Merge https://gitlab.denx.de/u-boot/custodians/u-boot-spi into next
[platform/kernel/u-boot.git] / drivers / mmc / omap_hsmmc.c
1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24
25 #include <config.h>
26 #include <common.h>
27 #include <cpu_func.h>
28 #include <log.h>
29 #include <malloc.h>
30 #include <memalign.h>
31 #include <mmc.h>
32 #include <part.h>
33 #include <i2c.h>
34 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
35 #include <palmas.h>
36 #endif
37 #include <asm/cache.h>
38 #include <asm/io.h>
39 #include <asm/arch/mmc_host_def.h>
40 #ifdef CONFIG_OMAP54XX
41 #include <asm/arch/mux_dra7xx.h>
42 #include <asm/arch/dra7xx_iodelay.h>
43 #endif
44 #if !defined(CONFIG_SOC_KEYSTONE)
45 #include <asm/gpio.h>
46 #include <asm/arch/sys_proto.h>
47 #endif
48 #ifdef CONFIG_MMC_OMAP36XX_PINS
49 #include <asm/arch/mux.h>
50 #endif
51 #include <dm.h>
52 #include <dm/devres.h>
53 #include <linux/bitops.h>
54 #include <linux/delay.h>
55 #include <linux/err.h>
56 #include <power/regulator.h>
57 #include <thermal.h>
58
59 DECLARE_GLOBAL_DATA_PTR;
60
61 /* simplify defines to OMAP_HSMMC_USE_GPIO */
62 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
63         (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
64 #define OMAP_HSMMC_USE_GPIO
65 #else
66 #undef OMAP_HSMMC_USE_GPIO
67 #endif
68
69 /* common definitions for all OMAPs */
70 #define SYSCTL_SRC      (1 << 25)
71 #define SYSCTL_SRD      (1 << 26)
72
73 #ifdef CONFIG_IODELAY_RECALIBRATION
74 struct omap_hsmmc_pinctrl_state {
75         struct pad_conf_entry *padconf;
76         int npads;
77         struct iodelay_cfg_entry *iodelay;
78         int niodelays;
79 };
80 #endif
81
82 struct omap_hsmmc_data {
83         struct hsmmc *base_addr;
84 #if !CONFIG_IS_ENABLED(DM_MMC)
85         struct mmc_config cfg;
86 #endif
87         uint bus_width;
88         uint clock;
89         ushort last_cmd;
90 #ifdef OMAP_HSMMC_USE_GPIO
91 #if CONFIG_IS_ENABLED(DM_MMC)
92         struct gpio_desc cd_gpio;       /* Change Detect GPIO */
93         struct gpio_desc wp_gpio;       /* Write Protect GPIO */
94 #else
95         int cd_gpio;
96         int wp_gpio;
97 #endif
98 #endif
99 #if CONFIG_IS_ENABLED(DM_MMC)
100         enum bus_mode mode;
101 #endif
102         u8 controller_flags;
103 #ifdef CONFIG_MMC_OMAP_HS_ADMA
104         struct omap_hsmmc_adma_desc *adma_desc_table;
105         uint desc_slot;
106 #endif
107         const char *hw_rev;
108         struct udevice *pbias_supply;
109         uint signal_voltage;
110 #ifdef CONFIG_IODELAY_RECALIBRATION
111         struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
112         struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
113         struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
114         struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
115         struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
116         struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
117         struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
118         struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
119         struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
120 #endif
121 };
122
123 struct omap_mmc_of_data {
124         u8 controller_flags;
125 };
126
127 #ifdef CONFIG_MMC_OMAP_HS_ADMA
128 struct omap_hsmmc_adma_desc {
129         u8 attr;
130         u8 reserved;
131         u16 len;
132         u32 addr;
133 };
134
135 #define ADMA_MAX_LEN    63488
136
137 /* Decriptor table defines */
138 #define ADMA_DESC_ATTR_VALID            BIT(0)
139 #define ADMA_DESC_ATTR_END              BIT(1)
140 #define ADMA_DESC_ATTR_INT              BIT(2)
141 #define ADMA_DESC_ATTR_ACT1             BIT(4)
142 #define ADMA_DESC_ATTR_ACT2             BIT(5)
143
144 #define ADMA_DESC_TRANSFER_DATA         ADMA_DESC_ATTR_ACT2
145 #define ADMA_DESC_LINK_DESC     (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
146 #endif
147
148 /* If we fail after 1 second wait, something is really bad */
149 #define MAX_RETRY_MS    1000
150 #define MMC_TIMEOUT_MS  20
151
152 /* DMA transfers can take a long time if a lot a data is transferred.
153  * The timeout must take in account the amount of data. Let's assume
154  * that the time will never exceed 333 ms per MB (in other word we assume
155  * that the bandwidth is always above 3MB/s).
156  */
157 #define DMA_TIMEOUT_PER_MB      333
158 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT           BIT(0)
159 #define OMAP_HSMMC_NO_1_8_V                     BIT(1)
160 #define OMAP_HSMMC_USE_ADMA                     BIT(2)
161 #define OMAP_HSMMC_REQUIRE_IODELAY              BIT(3)
162
163 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
164 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
165                         unsigned int siz);
166 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
167 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
168 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
169
170 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
171 {
172 #if CONFIG_IS_ENABLED(DM_MMC)
173         return dev_get_priv(mmc->dev);
174 #else
175         return (struct omap_hsmmc_data *)mmc->priv;
176 #endif
177 }
178
179 #if defined(CONFIG_OMAP34XX) || defined(CONFIG_IODELAY_RECALIBRATION)
180 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
181 {
182 #if CONFIG_IS_ENABLED(DM_MMC)
183         struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
184         return &plat->cfg;
185 #else
186         return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
187 #endif
188 }
189 #endif
190
191 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
192 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
193 {
194         int ret;
195
196 #if !CONFIG_IS_ENABLED(DM_GPIO)
197         if (!gpio_is_valid(gpio))
198                 return -1;
199 #endif
200         ret = gpio_request(gpio, label);
201         if (ret)
202                 return ret;
203
204         ret = gpio_direction_input(gpio);
205         if (ret)
206                 return ret;
207
208         return gpio;
209 }
210 #endif
211
212 static unsigned char mmc_board_init(struct mmc *mmc)
213 {
214 #if defined(CONFIG_OMAP34XX)
215         struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
216         t2_t *t2_base = (t2_t *)T2_BASE;
217         struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
218         u32 pbias_lite;
219 #ifdef CONFIG_MMC_OMAP36XX_PINS
220         u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
221 #endif
222
223         pbias_lite = readl(&t2_base->pbias_lite);
224         pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
225 #ifdef CONFIG_TARGET_OMAP3_CAIRO
226         /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
227         pbias_lite &= ~PBIASLITEVMODE0;
228 #endif
229 #ifdef CONFIG_TARGET_OMAP3_LOGIC
230         /* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
231         pbias_lite &= ~PBIASLITEVMODE1;
232 #endif
233 #ifdef CONFIG_MMC_OMAP36XX_PINS
234         if (get_cpu_family() == CPU_OMAP36XX) {
235                 /* Disable extended drain IO before changing PBIAS */
236                 wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
237                 writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
238         }
239 #endif
240         writel(pbias_lite, &t2_base->pbias_lite);
241
242         writel(pbias_lite | PBIASLITEPWRDNZ1 |
243                 PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
244                 &t2_base->pbias_lite);
245
246 #ifdef CONFIG_MMC_OMAP36XX_PINS
247         if (get_cpu_family() == CPU_OMAP36XX)
248                 /* Enable extended drain IO after changing PBIAS */
249                 writel(wkup_ctrl |
250                                 OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
251                                 OMAP34XX_CTRL_WKUP_CTRL);
252 #endif
253         writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
254                 &t2_base->devconf0);
255
256         writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
257                 &t2_base->devconf1);
258
259         /* Change from default of 52MHz to 26MHz if necessary */
260         if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
261                 writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
