have suspended the erase by now.
932 * Send an Erase-Resume command as either
933 * there was an error (so leave the erase
934 * routine to recover from it) or we trying to
935 * use the erase-in-progress sector. */
936 put_chip(map, chip, adr);
937 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
941 mutex_unlock(&chip->mutex);
943 mutex_lock(&chip->mutex);
944 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
945 So we can just loop here. */
947 chip->state = FL_READY;
950 case FL_XIP_WHILE_ERASING:
951 if (mode != FL_READY && mode != FL_POINT &&
952 (!cfip || !(cfip->EraseSuspend&2)))
954 chip->oldstate = chip->state;
955 chip->state = FL_READY;
959 /* The machine is rebooting */
963 /* Only if there's no operation suspended... */
964 if (mode == FL_READY && chip->oldstate == FL_READY)
969 set_current_state(TASK_UNINTERRUPTIBLE);
970 add_wait_queue(&chip->wq, &wait);
971 mutex_unlock(&chip->mutex);
973 remove_wait_queue(&chip->wq, &wait);
974 mutex_lock(&chip->mutex);
980 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
982 struct cfi_private *cfi = map->fldrv_priv;
984 switch(chip->oldstate) {
986 cfi_fixup_m29ew_erase_suspend(map,
987 chip->in_progress_block_addr);
988 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
989 cfi_fixup_m29ew_delay_after_resume(cfi);
990 chip->oldstate = FL_READY;
991 chip->state = FL_ERASING;
994 case FL_XIP_WHILE_ERASING:
995 chip->state = chip->oldstate;
996 chip->oldstate = FL_READY;
1003 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1008 #ifdef CONFIG_MTD_XIP
1011 * No interrupt what so ever can be serviced while the flash isn't in array
1012 * mode. This is ensured by the xip_disable() and xip_enable() functions
1013 * enclosing any code path where the flash is known not to be in array mode.
1014 * And within a XIP disabled code path, only functions marked with __xipram
1015 * may be called and nothing else (it's a good thing to inspect generated
1016 * assembly to make sure inline functions were actually inlined and that gcc
1017 * didn't emit calls to its own support functions). Also configuring MTD CFI
1018 * support to a single buswidth and a single interleave is also recommended.
1021 static void xip_disable(struct map_info *map, struct flchip *chip,
1024 /* TODO: chips with no XIP use should ignore and return */
1025 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1026 local_irq_disable();
1029 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1032 struct cfi_private *cfi = map->fldrv_priv;
1034 if (chip->state != FL_POINT && chip->state != FL_READY) {
1035 map_write(map, CMD(0xf0), adr);
1036 chip->state = FL_READY;
1038 (void) map_read(map, adr);
1044 * When a delay is required for the flash operation to complete, the
1045 * xip_udelay() function is polling for both the given timeout and pending
1046 * (but still masked) hardware interrupts. Whenever there is an interrupt
1047 * pending then the flash erase operation is suspended, array mode restored
1048 * and interrupts unmasked. Task scheduling might also happen at that
1049 * point. The CPU eventually returns from the interrupt or the call to
1050 * schedule() and the suspended flash operation is resumed for the remaining
1051 * of the delay period.
1053 * Warning: this function _will_ fool interrupt latency tracing tools.
1056 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1057 unsigned long adr, int usec)
1059 struct cfi_private *cfi = map->fldrv_priv;
1060 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1061 map_word status, OK = CMD(0x80);
1062 unsigned long suspended, start = xip_currtime();
1067 if (xip_irqpending() && extp &&
1068 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1069 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1071 * Let's suspend the erase operation when supported.
1072 * Note that we currently don't try to suspend
1073 * interleaved chips if there is already another
1074 * operation suspended (imagine what happens
1075 * when one chip was already done with the current
1076 * operation while another chip suspended it, then
1077 * we resume the whole thing at once). Yes, it
1080 map_write(map, CMD(0xb0), adr);
1081 usec -= xip_elapsed_since(start);
1082 suspended = xip_currtime();
1084 if (xip_elapsed_since(suspended) > 100000) {
1086 * The chip doesn't want to suspend
1087 * after waiting for 100 msecs.
1088 * This is a critical error but there
1089 * is not much we can do here.
1093 status = map_read(map, adr);
1094 } while (!map_word_andequal(map, status, OK, OK));
1096 /* Suspend succeeded */
1097 oldstate = chip->state;
1098 if (!map_word_bitsset(map, status, CMD(0x40)))
1100 chip->state = FL_XIP_WHILE_ERASING;
1101 chip->erase_suspended = 1;
1102 map_write(map, CMD(0xf0), adr);
1103 (void) map_read(map, adr);
1106 mutex_unlock(&chip->mutex);
1111 * We're back. However someone else might have
1112 * decided to go write to the chip if we are in
1113 * a suspended erase state. If so let's wait
1116 mutex_lock(&chip->mutex);
1117 while (chip->state != FL_XIP_WHILE_ERASING) {
1118 DECLARE_WAITQUEUE(wait, current);
1119 set_current_state(TASK_UNINTERRUPTIBLE);
1120 add_wait_queue(&chip->wq, &wait);
1121 mutex_unlock(&chip->mutex);
1123 remove_wait_queue(&chip->wq, &wait);
1124 mutex_lock(&chip->mutex);
1126 /* Disallow XIP again */
1127 local_irq_disable();
1129 /* Correct Erase Suspend Hangups for M29EW */
1130 cfi_fixup_m29ew_erase_suspend(map, adr);
1131 /* Resume the write or erase operation */
1132 map_write(map, cfi->sector_erase_cmd, adr);
1133 chip->state = oldstate;
1134 start = xip_currtime();
1135 } else if (usec >= 1000000/HZ) {
1137 * Try to save on CPU power when waiting delay
1138 * is at least a system timer tick period.
1139 * No need to be extremely accurate here.