262                         &t2_base->ctl_prog_io1);
263
264         writel(readl(&prcm_base->fclken1_core) |
265                 EN_MMC1 | EN_MMC2 | EN_MMC3,
266                 &prcm_base->fclken1_core);
267
268         writel(readl(&prcm_base->iclken1_core) |
269                 EN_MMC1 | EN_MMC2 | EN_MMC3,
270                 &prcm_base->iclken1_core);
271 #endif
272
273 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
274         !CONFIG_IS_ENABLED(DM_REGULATOR)
275         /* PBIAS config needed for MMC1 only */
276         if (mmc_get_blk_desc(mmc)->devnum == 0)
277                 vmmc_pbias_config(LDO_VOLT_3V3);
278 #endif
279
280         return 0;
281 }
282
283 void mmc_init_stream(struct hsmmc *mmc_base)
284 {
285         ulong start;
286
287         writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
288
289         writel(MMC_CMD0, &mmc_base->cmd);
290         start = get_timer(0);
291         while (!(readl(&mmc_base->stat) & CC_MASK)) {
292                 if (get_timer(0) - start > MAX_RETRY_MS) {
293                         printf("%s: timedout waiting for cc!\n", __func__);
294                         return;
295                 }
296         }
297         writel(CC_MASK, &mmc_base->stat)
298                 ;
299         writel(MMC_CMD0, &mmc_base->cmd)
300                 ;
301         start = get_timer(0);
302         while (!(readl(&mmc_base->stat) & CC_MASK)) {
303                 if (get_timer(0) - start > MAX_RETRY_MS) {
304                         printf("%s: timedout waiting for cc2!\n", __func__);
305                         return;
306                 }
307         }
308         writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
309 }
310
311 #if CONFIG_IS_ENABLED(DM_MMC)
312 #ifdef CONFIG_IODELAY_RECALIBRATION
313 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
314 {
315         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
316         struct omap_hsmmc_pinctrl_state *pinctrl_state;
317
318         switch (priv->mode) {
319         case MMC_HS_200:
320                 pinctrl_state = priv->hs200_1_8v_pinctrl_state;
321                 break;
322         case UHS_SDR104:
323                 pinctrl_state = priv->sdr104_pinctrl_state;
324                 break;
325         case UHS_SDR50:
326                 pinctrl_state = priv->sdr50_pinctrl_state;
327                 break;
328         case UHS_DDR50:
329                 pinctrl_state = priv->ddr50_pinctrl_state;
330                 break;
331         case UHS_SDR25:
332                 pinctrl_state = priv->sdr25_pinctrl_state;
333                 break;
334         case UHS_SDR12:
335                 pinctrl_state = priv->sdr12_pinctrl_state;
336                 break;
337         case SD_HS:
338         case MMC_HS:
339         case MMC_HS_52:
340                 pinctrl_state = priv->hs_pinctrl_state;
341                 break;
342         case MMC_DDR_52:
343                 pinctrl_state = priv->ddr_1_8v_pinctrl_state;
344         default:
345                 pinctrl_state = priv->default_pinctrl_state;
346                 break;
347         }
348
349         if (!pinctrl_state)
350                 pinctrl_state = priv->default_pinctrl_state;
351
352         if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
353                 if (pinctrl_state->iodelay)
354                         late_recalibrate_iodelay(pinctrl_state->padconf,
355                                                  pinctrl_state->npads,
356                                                  pinctrl_state->iodelay,
357                                                  pinctrl_state->niodelays);
358                 else
359                         do_set_mux32((*ctrl)->control_padconf_core_base,
360                                      pinctrl_state->padconf,
361                                      pinctrl_state->npads);
362         }
363 }
364 #endif
365 static void omap_hsmmc_set_timing(struct mmc *mmc)
366 {
367         u32 val;
368         struct hsmmc *mmc_base;
369         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
370
371         mmc_base = priv->base_addr;
372
373         omap_hsmmc_stop_clock(mmc_base);
374         val = readl(&mmc_base->ac12);
375         val &= ~AC12_UHSMC_MASK;
376         priv->mode = mmc->selected_mode;
377
378         if (mmc_is_mode_ddr(priv->mode))
379                 writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
380         else
381                 writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
382
383         switch (priv->mode) {
384         case MMC_HS_200:
385         case UHS_SDR104:
386                 val |= AC12_UHSMC_SDR104;
387                 break;
388         case UHS_SDR50:
389                 val |= AC12_UHSMC_SDR50;
390                 break;
391         case MMC_DDR_52:
392         case UHS_DDR50:
393                 val |= AC12_UHSMC_DDR50;
394                 break;
395         case SD_HS:
396         case MMC_HS_52:
397         case UHS_SDR25:
398                 val |= AC12_UHSMC_SDR25;
399                 break;
400         case MMC_LEGACY:
401         case MMC_HS:
402         case UHS_SDR12:
403                 val |= AC12_UHSMC_SDR12;
404                 break;
405         default:
406                 val |= AC12_UHSMC_RES;
407                 break;
408         }
409         writel(val, &mmc_base->ac12);
410
411 #ifdef CONFIG_IODELAY_RECALIBRATION
412         omap_hsmmc_io_recalibrate(mmc);
413 #endif
414         omap_hsmmc_start_clock(mmc_base);
415 }
416
417 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
418 {
419         struct hsmmc *mmc_base;
420         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
421         u32 hctl, ac12;
422
423         mmc_base = priv->base_addr;
424
425         hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
426         ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
427
428         switch (signal_voltage) {
429         case MMC_SIGNAL_VOLTAGE_330:
430                 hctl |= SDVS_3V3;
431                 break;
432         case MMC_SIGNAL_VOLTAGE_180:
433                 hctl |= SDVS_1V8;
434                 ac12 |= AC12_V1V8_SIGEN;
435                 break;
436         }
437
438         writel(hctl, &mmc_base->hctl);
439         writel(ac12, &mmc_base->ac12);
440 }
441
442 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout_us)
443 {
444         int ret = -ETIMEDOUT;
445         u32 con;
446         bool dat0_high;
447         bool target_dat0_high = !!state;
448         struct omap_hsmmc_data *priv = dev_get_priv(dev);
449         struct hsmmc *mmc_base = priv->base_addr;
450
451         con = readl(&mmc_base->con);
452         writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
453
454         timeout_us = DIV_ROUND_UP(timeout_us, 10); /* check every 10 us. */
455         while (timeout_us--) {
456                 dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
457                 if (dat0_high == target_dat0_high) {
458                         ret = 0;
459                         break;
460                 }
461                 udelay(10);
462         }
463         writel(con, &mmc_base->con);
464
465         return ret;
466 }
467
468 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
469 #if CONFIG_IS_ENABLED(DM_REGULATOR)
470 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
471 {
472         int ret = 0;
473         int uV = mV * 1000;
474
475         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
476
477         if (!mmc->vqmmc_supply)
478                 return 0;
479
480         /* Disable PBIAS */
481         ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
482         if (ret)
483                 return ret;
484
485         /* Turn off IO voltage */
486         ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
487         if (ret)
488                 return ret;
489         /* Program a new IO voltage value */
490         ret = regulator_set_value(mmc->vqmmc_supply, uV);
491         if (ret)
492                 return ret;
493         /* Turn on IO voltage */
494         ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
495         if (ret)
496                 return ret;
497
498         /* Program PBIAS voltage*/
499         ret = regulator_set_value(priv->pbias_supply, uV);
500         if (ret && ret != -ENOSYS)