1143 status = map_read(map, adr);
1144 } while (!map_word_andequal(map, status, OK, OK)
1145 && xip_elapsed_since(start) < usec);
1148 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1151 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1152 * the flash is actively programming or erasing since we have to poll for
1153 * the operation to complete anyway. We can't do that in a generic way with
1154 * a XIP setup so do it before the actual flash operation in this case
1155 * and stub it out from INVALIDATE_CACHE_UDELAY.
1157 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1158 INVALIDATE_CACHED_RANGE(map, from, size)
1160 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1161 UDELAY(map, chip, adr, usec)
1166 * Activating this XIP support changes the way the code works a bit. For
1167 * example the code to suspend the current process when concurrent access
1168 * happens is never executed because xip_udelay() will always return with the
1169 * same chip state as it was entered with. This is why there is no care for
1170 * the presence of add_wait_queue() or schedule() calls from within a couple
1171 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1172 * The queueing and scheduling are always happening within xip_udelay().
1174 * Similarly, get_chip() and put_chip() just happen to always be executed
1175 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1176 * is in array mode, therefore never executing many cases therein and not
1177 * causing any problem with XIP.
1182 #define xip_disable(map, chip, adr)
1183 #define xip_enable(map, chip, adr)
1184 #define XIP_INVAL_CACHED_RANGE(x...)
1186 #define UDELAY(map, chip, adr, usec) \
1188 mutex_unlock(&chip->mutex); \
1190 mutex_lock(&chip->mutex); \
1193 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1195 mutex_unlock(&chip->mutex); \
1196 INVALIDATE_CACHED_RANGE(map, adr, len); \
1198 mutex_lock(&chip->mutex); \
1203 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1205 unsigned long cmd_addr;
1206 struct cfi_private *cfi = map->fldrv_priv;
1211 /* Ensure cmd read/writes are aligned. */
1212 cmd_addr = adr & ~(map_bankwidth(map)-1);
1214 mutex_lock(&chip->mutex);
1215 ret = get_chip(map, chip, cmd_addr, FL_READY);
1217 mutex_unlock(&chip->mutex);
1221 if (chip->state != FL_POINT && chip->state != FL_READY) {
1222 map_write(map, CMD(0xf0), cmd_addr);
1223 chip->state = FL_READY;
1226 map_copy_from(map, buf, adr, len);
1228 put_chip(map, chip, cmd_addr);
1230 mutex_unlock(&chip->mutex);
1235 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1237 struct map_info *map = mtd->priv;
1238 struct cfi_private *cfi = map->fldrv_priv;
1243 /* ofs: offset within the first chip that the first read should start */
1244 chipnum = (from >> cfi->chipshift);
1245 ofs = from - (chipnum << cfi->chipshift);
1248 unsigned long thislen;
1250 if (chipnum >= cfi->numchips)
1253 if ((len + ofs -1) >> cfi->chipshift)
1254 thislen = (1<<cfi->chipshift) - ofs;
1258 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1272 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1273 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1275 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1276 loff_t adr, size_t len)
1278 struct cfi_private *cfi = map->fldrv_priv;
1280 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1281 cfi->device_type, NULL);
1282 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1283 cfi->device_type, NULL);
1284 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1285 cfi->device_type, NULL);
1287 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1290 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1291 loff_t adr, size_t len)
1293 struct cfi_private *cfi = map->fldrv_priv;
1295 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1296 cfi->device_type, NULL);
1297 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1298 cfi->device_type, NULL);
1299 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1300 cfi->device_type, NULL);
1301 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1302 cfi->device_type, NULL);
1304 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1307 static inline int do_read_secsi_onechip(struct map_info *map,
1308 struct flchip *chip, loff_t adr,
1309 size_t len, u_char *buf,
1312 DECLARE_WAITQUEUE(wait, current);
1315 mutex_lock(&chip->mutex);
1317 if (chip->state != FL_READY){
1318 set_current_state(TASK_UNINTERRUPTIBLE);
1319 add_wait_queue(&chip->wq, &wait);
1321 mutex_unlock(&chip->mutex);
1324 remove_wait_queue(&chip->wq, &wait);
1331 chip->state = FL_READY;
1333 otp_enter(map, chip, adr, len);
1334 map_copy_from(map, buf, adr, len);
1335 otp_exit(map, chip, adr, len);
1338 mutex_unlock(&chip->mutex);
1343 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1345 struct map_info *map = mtd->priv;
1346 struct cfi_private *cfi = map->fldrv_priv;
1351 /* ofs: offset within the first chip that the first read should start */
1352 /* 8 secsi bytes per chip */
1357 unsigned long thislen;
1359 if (chipnum >= cfi->numchips)
1362 if ((len + ofs -1) >> 3)
1363 thislen = (1<<3) - ofs;
1367 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1382 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1383 unsigned long adr, map_word datum,
1386 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1387 size_t len, u_char *buf, size_t grouplen)
1391 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1392 int gap = adr - bus_ofs;
1393 int n = min_t(int, len, map_bankwidth(map) - gap);
1394 map_word datum = map_word_ff(map);
1396 if (n != map_bankwidth(map)) {
1397 /* partial write of a word, load old contents */
1398 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1399 datum = map_read(map, bus_ofs);
1400 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1403 datum = map_word_load_partial(map, datum, buf, gap, n);
1404 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1416 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1417 size_t len, u_char *buf, size_t grouplen)
1419 struct cfi_private *cfi = map->fldrv_priv;
1421 unsigned long timeo;
1424 /* make sure area matches group boundaries */
1425 if ((adr != 0) || (len != grouplen))
1428 mutex_lock(&chip->mutex);
1429 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1431 mutex_unlock(&chip->mutex);
1434 chip->state = FL_LOCKING;
1436 /* Enter lock register command */
1437 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1438 cfi->device_type, NULL);
1439 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1440 cfi->device_type, NULL);
1441 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1442 cfi->device_type, NULL);
1444 /* read lock register */
1445 lockreg = cfi_read_query(map, 0);
1447 /* set bit 0 to protect extended memory block */
1450 /* set bit 0 to protect extended memory block */
1451 /* write lock register */
1452 map_write(map, CMD(0xA0), chip->start);
1453 map_write(map, CMD(lockreg), chip->start);
1455 /* wait for chip to become ready */
1456 timeo = jiffies + msecs_to_jiffies(2);
1458 if (chip_ready(map, chip, adr, NULL))
1461 if (time_after(jiffies, timeo)) {
1462 pr_err("Waiting for chip to be ready timed out.\n");
1466 UDELAY(map, chip, 0, 1);
1469 /* exit protection commands */
1470 map_write(map, CMD(0x90), chip->start);
1471 map_write(map, CMD(0x00), chip->start);
1473 chip->state = FL_READY;
1474 put_chip(map, chip, chip->start);
1475 mutex_unlock(&chip->mutex);
1480 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1481 size_t *retlen, u_char *buf,
1482 otp_op_t action, int user_regs)
1484 struct map_info *map = mtd->priv;
1485 struct cfi_private *cfi = map->fldrv_priv;
1486 int ofs_factor = cfi->interleave * cfi->device_type;
1489 struct flchip *chip;
1490 uint8_t otp, lockreg;
1493 size_t user_size, factory_size, otpsize;
1494 loff_t user_offset, factory_offset, otpoffset;
1495 int user_locked = 0, otplocked;
1499 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1500 chip = &cfi->chips[chipnum];
1504 /* Micron M29EW family */
1505 if (is_m29ew(cfi)) {
1508 /* check whether secsi area is factory locked
1510 mutex_lock(&chip->mutex);
1511 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1513 mutex_unlock(&chip->mutex);
1516 cfi_qry_mode_on(base, map, cfi);
1517 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1518 cfi_qry_mode_off(base, map, cfi);
1519 put_chip(map, chip, base);
1520 mutex_unlock(&chip->mutex);
1523 /* factory locked */
1525 factory_size = 0x100;
1527 /* customer lockable */
1531 mutex_lock(&chip->mutex);
1532 ret = get_chip(map, chip, base, FL_LOCKING);
1534 mutex_unlock(&chip->mutex);
1538 /* Enter lock register command */
1539 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1540 chip->start, map, cfi,
1541 cfi->device_type, NULL);
1542 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1543 chip->start, map, cfi,
1544 cfi->device_type, NULL);
1545 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1546 chip->start, map, cfi,
1547 cfi->device_type, NULL);
1548 /* read lock register */
1549 lockreg = cfi_read_query(map, 0);
1550 /* exit protection commands */
1551 map_write(map, CMD(0x90), chip->start);
1552 map_write(map, CMD(0x00), chip->start);
1553 put_chip(map, chip, chip->start);
1554 mutex_unlock(&chip->mutex);
1556 user_locked = ((lockreg & 0x01) == 0x00);
1560 otpsize = user_regs ? user_size : factory_size;
1563 otpoffset = user_regs ? user_offset : factory_offset;
1564 otplocked = user_regs ? user_locked : 1;
1567 /* return otpinfo */
1568 struct otp_info *otpinfo;
1569 len -= sizeof(*otpinfo);
1572 otpinfo = (struct otp_info *)buf;
1573 otpinfo->start = from;
1574 otpinfo->length = otpsize;
1575 otpinfo->locked = otplocked;
1576 buf += sizeof(*otpinfo);
1577 *retlen += sizeof(*otpinfo);
1579 } else if ((from < otpsize) && (len > 0)) {
1581 size = (len < otpsize - from) ? len : otpsize - from;
1582 ret = action(map, chip, otpoffset + from, size, buf,
1598 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1599 size_t *retlen, struct otp_info *buf)
1601 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1605 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1606 size_t *retlen, struct otp_info *buf)
1608 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1612 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1613 size_t len, size_t *retlen,
1616 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1617 buf, do_read_secsi_onechip, 0);
1620 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1621 size_t len, size_t *retlen,
1624 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1625 buf, do_read_secsi_onechip, 1);
1628 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1629 size_t len, size_t *retlen,
1632 return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf,
1636 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1640 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1644 static int __xipram do_write_oneword_once(struct map_info *map,
1645 struct flchip *chip,
1646 unsigned long adr, map_word datum,
1647 int mode, struct cfi_private *cfi)
1649 unsigned long timeo;
1651 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1652 * have a max write time of a few hundreds usec). However, we should
1653 * use the maximum timeout value given by the chip at probe time
1654 * instead. Unfortunately, struct flchip does have a field for
1655 * maximum timeout, only for typical which can be far too short
1656 * depending of the conditions. The ' + 1' is to avoid having a
1657 * timeout of 0 jiffies if HZ is smaller than 1000.
1659 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1662 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1663 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1664 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1665 map_write(map, datum, adr);
1668 INVALIDATE_CACHE_UDELAY(map, chip,
1669 adr, map_bankwidth(map),
1670 chip->word_write_time);
1672 /* See comment above for timeout value. */
1673 timeo = jiffies + uWriteTimeout;
1675 if (chip->state != mode) {
1676 /* Someone's suspended the write. Sleep */
1677 DECLARE_WAITQUEUE(wait, current);
1679 set_current_state(TASK_UNINTERRUPTIBLE);
1680 add_wait_queue(&chip->wq, &wait);
1681 mutex_unlock(&chip->mutex);
1683 remove_wait_queue(&chip->wq, &wait);
1684 timeo = jiffies + (HZ / 2); /* FIXME */
1685 mutex_lock(&chip->mutex);
1690 * We check "time_after" and "!chip_good" before checking
1691 * "chip_good" to avoid the failure due to scheduling.