501                 return ret;
502         /* Enable PBIAS */
503         ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
504         if (ret)
505                 return ret;
506
507         return 0;
508 }
509 #endif
510
511 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
512 {
513         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
514         struct hsmmc *mmc_base = priv->base_addr;
515         int mv = mmc_voltage_to_mv(mmc->signal_voltage);
516         u32 capa_mask;
517         __maybe_unused u8 palmas_ldo_volt;
518         u32 val;
519
520         if (mv < 0)
521                 return -EINVAL;
522
523         if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
524                 mv = 3300;
525                 capa_mask = VS33_3V3SUP;
526                 palmas_ldo_volt = LDO_VOLT_3V3;
527         } else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
528                 capa_mask = VS18_1V8SUP;
529                 palmas_ldo_volt = LDO_VOLT_1V8;
530         } else {
531                 return -EOPNOTSUPP;
532         }
533
534         val = readl(&mmc_base->capa);
535         if (!(val & capa_mask))
536                 return -EOPNOTSUPP;
537
538         priv->signal_voltage = mmc->signal_voltage;
539
540         omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
541
542 #if CONFIG_IS_ENABLED(DM_REGULATOR)
543         return omap_hsmmc_set_io_regulator(mmc, mv);
544 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
545         defined(CONFIG_PALMAS_POWER)
546         if (mmc_get_blk_desc(mmc)->devnum == 0)
547                 vmmc_pbias_config(palmas_ldo_volt);
548         return 0;
549 #else
550         return 0;
551 #endif
552 }
553 #endif
554
555 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
556 {
557         struct hsmmc *mmc_base;
558         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
559         u32 val;
560
561         mmc_base = priv->base_addr;
562         val = readl(&mmc_base->capa);
563
564         if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
565                 val |= (VS33_3V3SUP | VS18_1V8SUP);
566         } else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
567                 val |= VS33_3V3SUP;
568                 val &= ~VS18_1V8SUP;
569         } else {
570                 val |= VS18_1V8SUP;
571                 val &= ~VS33_3V3SUP;
572         }
573
574         writel(val, &mmc_base->capa);
575
576         return val;
577 }
578
579 #ifdef MMC_SUPPORTS_TUNING
580 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
581 {
582         struct hsmmc *mmc_base;
583         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
584         u32 val;
585
586         mmc_base = priv->base_addr;
587         val = readl(&mmc_base->ac12);
588         val &= ~(AC12_SCLK_SEL);
589         writel(val, &mmc_base->ac12);
590
591         val = readl(&mmc_base->dll);
592         val &= ~(DLL_FORCE_VALUE | DLL_SWT);
593         writel(val, &mmc_base->dll);
594 }
595
596 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
597 {
598         int i;
599         struct hsmmc *mmc_base;
600         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
601         u32 val;
602
603         mmc_base = priv->base_addr;
604         val = readl(&mmc_base->dll);
605         val |= DLL_FORCE_VALUE;
606         val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
607         val |= (count << DLL_FORCE_SR_C_SHIFT);
608         writel(val, &mmc_base->dll);
609
610         val |= DLL_CALIB;
611         writel(val, &mmc_base->dll);
612         for (i = 0; i < 1000; i++) {
613                 if (readl(&mmc_base->dll) & DLL_CALIB)
614                         break;
615         }
616         val &= ~DLL_CALIB;
617         writel(val, &mmc_base->dll);
618 }
619
620 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
621 {
622         struct omap_hsmmc_data *priv = dev_get_priv(dev);
623         struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
624         struct mmc *mmc = upriv->mmc;
625         struct hsmmc *mmc_base;
626         u32 val;
627         u8 cur_match, prev_match = 0;
628         int ret;
629         u32 phase_delay = 0;
630         u32 start_window = 0, max_window = 0;
631         u32 length = 0, max_len = 0;
632         bool single_point_failure = false;
633         struct udevice *thermal_dev;
634         int temperature;
635         int i;
636
637         mmc_base = priv->base_addr;
638         val = readl(&mmc_base->capa2);
639
640         /* clock tuning is not needed for upto 52MHz */
641         if (!((mmc->selected_mode == MMC_HS_200) ||
642               (mmc->selected_mode == UHS_SDR104) ||
643               ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
644                 return 0;
645
646         ret = uclass_first_device(UCLASS_THERMAL, &thermal_dev);
647         if (ret) {
648                 printf("Couldn't get thermal device for tuning\n");
649                 return ret;
650         }
651         ret = thermal_get_temp(thermal_dev, &temperature);
652         if (ret) {
653                 printf("Couldn't get temperature for tuning\n");
654                 return ret;
655         }
656         val = readl(&mmc_base->dll);
657         val |= DLL_SWT;
658         writel(val, &mmc_base->dll);
659
660         /*
661          * Stage 1: Search for a maximum pass window ignoring any
662          * any single point failures. If the tuning value ends up
663          * near it, move away from it in stage 2 below
664          */
665         while (phase_delay <= MAX_PHASE_DELAY) {
666                 omap_hsmmc_set_dll(mmc, phase_delay);
667
668                 cur_match = !mmc_send_tuning(mmc, opcode, NULL);
669
670                 if (cur_match) {
671                         if (prev_match) {
672                                 length++;
673                         } else if (single_point_failure) {
674                                 /* ignore single point failure */
675                                 length++;
676                                 single_point_failure = false;
677                         } else {
678                                 start_window = phase_delay;
679                                 length = 1;
680                         }
681                 } else {
682                         single_point_failure = prev_match;
683                 }
684
685                 if (length > max_len) {
686                         max_window = start_window;
687                         max_len = length;
688                 }
689
690                 prev_match = cur_match;
691                 phase_delay += 4;
692         }
693
694         if (!max_len) {
695                 ret = -EIO;
696                 goto tuning_error;
697         }
698
699         val = readl(&mmc_base->ac12);
700         if (!(val & AC12_SCLK_SEL)) {
701                 ret = -EIO;
702                 goto tuning_error;
703         }
704         /*
705          * Assign tuning value as a ratio of maximum pass window based
706          * on temperature
707          */
708         if (temperature < -20000)
709                 phase_delay = min(max_window + 4 * max_len - 24,
710                                   max_window +
711                                   DIV_ROUND_UP(13 * max_len, 16) * 4);
712         else if (temperature < 20000)
713                 phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
714         else if (temperature < 40000)
715                 phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
716         else if (temperature < 70000)
717                 phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
718         else if (temperature < 90000)
719                 phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
720         else if (temperature < 120000)
721                 phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
722         else
723                 phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
724
725         /*
726          * Stage 2: Search for a single point failure near the chosen tuning
727          * value in two steps. First in the +3 to +10 range and then in the
728          * +2 to -10 range. If found, move away from it in the appropriate
729          * direction by the appropriate amount depending on the temperature.