1693 if (time_after(jiffies, timeo) &&
1694 !chip_good(map, chip, adr, &datum)) {
1695 xip_enable(map, chip, adr);
1696 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1697 xip_disable(map, chip, adr);
1702 if (chip_good(map, chip, adr, &datum)) {
1703 if (cfi_check_err_status(map, chip, adr))
1708 /* Latency issues. Drop the lock, wait a while and retry */
1709 UDELAY(map, chip, adr, 1);
1715 static int __xipram do_write_oneword_start(struct map_info *map,
1716 struct flchip *chip,
1717 unsigned long adr, int mode)
1721 mutex_lock(&chip->mutex);
1723 ret = get_chip(map, chip, adr, mode);
1725 mutex_unlock(&chip->mutex);
1729 if (mode == FL_OTP_WRITE)
1730 otp_enter(map, chip, adr, map_bankwidth(map));
1735 static void __xipram do_write_oneword_done(struct map_info *map,
1736 struct flchip *chip,
1737 unsigned long adr, int mode)
1739 if (mode == FL_OTP_WRITE)
1740 otp_exit(map, chip, adr, map_bankwidth(map));
1742 chip->state = FL_READY;
1744 put_chip(map, chip, adr);
1746 mutex_unlock(&chip->mutex);
1749 static int __xipram do_write_oneword_retry(struct map_info *map,
1750 struct flchip *chip,
1751 unsigned long adr, map_word datum,
1754 struct cfi_private *cfi = map->fldrv_priv;
1760 * Check for a NOP for the case when the datum to write is already
1761 * present - it saves time and works around buggy chips that corrupt
1762 * data at other locations when 0xff is written to a location that
1763 * already contains 0xff.
1765 oldd = map_read(map, adr);
1766 if (map_word_equal(map, oldd, datum)) {
1767 pr_debug("MTD %s(): NOP\n", __func__);
1771 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1773 xip_disable(map, chip, adr);
1776 ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1778 /* reset on all failures. */
1779 map_write(map, CMD(0xF0), chip->start);
1780 /* FIXME - should have reset delay before continuing */
1782 if (++retry_cnt <= MAX_RETRIES) {
1787 xip_enable(map, chip, adr);
1792 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1793 unsigned long adr, map_word datum,
1800 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1803 ret = do_write_oneword_start(map, chip, adr, mode);
1807 ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1809 do_write_oneword_done(map, chip, adr, mode);
1815 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1816 size_t *retlen, const u_char *buf)
1818 struct map_info *map = mtd->priv;
1819 struct cfi_private *cfi = map->fldrv_priv;
1822 unsigned long ofs, chipstart;
1823 DECLARE_WAITQUEUE(wait, current);
1825 chipnum = to >> cfi->chipshift;
1826 ofs = to - (chipnum << cfi->chipshift);
1827 chipstart = cfi->chips[chipnum].start;
1829 /* If it's not bus-aligned, do the first byte write */
1830 if (ofs & (map_bankwidth(map)-1)) {
1831 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1832 int i = ofs - bus_ofs;
1837 mutex_lock(&cfi->chips[chipnum].mutex);
1839 if (cfi->chips[chipnum].state != FL_READY) {
1840 set_current_state(TASK_UNINTERRUPTIBLE);
1841 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1843 mutex_unlock(&cfi->chips[chipnum].mutex);
1846 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1850 /* Load 'tmp_buf' with old contents of flash */
1851 tmp_buf = map_read(map, bus_ofs+chipstart);
1853 mutex_unlock(&cfi->chips[chipnum].mutex);
1855 /* Number of bytes to copy from buffer */
1856 n = min_t(int, len, map_bankwidth(map)-i);
1858 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1860 ret = do_write_oneword(map, &cfi->chips[chipnum],
1861 bus_ofs, tmp_buf, FL_WRITING);
1870 if (ofs >> cfi->chipshift) {
1873 if (chipnum == cfi->numchips)
1878 /* We are now aligned, write as much as possible */
1879 while(len >= map_bankwidth(map)) {
1882 datum = map_word_load(map, buf);
1884 ret = do_write_oneword(map, &cfi->chips[chipnum],
1885 ofs, datum, FL_WRITING);
1889 ofs += map_bankwidth(map);
1890 buf += map_bankwidth(map);
1891 (*retlen) += map_bankwidth(map);
1892 len -= map_bankwidth(map);
1894 if (ofs >> cfi->chipshift) {
1897 if (chipnum == cfi->numchips)
1899 chipstart = cfi->chips[chipnum].start;
1903 /* Write the trailing bytes if any */
1904 if (len & (map_bankwidth(map)-1)) {
1908 mutex_lock(&cfi->chips[chipnum].mutex);
1910 if (cfi->chips[chipnum].state != FL_READY) {
1911 set_current_state(TASK_UNINTERRUPTIBLE);
1912 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1914 mutex_unlock(&cfi->chips[chipnum].mutex);
1917 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1921 tmp_buf = map_read(map, ofs + chipstart);
1923 mutex_unlock(&cfi->chips[chipnum].mutex);
1925 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1927 ret = do_write_oneword(map, &cfi->chips[chipnum],
1928 ofs, tmp_buf, FL_WRITING);
1938 #if !FORCE_WORD_WRITE
1939 static int __xipram do_write_buffer_wait(struct map_info *map,
1940 struct flchip *chip, unsigned long adr,
1943 unsigned long timeo;
1944 unsigned long u_write_timeout;
1948 * Timeout is calculated according to CFI data, if available.
1949 * See more comments in cfi_cmdset_0002().
1951 u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1952 timeo = jiffies + u_write_timeout;
1955 if (chip->state != FL_WRITING) {
1956 /* Someone's suspended the write. Sleep */
1957 DECLARE_WAITQUEUE(wait, current);
1959 set_current_state(TASK_UNINTERRUPTIBLE);
1960 add_wait_queue(&chip->wq, &wait);
1961 mutex_unlock(&chip->mutex);
1963 remove_wait_queue(&chip->wq, &wait);
1964 timeo = jiffies + (HZ / 2); /* FIXME */
1965 mutex_lock(&chip->mutex);
1970 * We check "time_after" and "!chip_good" before checking
1971 * "chip_good" to avoid the failure due to scheduling.