730          */
731         for (i = 3; i <= 10; i++) {
732                 omap_hsmmc_set_dll(mmc, phase_delay + i);
733                 if (mmc_send_tuning(mmc, opcode, NULL)) {
734                         if (temperature < 10000)
735                                 phase_delay += i + 6;
736                         else if (temperature < 20000)
737                                 phase_delay += i - 12;
738                         else if (temperature < 70000)
739                                 phase_delay += i - 8;
740                         else if (temperature < 90000)
741                                 phase_delay += i - 6;
742                         else
743                                 phase_delay += i - 6;
744
745                         goto single_failure_found;
746                 }
747         }
748
749         for (i = 2; i >= -10; i--) {
750                 omap_hsmmc_set_dll(mmc, phase_delay + i);
751                 if (mmc_send_tuning(mmc, opcode, NULL)) {
752                         if (temperature < 10000)
753                                 phase_delay += i + 12;
754                         else if (temperature < 20000)
755                                 phase_delay += i + 8;
756                         else if (temperature < 70000)
757                                 phase_delay += i + 8;
758                         else if (temperature < 90000)
759                                 phase_delay += i + 10;
760                         else
761                                 phase_delay += i + 12;
762
763                         goto single_failure_found;
764                 }
765         }
766
767 single_failure_found:
768
769         omap_hsmmc_set_dll(mmc, phase_delay);
770
771         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
772         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
773
774         return 0;
775
776 tuning_error:
777
778         omap_hsmmc_disable_tuning(mmc);
779         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
780         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
781
782         return ret;
783 }
784 #endif
785 #endif
786
787 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
788 {
789         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
790         struct hsmmc *mmc_base = priv->base_addr;
791         u32 irq_mask = INT_EN_MASK;
792
793         /*
794          * TODO: Errata i802 indicates only DCRC interrupts can occur during
795          * tuning procedure and DCRC should be disabled. But see occurences
796          * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
797          * interrupts occur along with BRR, so the data is actually in the
798          * buffer. It has to be debugged why these interrutps occur
799          */
800         if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
801                 irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
802
803         writel(irq_mask, &mmc_base->ie);
804 }
805
806 static int omap_hsmmc_init_setup(struct mmc *mmc)
807 {
808         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
809         struct hsmmc *mmc_base;
810         unsigned int reg_val;
811         unsigned int dsor;
812         ulong start;
813
814         mmc_base = priv->base_addr;
815         mmc_board_init(mmc);
816
817         writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
818                 &mmc_base->sysconfig);
819         start = get_timer(0);
820         while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
821                 if (get_timer(0) - start > MAX_RETRY_MS) {
822                         printf("%s: timedout waiting for cc2!\n", __func__);
823                         return -ETIMEDOUT;
824                 }
825         }
826         writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
827         start = get_timer(0);
828         while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
829                 if (get_timer(0) - start > MAX_RETRY_MS) {
830                         printf("%s: timedout waiting for softresetall!\n",
831                                 __func__);
832                         return -ETIMEDOUT;
833                 }
834         }
835 #ifdef CONFIG_MMC_OMAP_HS_ADMA
836         reg_val = readl(&mmc_base->hl_hwinfo);
837         if (reg_val & MADMA_EN)
838                 priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
839 #endif
840
841 #if CONFIG_IS_ENABLED(DM_MMC)
842         reg_val = omap_hsmmc_set_capabilities(mmc);
843         omap_hsmmc_conf_bus_power(mmc, (reg_val & VS33_3V3SUP) ?
844                           MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
845 #else
846         writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
847         writel(readl(&mmc_base->capa) | VS33_3V3SUP | VS18_1V8SUP,
848                 &mmc_base->capa);
849 #endif
850
851         reg_val = readl(&mmc_base->con) & RESERVED_MASK;
852
853         writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
854                 MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
855                 HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
856
857         dsor = 240;
858         mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
859                 (ICE_STOP | DTO_15THDTO));
860         mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
861                 (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
862         start = get_timer(0);
863         while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
864                 if (get_timer(0) - start > MAX_RETRY_MS) {
865                         printf("%s: timedout waiting for ics!\n", __func__);
866                         return -ETIMEDOUT;
867                 }
868         }
869         writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
870
871         writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
872
873         mmc_enable_irq(mmc, NULL);
874
875 #if !CONFIG_IS_ENABLED(DM_MMC)
876         mmc_init_stream(mmc_base);
877 #endif
878
879         return 0;
880 }
881
882 /*
883  * MMC controller internal finite state machine reset
884  *
885  * Used to reset command or data internal state machines, using respectively
886  * SRC or SRD bit of SYSCTL register
887  */
888 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
889 {
890         ulong start;
891
892         mmc_reg_out(&mmc_base->sysctl, bit, bit);
893
894         /*
895          * CMD(DAT) lines reset procedures are slightly different
896          * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
897          * According to OMAP3 TRM:
898          * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
899          * returns to 0x0.
900          * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
901          * procedure steps must be as follows:
902          * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
903          *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
904          * 2. Poll the SRC(SRD) bit until it is set to 0x1.
905          * 3. Wait until the SRC (SRD) bit returns to 0x0
906          *    (reset procedure is completed).
907          */
908 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
909         defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
910         if (!(readl(&mmc_base->sysctl) & bit)) {
911                 start = get_timer(0);
912                 while (!(readl(&mmc_base->sysctl) & bit)) {
913                         if (get_timer(0) - start > MMC_TIMEOUT_MS)
914                                 return;
915                 }
916         }
917 #endif
918         start = get_timer(0);
919         while ((readl(&mmc_base->sysctl) & bit) != 0) {
920                 if (get_timer(0) - start > MAX_RETRY_MS) {
921                         printf("%s: timedout waiting for sysctl %x to clear\n",
922                                 __func__, bit);
923                         return;
924                 }
925         }
926 }
927
928 #ifdef CONFIG_MMC_OMAP_HS_ADMA
929 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
930 {
931         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
932         struct omap_hsmmc_adma_desc *desc;
933         u8 attr;
934
935         desc = &priv->adma_desc_table[priv->desc_slot];
936
937         attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
938         if (!end)
939                 priv->desc_slot++;
940         else
941                 attr |= ADMA_DESC_ATTR_END;
942
943         desc->len = len;
944         desc->addr = (u32)buf;
945         desc->reserved = 0;
946         desc->attr = attr;
947 }
948
949 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
950                                           struct mmc_data *data)
951 {
952         uint total_len = data->blocksize * data->blocks;
953         uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
954         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
955         int i = desc_count;
956         char *buf;
957
958         priv->desc_slot = 0;
959         priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
960                                 memalign(ARCH_DMA_MINALIGN, desc_count *
961                                 sizeof(struct omap_hsmmc_adma_desc));
962
963         if (data->flags & MMC_DATA_READ)
964                 buf = data->dest;
965         else
966                 buf = (char *)data->src;
967
968         while (--i) {
969                 omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
970                 buf += ADMA_MAX_LEN;
971                 total_len -= ADMA_MAX_LEN;
972         }
973
974         omap_hsmmc_adma_desc(mmc, buf, total_len, true);
975
976         flush_dcache_range((long)priv->adma_desc_table,
977                            (long)priv->adma_desc_table +
978                            ROUND(desc_count *
979                            sizeof(struct omap_hsmmc_adma_desc),
980                            ARCH_DMA_MINALIGN));