1973 if (time_after(jiffies, timeo) &&
1974 !chip_good(map, chip, adr, &datum)) {
1975 pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1981 if (chip_good(map, chip, adr, &datum)) {
1982 if (cfi_check_err_status(map, chip, adr))
1987 /* Latency issues. Drop the lock, wait a while and retry */
1988 UDELAY(map, chip, adr, 1);
1994 static void __xipram do_write_buffer_reset(struct map_info *map,
1995 struct flchip *chip,
1996 struct cfi_private *cfi)
1999 * Recovery from write-buffer programming failures requires
2000 * the write-to-buffer-reset sequence. Since the last part
2001 * of the sequence also works as a normal reset, we can run
2002 * the same commands regardless of why we are here.
2004 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2006 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2007 cfi->device_type, NULL);
2008 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2009 cfi->device_type, NULL);
2010 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2011 cfi->device_type, NULL);
2013 /* FIXME - should have reset delay before continuing */
2017 * FIXME: interleaved mode not tested, and probably not supported!
2019 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2020 unsigned long adr, const u_char *buf,
2023 struct cfi_private *cfi = map->fldrv_priv;
2025 unsigned long cmd_adr;
2032 mutex_lock(&chip->mutex);
2033 ret = get_chip(map, chip, adr, FL_WRITING);
2035 mutex_unlock(&chip->mutex);
2039 datum = map_word_load(map, buf);
2041 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2042 __func__, adr, datum.x[0]);
2044 XIP_INVAL_CACHED_RANGE(map, adr, len);
2046 xip_disable(map, chip, cmd_adr);
2048 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2049 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2051 /* Write Buffer Load */
2052 map_write(map, CMD(0x25), cmd_adr);
2054 chip->state = FL_WRITING_TO_BUFFER;
2056 /* Write length of data to come */
2057 words = len / map_bankwidth(map);
2058 map_write(map, CMD(words - 1), cmd_adr);
2061 while(z < words * map_bankwidth(map)) {
2062 datum = map_word_load(map, buf);
2063 map_write(map, datum, adr + z);
2065 z += map_bankwidth(map);
2066 buf += map_bankwidth(map);
2068 z -= map_bankwidth(map);
2072 /* Write Buffer Program Confirm: GO GO GO */
2073 map_write(map, CMD(0x29), cmd_adr);
2074 chip->state = FL_WRITING;
2076 INVALIDATE_CACHE_UDELAY(map, chip,
2077 adr, map_bankwidth(map),
2078 chip->word_write_time);
2080 ret = do_write_buffer_wait(map, chip, adr, datum);
2082 do_write_buffer_reset(map, chip, cfi);
2084 xip_enable(map, chip, adr);
2086 chip->state = FL_READY;
2088 put_chip(map, chip, adr);
2089 mutex_unlock(&chip->mutex);
2095 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2096 size_t *retlen, const u_char *buf)
2098 struct map_info *map = mtd->priv;
2099 struct cfi_private *cfi = map->fldrv_priv;
2100 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2105 chipnum = to >> cfi->chipshift;
2106 ofs = to - (chipnum << cfi->chipshift);
2108 /* If it's not bus-aligned, do the first word write */
2109 if (ofs & (map_bankwidth(map)-1)) {
2110 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2111 if (local_len > len)
2113 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2114 local_len, retlen, buf);
2121 if (ofs >> cfi->chipshift) {
2124 if (chipnum == cfi->numchips)
2129 /* Write buffer is worth it only if more than one word to write... */
2130 while (len >= map_bankwidth(map) * 2) {
2131 /* We must not cross write block boundaries */
2132 int size = wbufsize - (ofs & (wbufsize-1));
2136 if (size % map_bankwidth(map))
2137 size -= size % map_bankwidth(map);
2139 ret = do_write_buffer(map, &cfi->chips[chipnum],
2149 if (ofs >> cfi->chipshift) {
2152 if (chipnum == cfi->numchips)
2158 size_t retlen_dregs = 0;
2160 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2161 len, &retlen_dregs, buf);
2163 *retlen += retlen_dregs;
2169 #endif /* !FORCE_WORD_WRITE */
2172 * Wait for the flash chip to become ready to write data
2174 * This is only called during the panic_write() path. When panic_write()
2175 * is called, the kernel is in the process of a panic, and will soon be
2176 * dead. Therefore we don't take any locks, and attempt to get access
2177 * to the chip as soon as possible.
2179 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2182 struct cfi_private *cfi = map->fldrv_priv;
2187 * If the driver thinks the chip is idle, and no toggle bits
2188 * are changing, then the chip is actually idle for sure.
2190 if (chip->state == FL_READY && chip_ready(map, chip, adr, NULL))
2194 * Try several times to reset the chip and then wait for it
2195 * to become idle. The upper limit of a few milliseconds of
2196 * delay isn't a big problem: the kernel is dying anyway. It
2197 * is more important to save the messages.
2199 while (retries > 0) {
2200 const unsigned long timeo = (HZ / 1000) + 1;
2202 /* send the reset command */
2203 map_write(map, CMD(0xF0), chip->start);
2205 /* wait for the chip to become ready */
2206 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2207 if (chip_ready(map, chip, adr, NULL))
2216 /* the chip never became ready */
2221 * Write out one word of data to a single flash chip during a kernel panic
2223 * This is only called during the panic_write() path. When panic_write()
2224 * is called, the kernel is in the process of a panic, and will soon be
2225 * dead. Therefore we don't take any locks, and attempt to get access
2226 * to the chip as soon as possible.
2228 * The implementation of this routine is intentionally similar to
2229 * do_write_oneword(), in order to ease code maintenance.
2231 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2232 unsigned long adr, map_word datum)
2234 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2235 struct cfi_private *cfi = map->fldrv_priv;
2243 ret = cfi_amdstd_panic_wait(map, chip, adr);
2247 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2248 __func__, adr, datum.x[0]);
2251 * Check for a NOP for the case when the datum to write is already
2252 * present - it saves time and works around buggy chips that corrupt
2253 * data at other locations when 0xff is written to a location that
2254 * already contains 0xff.