981 }
982
983 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
984 {
985         struct hsmmc *mmc_base;
986         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
987         u32 val;
988         char *buf;
989
990         mmc_base = priv->base_addr;
991         omap_hsmmc_prepare_adma_table(mmc, data);
992
993         if (data->flags & MMC_DATA_READ)
994                 buf = data->dest;
995         else
996                 buf = (char *)data->src;
997
998         val = readl(&mmc_base->hctl);
999         val |= DMA_SELECT;
1000         writel(val, &mmc_base->hctl);
1001
1002         val = readl(&mmc_base->con);
1003         val |= DMA_MASTER;
1004         writel(val, &mmc_base->con);
1005
1006         writel((u32)priv->adma_desc_table, &mmc_base->admasal);
1007
1008         flush_dcache_range((u32)buf,
1009                            (u32)buf +
1010                            ROUND(data->blocksize * data->blocks,
1011                                  ARCH_DMA_MINALIGN));
1012 }
1013
1014 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
1015 {
1016         struct hsmmc *mmc_base;
1017         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1018         u32 val;
1019
1020         mmc_base = priv->base_addr;
1021
1022         val = readl(&mmc_base->con);
1023         val &= ~DMA_MASTER;
1024         writel(val, &mmc_base->con);
1025
1026         val = readl(&mmc_base->hctl);
1027         val &= ~DMA_SELECT;
1028         writel(val, &mmc_base->hctl);
1029
1030         kfree(priv->adma_desc_table);
1031 }
1032 #else
1033 #define omap_hsmmc_adma_desc
1034 #define omap_hsmmc_prepare_adma_table
1035 #define omap_hsmmc_prepare_data
1036 #define omap_hsmmc_dma_cleanup
1037 #endif
1038
1039 #if !CONFIG_IS_ENABLED(DM_MMC)
1040 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
1041                         struct mmc_data *data)
1042 {
1043         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1044 #else
1045 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
1046                         struct mmc_data *data)
1047 {
1048         struct omap_hsmmc_data *priv = dev_get_priv(dev);
1049         struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1050         struct mmc *mmc = upriv->mmc;
1051 #endif
1052         struct hsmmc *mmc_base;
1053         unsigned int flags, mmc_stat;
1054         ulong start;
1055         priv->last_cmd = cmd->cmdidx;
1056
1057         mmc_base = priv->base_addr;
1058
1059         if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
1060                 return 0;
1061
1062         start = get_timer(0);
1063         while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
1064                 if (get_timer(0) - start > MAX_RETRY_MS) {
1065                         printf("%s: timedout waiting on cmd inhibit to clear\n",
1066                                         __func__);
1067                         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1068                         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1069                         return -ETIMEDOUT;
1070                 }
1071         }
1072         writel(0xFFFFFFFF, &mmc_base->stat);
1073         if (readl(&mmc_base->stat)) {
1074                 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1075                 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1076         }
1077
1078         /*
1079          * CMDREG
1080          * CMDIDX[13:8] : Command index
1081          * DATAPRNT[5]  : Data Present Select
1082          * ENCMDIDX[4]  : Command Index Check Enable
1083          * ENCMDCRC[3]  : Command CRC Check Enable
1084          * RSPTYP[1:0]
1085          *      00 = No Response
1086          *      01 = Length 136
1087          *      10 = Length 48
1088          *      11 = Length 48 Check busy after response
1089          */
1090         /* Delay added before checking the status of frq change
1091          * retry not supported by mmc.c(core file)
1092          */
1093         if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1094                 udelay(50000); /* wait 50 ms */
1095
1096         if (!(cmd->resp_type & MMC_RSP_PRESENT))
1097                 flags = 0;
1098         else if (cmd->resp_type & MMC_RSP_136)
1099                 flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1100         else if (cmd->resp_type & MMC_RSP_BUSY)
1101                 flags = RSP_TYPE_LGHT48B;
1102         else
1103                 flags = RSP_TYPE_LGHT48;
1104
1105         /* enable default flags */
1106         flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1107                         MSBS_SGLEBLK);
1108         flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1109
1110         if (cmd->resp_type & MMC_RSP_CRC)
1111                 flags |= CCCE_CHECK;
1112         if (cmd->resp_type & MMC_RSP_OPCODE)
1113                 flags |= CICE_CHECK;
1114
1115         if (data) {
1116                 if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1117                          (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1118                         flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1119                         data->blocksize = 512;
1120                         writel(data->blocksize | (data->blocks << 16),
1121                                                         &mmc_base->blk);
1122                 } else
1123                         writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1124
1125                 if (data->flags & MMC_DATA_READ)
1126                         flags |= (DP_DATA | DDIR_READ);
1127                 else
1128                         flags |= (DP_DATA | DDIR_WRITE);
1129
1130 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1131                 if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1132                     !mmc_is_tuning_cmd(cmd->cmdidx)) {
1133                         omap_hsmmc_prepare_data(mmc, data);
1134                         flags |= DE_ENABLE;
1135                 }
1136 #endif
1137         }
1138
1139         mmc_enable_irq(mmc, cmd);
1140
1141         writel(cmd->cmdarg, &mmc_base->arg);
1142         udelay(20);             /* To fix "No status update" error on eMMC */
1143         writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1144
1145         start = get_timer(0);
1146         do {
1147                 mmc_stat = readl(&mmc_base->stat);
1148                 if (get_timer(start) > MAX_RETRY_MS) {
1149                         printf("%s : timeout: No status update\n", __func__);
1150                         return -ETIMEDOUT;
1151                 }
1152         } while (!mmc_stat);
1153
1154         if ((mmc_stat & IE_CTO) != 0) {
1155                 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1156                 return -ETIMEDOUT;
1157         } else if ((mmc_stat & ERRI_MASK) != 0)
1158                 return -1;
1159
1160         if (mmc_stat & CC_MASK) {
1161                 writel(CC_MASK, &mmc_base->stat);
1162                 if (cmd->resp_type & MMC_RSP_PRESENT) {
1163                         if (cmd->resp_type & MMC_RSP_136) {
1164                                 /* response type 2 */
1165                                 cmd->response[3] = readl(&mmc_base->rsp10);
1166                                 cmd->response[2] = readl(&mmc_base->rsp32);
1167                                 cmd->response[1] = readl(&mmc_base->rsp54);
1168                                 cmd->response[0] = readl(&mmc_base->rsp76);
1169                         } else
1170                                 /* response types 1, 1b, 3, 4, 5, 6 */
1171                                 cmd->response[0] = readl(&mmc_base->rsp10);
1172                 }
1173         }
1174
1175 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1176         if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1177             !mmc_is_tuning_cmd(cmd->cmdidx)) {
1178                 u32 sz_mb, timeout;
1179
1180                 if (mmc_stat & IE_ADMAE) {
1181                         omap_hsmmc_dma_cleanup(mmc);
1182                         return -EIO;
1183                 }
1184
1185                 sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1186                 timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1187                 if (timeout < MAX_RETRY_MS)
1188                         timeout = MAX_RETRY_MS;
1189
1190                 start = get_timer(0);
1191                 do {
1192                         mmc_stat = readl(&mmc_base->stat);
1193                         if (mmc_stat & TC_MASK) {
1194                                 writel(readl(&mmc_base->stat) | TC_MASK,
1195                                        &mmc_base->stat);
1196                                 break;
1197                         }
1198                         if (get_timer(start) > timeout) {
1199                                 printf("%s : DMA timeout: No status update\n",
1200                                        __func__);
1201                                 return -ETIMEDOUT;
1202                         }
1203                 } while (1);
1204
1205                 omap_hsmmc_dma_cleanup(mmc);
1206                 return 0;
1207         }
1208 #endif
1209
1210         if (data && (data->flags & MMC_DATA_READ)) {
1211                 mmc_read_data(mmc_base, data->dest,
1212                                 data->blocksize * data->blocks);
1213         } else if (data && (data->flags & MMC_DATA_WRITE)) {
1214                 mmc_write_data(mmc_base, data->src,
1215                                 data->blocksize * data->blocks);
1216         }
1217         return 0;
1218 }
1219
1220 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1221 {
1222         unsigned int *output_buf = (unsigned int *)buf;
1223         unsigned int mmc_stat;
1224         unsigned int count;
1225
1226         /*
1227          * Start Polled Read