2256 oldd = map_read(map, adr);
2257 if (map_word_equal(map, oldd, datum)) {
2258 pr_debug("MTD %s(): NOP\n", __func__);
2265 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2266 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2267 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268 map_write(map, datum, adr);
2270 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2271 if (chip_ready(map, chip, adr, NULL))
2277 if (!chip_ready(map, chip, adr, &datum) ||
2278 cfi_check_err_status(map, chip, adr)) {
2279 /* reset on all failures. */
2280 map_write(map, CMD(0xF0), chip->start);
2281 /* FIXME - should have reset delay before continuing */
2283 if (++retry_cnt <= MAX_RETRIES)
2295 * Write out some data during a kernel panic
2297 * This is used by the mtdoops driver to save the dying messages from a
2298 * kernel which has panic'd.
2300 * This routine ignores all of the locking used throughout the rest of the
2301 * driver, in order to ensure that the data gets written out no matter what
2302 * state this driver (and the flash chip itself) was in when the kernel crashed.
2304 * The implementation of this routine is intentionally similar to
2305 * cfi_amdstd_write_words(), in order to ease code maintenance.
2307 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2308 size_t *retlen, const u_char *buf)
2310 struct map_info *map = mtd->priv;
2311 struct cfi_private *cfi = map->fldrv_priv;
2312 unsigned long ofs, chipstart;
2316 chipnum = to >> cfi->chipshift;
2317 ofs = to - (chipnum << cfi->chipshift);
2318 chipstart = cfi->chips[chipnum].start;
2320 /* If it's not bus aligned, do the first byte write */
2321 if (ofs & (map_bankwidth(map) - 1)) {
2322 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2323 int i = ofs - bus_ofs;
2327 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2331 /* Load 'tmp_buf' with old contents of flash */
2332 tmp_buf = map_read(map, bus_ofs + chipstart);
2334 /* Number of bytes to copy from buffer */
2335 n = min_t(int, len, map_bankwidth(map) - i);
2337 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2339 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2349 if (ofs >> cfi->chipshift) {
2352 if (chipnum == cfi->numchips)
2357 /* We are now aligned, write as much as possible */
2358 while (len >= map_bankwidth(map)) {
2361 datum = map_word_load(map, buf);
2363 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2368 ofs += map_bankwidth(map);
2369 buf += map_bankwidth(map);
2370 (*retlen) += map_bankwidth(map);
2371 len -= map_bankwidth(map);
2373 if (ofs >> cfi->chipshift) {
2376 if (chipnum == cfi->numchips)
2379 chipstart = cfi->chips[chipnum].start;
2383 /* Write the trailing bytes if any */
2384 if (len & (map_bankwidth(map) - 1)) {
2387 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2391 tmp_buf = map_read(map, ofs + chipstart);
2393 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2395 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2408 * Handle devices with one erase region, that only implement
2409 * the chip erase command.
2411 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2413 struct cfi_private *cfi = map->fldrv_priv;
2414 unsigned long timeo = jiffies + HZ;
2415 unsigned long int adr;
2416 DECLARE_WAITQUEUE(wait, current);
2419 map_word datum = map_word_ff(map);
2421 adr = cfi->addr_unlock1;
2423 mutex_lock(&chip->mutex);
2424 ret = get_chip(map, chip, adr, FL_ERASING);
2426 mutex_unlock(&chip->mutex);
2430 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2431 __func__, chip->start);
2433 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2435 xip_disable(map, chip, adr);
2438 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2439 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2440 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2441 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2442 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2443 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2445 chip->state = FL_ERASING;
2446 chip->erase_suspended = 0;
2447 chip->in_progress_block_addr = adr;
2448 chip->in_progress_block_mask = ~(map->size - 1);
2450 INVALIDATE_CACHE_UDELAY(map, chip,
2452 chip->erase_time*500);
2454 timeo = jiffies + (HZ*20);
2457 if (chip->state != FL_ERASING) {
2458 /* Someone's suspended the erase. Sleep */
2459 set_current_state(TASK_UNINTERRUPTIBLE);
2460 add_wait_queue(&chip->wq, &wait);
2461 mutex_unlock(&chip->mutex);
2463 remove_wait_queue(&chip->wq, &wait);
2464 mutex_lock(&chip->mutex);
2467 if (chip->erase_suspended) {
2468 /* This erase was suspended and resumed.
2469 Adjust the timeout */
2470 timeo = jiffies + (HZ*20); /* FIXME */
2471 chip->erase_suspended = 0;
2474 if (chip_ready(map, chip, adr, &datum)) {
2475 if (cfi_check_err_status(map, chip, adr))
2480 if (time_after(jiffies, timeo)) {
2481 printk(KERN_WARNING "MTD %s(): software timeout\n",
2487 /* Latency issues. Drop the lock, wait a while and retry */
2488 UDELAY(map, chip, adr, 1000000/HZ);
2490 /* Did we succeed? */
2492 /* reset on all failures. */
2493 map_write(map, CMD(0xF0), chip->start);
2494 /* FIXME - should have reset delay before continuing */
2496 if (++retry_cnt <= MAX_RETRIES) {
2502 chip->state = FL_READY;
2503 xip_enable(map, chip, adr);
2505 put_chip(map, chip, adr);
2506 mutex_unlock(&chip->mutex);
2512 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2514 struct cfi_private *cfi = map->fldrv_priv;
2515 unsigned long timeo = jiffies + HZ;
2516 DECLARE_WAITQUEUE(wait, current);
2519 map_word datum = map_word_ff(map);
2523 mutex_lock(&chip->mutex);
2524 ret = get_chip(map, chip, adr, FL_ERASING);
2526 mutex_unlock(&chip->mutex);
2530 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2533 XIP_INVAL_CACHED_RANGE(map, adr, len);
2535 xip_disable(map, chip, adr);
2538 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2539 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2540 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2541 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2543 map_write(map, cfi->sector_erase_cmd, adr);
2545 chip->state = FL_ERASING;
2546 chip->erase_suspended = 0;
2547 chip->in_progress_block_addr = adr;
2548 chip->in_progress_block_mask = ~(len - 1);
2550 INVALIDATE_CACHE_UDELAY(map, chip,
2552 chip->erase_time*500);
2554 timeo = jiffies + (HZ*20);
2557 if (chip->state != FL_ERASING) {
2558 /* Someone's suspended the erase. Sleep */
2559 set_current_state(TASK_UNINTERRUPTIBLE);
2560 add_wait_queue(&chip->wq, &wait);
2561 mutex_unlock(&chip->mutex);
2563 remove_wait_queue(&chip->wq, &wait);
2564 mutex_lock(&chip->mutex);
2567 if (chip->erase_suspended) {
2568 /* This erase was suspended and resumed.
2569 Adjust the timeout */
2570 timeo = jiffies + (HZ*20); /* FIXME */
2571 chip->erase_suspended = 0;
2574 if (chip_ready(map, chip, adr, &datum)) {
2575 if (cfi_check_err_status(map, chip, adr))
2580 if (time_after(jiffies, timeo)) {
2581 printk(KERN_WARNING "MTD %s(): software timeout\n",
2587 /* Latency issues. Drop the lock, wait a while and retry */
2588 UDELAY(map, chip, adr, 1000000/HZ);
2590 /* Did we succeed? */
2592 /* reset on all failures. */
2593 map_write(map, CMD(0xF0), chip->start);
2594 /* FIXME - should have reset delay before continuing */
2596 if (++retry_cnt <= MAX_RETRIES) {
2602 chip->state = FL_READY;
2603 xip_enable(map, chip, adr);
2605 put_chip(map, chip, adr);
2606 mutex_unlock(&chip->mutex);
2611 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2613 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2618 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2620 struct map_info *map = mtd->priv;
2621 struct cfi_private *cfi = map->fldrv_priv;
2623 if (instr->addr != 0)
2626 if (instr->len != mtd->size)
2629 return do_erase_chip(map, &cfi->chips[0]);
2632 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2633 unsigned long adr, int len, void *thunk)
2635 struct cfi_private *cfi = map->fldrv_priv;
2638 mutex_lock(&chip->mutex);
2639 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2642 chip->state = FL_LOCKING;
2644 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2646 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2647 cfi->device_type, NULL);
2648 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2649 cfi->device_type, NULL);
2650 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2651 cfi->device_type, NULL);
2652 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2653 cfi->device_type, NULL);
2654 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2655 cfi->device_type, NULL);
2656 map_write(map, CMD(0x40), chip->start + adr);
2658 chip->state = FL_READY;
2659 put_chip(map, chip, adr + chip->start);
2663 mutex_unlock(&chip->mutex);
2667 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2668 unsigned long adr, int len, void *thunk)
2670 struct cfi_private *cfi = map->fldrv_priv;
2673 mutex_lock(&chip->mutex);
2674 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2677 chip->state = FL_UNLOCKING;
2679 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2681 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2682 cfi->device_type, NULL);
2683 map_write(map, CMD(0x70), adr);
2685 chip->state = FL_READY;
2686 put_chip(map, chip, adr + chip->start);
2690 mutex_unlock(&chip->mutex);
2694 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2696 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2699 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2701 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2705 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2709 struct flchip *chip;
2714 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2715 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2716 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2718 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2719 struct flchip *chip,
2720 unsigned long adr, int len, void *thunk)
2722 struct cfi_private *cfi = map->fldrv_priv;
2723 unsigned long timeo;
2727 mutex_lock(&chip->mutex);
2728 ret = get_chip(map, chip, adr, FL_LOCKING);
2730 mutex_unlock(&chip->mutex);
2734 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2736 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2737 cfi->device_type, NULL);
2738 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2739 cfi->device_type, NULL);
2740 /* PPB entry command */
2741 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2742 cfi->device_type, NULL);
2744 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2745 chip->state = FL_LOCKING;
2746 map_write(map, CMD(0xA0), adr);
2747 map_write(map, CMD(0x00), adr);
2748 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2750 * Unlocking of one specific sector is not supported, so we
2751 * have to unlock all sectors of this device instead
2753 chip->state = FL_UNLOCKING;
2754 map_write(map, CMD(0x80), chip->start);
2755 map_write(map, CMD(0x30), chip->start);
2756 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2757 chip->state = FL_JEDEC_QUERY;
2758 /* Return locked status: 0->locked, 1->unlocked */
2759 ret = !cfi_read_query(map, adr);
2764 * Wait for some time as unlocking of all sectors takes quite long
2766 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2768 if (chip_ready(map, chip, adr, NULL))
2771 if (time_after(jiffies, timeo)) {
2772 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2777 UDELAY(map, chip, adr, 1);
2780 /* Exit BC commands */
2781 map_write(map, CMD(0x90), chip->start);
2782 map_write(map, CMD(0x00), chip->start);
2784 chip->state = FL_READY;
2785 put_chip(map, chip, adr);
2786 mutex_unlock(&chip->mutex);
2791 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2794 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2795 DO_XXLOCK_ONEBLOCK_LOCK);
2798 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2801 struct mtd_erase_region_info *regions = mtd->eraseregions;
2802 struct map_info *map = mtd->priv;
2803 struct cfi_private *cfi = map->fldrv_priv;
2804 struct ppb_lock *sect;
2815 * PPB unlocking always unlocks all sectors of the flash chip.
2816 * We need to re-lock all previously locked sectors. So lets
2817 * first check the locking status of all sectors and save
2818 * it for future use.
2821 for (i = 0; i < mtd->numeraseregions; i++)
2822 max_sectors += regions[i].numblocks;
2824 sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2829 * This code to walk all sectors is a slightly modified version
2830 * of the cfi_varsize_frob() code.