1228          */
1229         count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1230         count /= 4;
1231
1232         while (size) {
1233                 ulong start = get_timer(0);
1234                 do {
1235                         mmc_stat = readl(&mmc_base->stat);
1236                         if (get_timer(0) - start > MAX_RETRY_MS) {
1237                                 printf("%s: timedout waiting for status!\n",
1238                                                 __func__);
1239                                 return -ETIMEDOUT;
1240                         }
1241                 } while (mmc_stat == 0);
1242
1243                 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1244                         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1245
1246                 if ((mmc_stat & ERRI_MASK) != 0)
1247                         return 1;
1248
1249                 if (mmc_stat & BRR_MASK) {
1250                         unsigned int k;
1251
1252                         writel(readl(&mmc_base->stat) | BRR_MASK,
1253                                 &mmc_base->stat);
1254                         for (k = 0; k < count; k++) {
1255                                 *output_buf = readl(&mmc_base->data);
1256                                 output_buf++;
1257                         }
1258                         size -= (count*4);
1259                 }
1260
1261                 if (mmc_stat & BWR_MASK)
1262                         writel(readl(&mmc_base->stat) | BWR_MASK,
1263                                 &mmc_base->stat);
1264
1265                 if (mmc_stat & TC_MASK) {
1266                         writel(readl(&mmc_base->stat) | TC_MASK,
1267                                 &mmc_base->stat);
1268                         break;
1269                 }
1270         }
1271         return 0;
1272 }
1273
1274 #if CONFIG_IS_ENABLED(MMC_WRITE)
1275 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1276                           unsigned int size)
1277 {
1278         unsigned int *input_buf = (unsigned int *)buf;
1279         unsigned int mmc_stat;
1280         unsigned int count;
1281
1282         /*
1283          * Start Polled Write
1284          */
1285         count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1286         count /= 4;
1287
1288         while (size) {
1289                 ulong start = get_timer(0);
1290                 do {
1291                         mmc_stat = readl(&mmc_base->stat);
1292                         if (get_timer(0) - start > MAX_RETRY_MS) {
1293                                 printf("%s: timedout waiting for status!\n",
1294                                                 __func__);
1295                                 return -ETIMEDOUT;
1296                         }
1297                 } while (mmc_stat == 0);
1298
1299                 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1300                         mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1301
1302                 if ((mmc_stat & ERRI_MASK) != 0)
1303                         return 1;
1304
1305                 if (mmc_stat & BWR_MASK) {
1306                         unsigned int k;
1307
1308                         writel(readl(&mmc_base->stat) | BWR_MASK,
1309                                         &mmc_base->stat);
1310                         for (k = 0; k < count; k++) {
1311                                 writel(*input_buf, &mmc_base->data);
1312                                 input_buf++;
1313                         }
1314                         size -= (count*4);
1315                 }
1316
1317                 if (mmc_stat & BRR_MASK)
1318                         writel(readl(&mmc_base->stat) | BRR_MASK,
1319                                 &mmc_base->stat);
1320
1321                 if (mmc_stat & TC_MASK) {
1322                         writel(readl(&mmc_base->stat) | TC_MASK,
1323                                 &mmc_base->stat);
1324                         break;
1325                 }
1326         }
1327         return 0;
1328 }
1329 #else
1330 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1331                           unsigned int size)
1332 {
1333         return -ENOTSUPP;
1334 }
1335 #endif
1336 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1337 {
1338         writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1339 }
1340
1341 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1342 {
1343         writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1344 }
1345
1346 static void omap_hsmmc_set_clock(struct mmc *mmc)
1347 {
1348         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1349         struct hsmmc *mmc_base;
1350         unsigned int dsor = 0;
1351         ulong start;
1352
1353         mmc_base = priv->base_addr;
1354         omap_hsmmc_stop_clock(mmc_base);
1355
1356         /* TODO: Is setting DTO required here? */
1357         mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1358                     (ICE_STOP | DTO_15THDTO));
1359
1360         if (mmc->clock != 0) {
1361                 dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1362                 if (dsor > CLKD_MAX)
1363                         dsor = CLKD_MAX;
1364         } else {
1365                 dsor = CLKD_MAX;
1366         }
1367
1368         mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1369                     (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1370
1371         start = get_timer(0);
1372         while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1373                 if (get_timer(0) - start > MAX_RETRY_MS) {
1374                         printf("%s: timedout waiting for ics!\n", __func__);
1375                         return;
1376                 }
1377         }
1378
1379         priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1380         mmc->clock = priv->clock;
1381         omap_hsmmc_start_clock(mmc_base);
1382 }
1383
1384 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1385 {
1386         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1387         struct hsmmc *mmc_base;
1388
1389         mmc_base = priv->base_addr;
1390         /* configue bus width */
1391         switch (mmc->bus_width) {
1392         case 8:
1393                 writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1394                         &mmc_base->con);
1395                 break;
1396
1397         case 4:
1398                 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1399                         &mmc_base->con);
1400                 writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1401                         &mmc_base->hctl);
1402                 break;
1403
1404         case 1:
1405         default:
1406                 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1407                         &mmc_base->con);
1408                 writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1409                         &mmc_base->hctl);
1410                 break;
1411         }
1412
1413         priv->bus_width = mmc->bus_width;
1414 }
1415
1416 #if !CONFIG_IS_ENABLED(DM_MMC)
1417 static int omap_hsmmc_set_ios(struct mmc *mmc)
1418 {
1419         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1420 #else
1421 static int omap_hsmmc_set_ios(struct udevice *dev)
1422 {
1423         struct omap_hsmmc_data *priv = dev_get_priv(dev);
1424         struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1425         struct mmc *mmc = upriv->mmc;
1426 #endif
1427         struct hsmmc *mmc_base = priv->base_addr;
1428         int ret = 0;
1429
1430         if (priv->bus_width != mmc->bus_width)
1431                 omap_hsmmc_set_bus_width(mmc);
1432
1433         if (priv->clock != mmc->clock)
1434                 omap_hsmmc_set_clock(mmc);
1435
1436         if (mmc->clk_disable)
1437                 omap_hsmmc_stop_clock(mmc_base);
1438         else
1439                 omap_hsmmc_start_clock(mmc_base);
1440
1441 #if CONFIG_IS_ENABLED(DM_MMC)
1442         if (priv->mode != mmc->selected_mode)
1443                 omap_hsmmc_set_timing(mmc);
1444
1445 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1446         if (priv->signal_voltage != mmc->signal_voltage)
1447                 ret = omap_hsmmc_set_signal_voltage(mmc);
1448 #endif
1449 #endif
1450         return ret;
1451 }
1452
1453 #ifdef OMAP_HSMMC_USE_GPIO
1454 #if CONFIG_IS_ENABLED(DM_MMC)
1455 static int omap_hsmmc_getcd(struct udevice *dev)
1456 {
1457         int value = -1;
1458 #if CONFIG_IS_ENABLED(DM_GPIO)
1459         struct omap_hsmmc_data *priv = dev_get_priv(dev);
1460         value = dm_gpio_get_value(&priv->cd_gpio);
1461 #endif
1462         /* if no CD return as 1 */
1463         if (value < 0)
1464                 return 1;
1465
1466         return value;
1467 }
1468
1469 static int omap_hsmmc_getwp(struct udevice *dev)
1470 {
1471         int value = 0;
1472 #if CONFIG_IS_ENABLED(DM_GPIO)
1473         struct omap_hsmmc_data *priv = dev_get_priv(dev);
1474         value = dm_gpio_get_value(&priv->wp_gpio);
1475 #endif
1476         /* if no WP return as 0 */
1477         if (value < 0)
1478                 return 0;
1479         return value;
1480 }
1481 #else
1482 static int omap_hsmmc_getcd(struct mmc *mmc)
1483 {
1484         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1485         int cd_gpio;
1486
1487         /* if no CD return as 1 */
1488         cd_gpio = priv->cd_gpio;
1489         if (cd_gpio < 0)
1490                 return 1;
1491
1492         /* NOTE: assumes card detect signal is active-low */
1493         return !gpio_get_value(cd_gpio);
1494 }
1495
1496 static int omap_hsmmc_getwp(struct mmc *mmc)
1497 {
1498         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1499         int wp_gpio;
1500
1501         /* if no WP return as 0 */
1502         wp_gpio = priv->wp_gpio;
1503         if (wp_gpio < 0)