2840 int size = regions[i].erasesize;
2843 * Only test sectors that shall not be unlocked. The other
2844 * sectors shall be unlocked, so lets keep their locking
2845 * status at "unlocked" (locked=0) for the final re-locking.
2847 if ((offset < ofs) || (offset >= (ofs + len))) {
2848 sect[sectors].chip = &cfi->chips[chipnum];
2849 sect[sectors].adr = adr;
2850 sect[sectors].locked = do_ppb_xxlock(
2851 map, &cfi->chips[chipnum], adr, 0,
2852 DO_XXLOCK_ONEBLOCK_GETLOCK);
2859 if (offset == regions[i].offset + size * regions[i].numblocks)
2862 if (adr >> cfi->chipshift) {
2863 if (offset >= (ofs + len))
2868 if (chipnum >= cfi->numchips)
2873 if (sectors >= max_sectors) {
2874 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2881 /* Now unlock the whole chip */
2882 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2883 DO_XXLOCK_ONEBLOCK_UNLOCK);
2890 * PPB unlocking always unlocks all sectors of the flash chip.
2891 * We need to re-lock all previously locked sectors.
2893 for (i = 0; i < sectors; i++) {
2895 do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2896 DO_XXLOCK_ONEBLOCK_LOCK);
2903 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2906 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2907 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2910 static void cfi_amdstd_sync (struct mtd_info *mtd)
2912 struct map_info *map = mtd->priv;
2913 struct cfi_private *cfi = map->fldrv_priv;
2915 struct flchip *chip;
2917 DECLARE_WAITQUEUE(wait, current);
2919 for (i=0; !ret && i<cfi->numchips; i++) {
2920 chip = &cfi->chips[i];
2923 mutex_lock(&chip->mutex);
2925 switch(chip->state) {
2929 case FL_JEDEC_QUERY:
2930 chip->oldstate = chip->state;
2931 chip->state = FL_SYNCING;
2932 /* No need to wake_up() on this state change -
2933 * as the whole point is that nobody can do anything
2934 * with the chip now anyway.
2938 mutex_unlock(&chip->mutex);
2942 /* Not an idle state */
2943 set_current_state(TASK_UNINTERRUPTIBLE);
2944 add_wait_queue(&chip->wq, &wait);
2946 mutex_unlock(&chip->mutex);
2950 remove_wait_queue(&chip->wq, &wait);
2956 /* Unlock the chips again */
2958 for (i--; i >=0; i--) {
2959 chip = &cfi->chips[i];
2961 mutex_lock(&chip->mutex);
2963 if (chip->state == FL_SYNCING) {
2964 chip->state = chip->oldstate;
2967 mutex_unlock(&chip->mutex);
2972 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2974 struct map_info *map = mtd->priv;
2975 struct cfi_private *cfi = map->fldrv_priv;
2977 struct flchip *chip;
2980 for (i=0; !ret && i<cfi->numchips; i++) {
2981 chip = &cfi->chips[i];
2983 mutex_lock(&chip->mutex);
2985 switch(chip->state) {
2989 case FL_JEDEC_QUERY:
2990 chip->oldstate = chip->state;
2991 chip->state = FL_PM_SUSPENDED;
2992 /* No need to wake_up() on this state change -
2993 * as the whole point is that nobody can do anything
2994 * with the chip now anyway.
2997 case FL_PM_SUSPENDED:
3004 mutex_unlock(&chip->mutex);
3007 /* Unlock the chips again */
3010 for (i--; i >=0; i--) {
3011 chip = &cfi->chips[i];
3013 mutex_lock(&chip->mutex);
3015 if (chip->state == FL_PM_SUSPENDED) {
3016 chip->state = chip->oldstate;
3019 mutex_unlock(&chip->mutex);
3027 static void cfi_amdstd_resume(struct mtd_info *mtd)
3029 struct map_info *map = mtd->priv;
3030 struct cfi_private *cfi = map->fldrv_priv;
3032 struct flchip *chip;
3034 for (i=0; i<cfi->numchips; i++) {
3036 chip = &cfi->chips[i];
3038 mutex_lock(&chip->mutex);
3040 if (chip->state == FL_PM_SUSPENDED) {
3041 chip->state = FL_READY;
3042 map_write(map, CMD(0xF0), chip->start);
3046 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3048 mutex_unlock(&chip->mutex);
3054 * Ensure that the flash device is put back into read array mode before
3055 * unloading the driver or rebooting. On some systems, rebooting while
3056 * the flash is in query/program/erase mode will prevent the CPU from
3057 * fetching the bootloader code, requiring a hard reset or power cycle.
3059 static int cfi_amdstd_reset(struct mtd_info *mtd)
3061 struct map_info *map = mtd->priv;
3062 struct cfi_private *cfi = map->fldrv_priv;
3064 struct flchip *chip;
3066 for (i = 0; i < cfi->numchips; i++) {
3068 chip = &cfi->chips[i];
3070 mutex_lock(&chip->mutex);
3072 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3074 map_write(map, CMD(0xF0), chip->start);
3075 chip->state = FL_SHUTDOWN;
3076 put_chip(map, chip, chip->start);
3079 mutex_unlock(&chip->mutex);
3086 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3089 struct mtd_info *mtd;
3091 mtd = container_of(nb, struct mtd_info, reboot_notifier);
3092 cfi_amdstd_reset(mtd);
3097 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3099 struct map_info *map = mtd->priv;
3100 struct cfi_private *cfi = map->fldrv_priv;
3102 cfi_amdstd_reset(mtd);
3103 unregister_reboot_notifier(&mtd->reboot_notifier);
3104 kfree(cfi->cmdset_priv);
3107 kfree(mtd->eraseregions);
3110 MODULE_LICENSE("GPL");
3111 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3112 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3113 MODULE_ALIAS("cfi_cmdset_0006");
3114 MODULE_ALIAS("cfi_cmdset_0701");