1504                 return 0;
1505
1506         /* NOTE: assumes write protect signal is active-high */
1507         return gpio_get_value(wp_gpio);
1508 }
1509 #endif
1510 #endif
1511
1512 #if CONFIG_IS_ENABLED(DM_MMC)
1513 static const struct dm_mmc_ops omap_hsmmc_ops = {
1514         .send_cmd       = omap_hsmmc_send_cmd,
1515         .set_ios        = omap_hsmmc_set_ios,
1516 #ifdef OMAP_HSMMC_USE_GPIO
1517         .get_cd         = omap_hsmmc_getcd,
1518         .get_wp         = omap_hsmmc_getwp,
1519 #endif
1520 #ifdef MMC_SUPPORTS_TUNING
1521         .execute_tuning = omap_hsmmc_execute_tuning,
1522 #endif
1523         .wait_dat0      = omap_hsmmc_wait_dat0,
1524 };
1525 #else
1526 static const struct mmc_ops omap_hsmmc_ops = {
1527         .send_cmd       = omap_hsmmc_send_cmd,
1528         .set_ios        = omap_hsmmc_set_ios,
1529         .init           = omap_hsmmc_init_setup,
1530 #ifdef OMAP_HSMMC_USE_GPIO
1531         .getcd          = omap_hsmmc_getcd,
1532         .getwp          = omap_hsmmc_getwp,
1533 #endif
1534 };
1535 #endif
1536
1537 #if !CONFIG_IS_ENABLED(DM_MMC)
1538 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1539                 int wp_gpio)
1540 {
1541         struct mmc *mmc;
1542         struct omap_hsmmc_data *priv;
1543         struct mmc_config *cfg;
1544         uint host_caps_val;
1545
1546         priv = calloc(1, sizeof(*priv));
1547         if (priv == NULL)
1548                 return -1;
1549
1550         host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1551
1552         switch (dev_index) {
1553         case 0:
1554                 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1555                 break;
1556 #ifdef OMAP_HSMMC2_BASE
1557         case 1:
1558                 priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1559 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1560         defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1561         defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1562                 defined(CONFIG_HSMMC2_8BIT)
1563                 /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1564                 host_caps_val |= MMC_MODE_8BIT;
1565 #endif
1566                 break;
1567 #endif
1568 #ifdef OMAP_HSMMC3_BASE
1569         case 2:
1570                 priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1571 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1572                 /* Enable 8-bit interface for eMMC on DRA7XX */
1573                 host_caps_val |= MMC_MODE_8BIT;
1574 #endif
1575                 break;
1576 #endif
1577         default:
1578                 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1579                 return 1;
1580         }
1581 #ifdef OMAP_HSMMC_USE_GPIO
1582         /* on error gpio values are set to -1, which is what we want */
1583         priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1584         priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1585 #endif
1586
1587         cfg = &priv->cfg;
1588
1589         cfg->name = "OMAP SD/MMC";
1590         cfg->ops = &omap_hsmmc_ops;
1591
1592         cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1593         cfg->host_caps = host_caps_val & ~host_caps_mask;
1594
1595         cfg->f_min = 400000;
1596
1597         if (f_max != 0)
1598                 cfg->f_max = f_max;
1599         else {
1600                 if (cfg->host_caps & MMC_MODE_HS) {
1601                         if (cfg->host_caps & MMC_MODE_HS_52MHz)
1602                                 cfg->f_max = 52000000;
1603                         else
1604                                 cfg->f_max = 26000000;
1605                 } else
1606                         cfg->f_max = 20000000;
1607         }
1608
1609         cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1610
1611 #if defined(CONFIG_OMAP34XX)
1612         /*
1613          * Silicon revs 2.1 and older do not support multiblock transfers.
1614          */
1615         if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1616                 cfg->b_max = 1;
1617 #endif
1618
1619         mmc = mmc_create(cfg, priv);
1620         if (mmc == NULL)
1621                 return -1;
1622
1623         return 0;
1624 }
1625 #else
1626
1627 #ifdef CONFIG_IODELAY_RECALIBRATION
1628 static struct pad_conf_entry *
1629 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1630 {
1631         int index = 0;
1632         struct pad_conf_entry *padconf;
1633
1634         padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1635         if (!padconf) {
1636                 debug("failed to allocate memory\n");
1637                 return 0;
1638         }
1639
1640         while (index < count) {
1641                 padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1642                 padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1643                 index++;
1644         }
1645
1646         return padconf;
1647 }
1648
1649 static struct iodelay_cfg_entry *
1650 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1651 {
1652         int index = 0;
1653         struct iodelay_cfg_entry *iodelay;
1654
1655         iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1656         if (!iodelay) {
1657                 debug("failed to allocate memory\n");
1658                 return 0;
1659         }
1660
1661         while (index < count) {
1662                 iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1663                 iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1664                 iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1665                 index++;
1666         }
1667
1668         return iodelay;
1669 }
1670
1671 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1672                                                    const char *name, int *len)
1673 {
1674         const void *fdt = gd->fdt_blob;
1675         int offset;
1676         const fdt32_t *pinctrl;
1677
1678         offset = fdt_node_offset_by_phandle(fdt, phandle);
1679         if (offset < 0) {
1680                 debug("failed to get pinctrl node %s.\n",
1681                       fdt_strerror(offset));
1682                 return 0;
1683         }
1684
1685         pinctrl = fdt_getprop(fdt, offset, name, len);
1686         if (!pinctrl) {
1687                 debug("failed to get property %s\n", name);
1688                 return 0;
1689         }
1690
1691         return pinctrl;
1692 }
1693
1694 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1695                                                 char *prop_name)
1696 {
1697         const void *fdt = gd->fdt_blob;
1698         const __be32 *phandle;
1699         int node = dev_of_offset(mmc->dev);
1700
1701         phandle = fdt_getprop(fdt, node, prop_name, NULL);
1702         if (!phandle) {
1703                 debug("failed to get property %s\n", prop_name);
1704                 return 0;
1705         }
1706
1707         return fdt32_to_cpu(*phandle);
1708 }
1709
1710 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1711                                                char *prop_name)
1712 {
1713         const void *fdt = gd->fdt_blob;
1714         const __be32 *phandle;
1715         int len;
1716         int count;
1717         int node = dev_of_offset(mmc->dev);
1718
1719         phandle = fdt_getprop(fdt, node, prop_name, &len);
1720         if (!phandle) {
1721                 debug("failed to get property %s\n", prop_name);
1722                 return 0;
1723         }
1724
1725         /* No manual mode iodelay values if count < 2 */
1726         count = len / sizeof(*phandle);
1727         if (count < 2)
1728                 return 0;
1729
1730         return fdt32_to_cpu(*(phandle + 1));
1731 }
1732
1733 static struct pad_conf_entry *
1734 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1735 {
1736         int len;
1737         int count;
1738         struct pad_conf_entry *padconf;
1739         u32 phandle;
1740         const fdt32_t *pinctrl;
1741
1742         phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1743         if (!phandle)
1744                 return ERR_PTR(-EINVAL);
1745
1746         pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1747                                                &len);
1748         if (!pinctrl)
1749                 return ERR_PTR(-EINVAL);
1750
1751         count = (len / sizeof(*pinctrl)) / 2;
1752         padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1753         if (!padconf)
1754                 return ERR_PTR(-EINVAL);
1755
1756         *npads = count;
1757
1758         return padconf;
1759 }
1760
1761 static struct iodelay_cfg_entry *
1762 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1763 {
1764         int len;
1765         int count;
1766         struct iodelay_cfg_entry *iodelay;
1767         u32 phandle;
1768         const fdt32_t *pinctrl;
1769
1770         phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1771         /* Not all modes have manual mode iodelay values. So its not fatal */
1772         if (!phandle)
1773                 return 0;
1774
1775         pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1776                                                &len);
1777         if (!pinctrl)
1778                 return ERR_PTR(-EINVAL);
1779
1780         count = (len / sizeof(*pinctrl)) / 3;
1781         iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1782         if (!iodelay)
1783                 return ERR_PTR(-EINVAL);
1784
1785         *niodelay = count;
1786
1787         return iodelay;
1788 }
1789
1790 static struct omap_hsmmc_pinctrl_state *
1791 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1792 {
1793         int index;
1794         int npads = 0;
1795         int niodelays = 0;
1796         const void *fdt = gd->fdt_blob;
1797         int node = dev_of_offset(mmc->dev);
1798         char prop_name[11];
1799         struct omap_hsmmc_pinctrl_state *pinctrl_state;
1800
1801         pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1802                          malloc(sizeof(*pinctrl_state));
1803         if (!pinctrl_state) {
1804                 debug("failed to allocate memory\n");
1805                 return 0;
1806         }
1807
1808         index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1809         if (index < 0) {
1810                 debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1811                 goto err_pinctrl_state;
1812         }
1813
1814         sprintf(prop_name, "pinctrl-%d", index);
1815
1816         pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1817                                                          &npads);
1818         if (IS_ERR(pinctrl_state->padconf))
1819                 goto err_pinctrl_state;
1820         pinctrl_state->npads = npads;
1821
1822         pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1823                                                         &niodelays);
1824         if (IS_ERR(pinctrl_state->iodelay))
1825                 goto err_padconf;
1826         pinctrl_state->niodelays = niodelays;
1827
1828         return pinctrl_state;
1829
1830 err_padconf:
1831         kfree(pinctrl_state->padconf);
1832
1833 err_pinctrl_state:
1834         kfree(pinctrl_state);
1835         return 0;
1836 }
1837
1838 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)               \
1839         do {                                                            \
1840                 struct omap_hsmmc_pinctrl_state *s = NULL;              \
1841                 char str[20];                                           \
1842                 if (!(cfg->host_caps & capmask))                        \
1843                         break;                                          \
1844                                                                         \
1845                 if (priv->hw_rev) {                                     \
1846                         sprintf(str, "%s-%s", #mode, priv->hw_rev);     \
1847                         s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);   \
1848                 }                                                       \
1849                                                                         \
1850                 if (!s)                                                 \
1851                         s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \
1852                                                                         \
1853                 if (!s && !optional) {                                  \
1854                         debug("%s: no pinctrl for %s\n",                \
1855                               mmc->dev->name, #mode);                   \
1856                         cfg->host_caps &= ~(capmask);                   \
1857                 } else {                                                \
1858                         priv->mode##_pinctrl_state = s;                 \
1859                 }                                                       \
1860         } while (0)
1861
1862 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1863 {
1864         struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1865         struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1866         struct omap_hsmmc_pinctrl_state *default_pinctrl;
1867
1868         if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1869                 return 0;
1870
1871         default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1872         if (!default_pinctrl) {
1873                 printf("no pinctrl state for default mode\n");
1874                 return -EINVAL;
1875         }
1876
1877         priv->default_pinctrl_state = default_pinctrl;
1878
1879         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1880         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1881         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1882         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1883         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1884
1885         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1886         OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1887         OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1888
1889         return 0;
1890 }
1891 #endif
1892
1893 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1894 #ifdef CONFIG_OMAP54XX
1895 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1896 {
1897         return NULL;
1898 }
1899 #endif
1900
1901 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1902 {
1903         struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1904         struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1905
1906         struct mmc_config *cfg = &plat->cfg;
1907 #ifdef CONFIG_OMAP54XX
1908         const struct mmc_platform_fixups *fixups;
1909 #endif
1910         const void *fdt = gd->fdt_blob;
1911         int node = dev_of_offset(dev);
1912         int ret;
1913
1914         plat->base_addr = map_physmem(devfdt_get_addr(dev),
1915                                       sizeof(struct hsmmc *),
1916                                       MAP_NOCACHE);
1917
1918         ret = mmc_of_parse(dev, cfg);
1919         if (ret < 0)
1920                 return ret;
1921
1922         if (!cfg->f_max)
1923                 cfg->f_max = 52000000;
1924         cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1925         cfg->f_min = 400000;
1926         cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1927         cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1928         if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1929                 plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1930         if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1931                 plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1932         if (of_data)
1933                 plat->controller_flags |= of_data->controller_flags;
1934
1935 #ifdef CONFIG_OMAP54XX
1936         fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1937         if (fixups) {
1938                 plat->hw_rev = fixups->hw_rev;
1939                 cfg->host_caps &= ~fixups->unsupported_caps;
1940                 cfg->f_max = fixups->max_freq;
1941         }
1942 #endif
1943
1944         return 0;
1945 }
1946 #endif
1947
1948 #ifdef CONFIG_BLK
1949
1950 static int omap_hsmmc_bind(struct udevice *dev)
1951 {
1952         struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1953         plat->mmc = calloc(1, sizeof(struct mmc));
1954         return mmc_bind(dev, plat->mmc, &plat->cfg);
1955 }
1956 #endif
1957 static int omap_hsmmc_probe(struct udevice *dev)
1958 {
1959         struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1960         struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1961         struct omap_hsmmc_data *priv = dev_get_priv(dev);
1962         struct mmc_config *cfg = &plat->cfg;
1963         struct mmc *mmc;
1964 #ifdef CONFIG_IODELAY_RECALIBRATION
1965         int ret;
1966 #endif
1967
1968         cfg->name = "OMAP SD/MMC";
1969         priv->base_addr = plat->base_addr;
1970         priv->controller_flags = plat->controller_flags;
1971         priv->hw_rev = plat->hw_rev;
1972
1973 #ifdef CONFIG_BLK
1974         mmc = plat->mmc;
1975 #else
1976         mmc = mmc_create(cfg, priv);
1977         if (mmc == NULL)
1978                 return -1;
1979 #endif
1980 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1981         device_get_supply_regulator(dev, "pbias-supply",
1982                                     &priv->pbias_supply);
1983 #endif
1984 #if defined(OMAP_HSMMC_USE_GPIO)
1985 #if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1986         gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1987         gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1988 #endif
1989 #endif
1990
1991         mmc->dev = dev;
1992         upriv->mmc = mmc;
1993
1994 #ifdef CONFIG_IODELAY_RECALIBRATION
1995         ret = omap_hsmmc_get_pinctrl_state(mmc);
1996         /*
1997          * disable high speed modes for the platforms that require IO delay
1998          * and for which we don't have this information
1999          */
2000         if ((ret < 0) &&
2001             (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
2002                 priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
2003                 cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
2004                                     UHS_CAPS);
2005         }
2006 #endif
2007
2008         return omap_hsmmc_init_setup(mmc);
2009 }
2010
2011 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2012
2013 static const struct omap_mmc_of_data dra7_mmc_of_data = {
2014         .controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
2015 };
2016
2017 static const struct udevice_id omap_hsmmc_ids[] = {
2018         { .compatible = "ti,omap3-hsmmc" },
2019         { .compatible = "ti,omap4-hsmmc" },
2020         { .compatible = "ti,am33xx-hsmmc" },
2021         { .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
2022         { }
2023 };
2024 #endif
2025
2026 U_BOOT_DRIVER(omap_hsmmc) = {
2027         .name   = "omap_hsmmc",
2028         .id     = UCLASS_MMC,
2029 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2030         .of_match = omap_hsmmc_ids,
2031         .ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
2032         .platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
2033 #endif
2034 #ifdef CONFIG_BLK
2035         .bind = omap_hsmmc_bind,
2036 #endif
2037         .ops = &omap_hsmmc_ops,
2038         .probe  = omap_hsmmc_probe,
2039         .priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
2040 #if !CONFIG_IS_ENABLED(OF_CONTROL)
2041         .flags  = DM_FLAG_PRE_RELOC,
2042 #endif
2043 };
2044 #endif