2 * generic mmc spi driver
4 * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
5 * Licensed under the GPL-2 or later.
13 #include <linux/crc7.h>
14 #include <linux/byteorder/swab.h>
16 /* MMC/SD in SPI mode reports R1 status always */
17 #define R1_SPI_IDLE (1 << 0)
18 #define R1_SPI_ERASE_RESET (1 << 1)
19 #define R1_SPI_ILLEGAL_COMMAND (1 << 2)
20 #define R1_SPI_COM_CRC (1 << 3)
21 #define R1_SPI_ERASE_SEQ (1 << 4)
22 #define R1_SPI_ADDRESS (1 << 5)
23 #define R1_SPI_PARAMETER (1 << 6)
24 /* R1 bit 7 is always zero, reuse this bit for error */
25 #define R1_SPI_ERROR (1 << 7)
27 /* Response tokens used to ack each block written: */
28 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
29 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
30 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
31 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
33 /* Read and write blocks start with these tokens and end with crc;
34 * on error, read tokens act like a subset of R2_SPI_* values.
36 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
37 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
38 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
40 /* MMC SPI commands start with a start bit "0" and a transmit bit "1" */
41 #define MMC_SPI_CMD(x) (0x40 | (x & 0x3f))
44 #define MMC_SPI_VOLTAGE (MMC_VDD_32_33 | MMC_VDD_33_34)
45 #define MMC_SPI_MIN_CLOCK 400000 /* 400KHz to meet MMC spec */
49 #define RTOUT 3000000 /* 1 sec */
50 #define WTOUT 3000000 /* 1 sec */
52 static uint mmc_spi_sendcmd(struct mmc *mmc, ushort cmdidx, u32 cmdarg)
54 struct spi_slave *spi = mmc->priv;
59 cmdo[1] = MMC_SPI_CMD(cmdidx);
60 cmdo[2] = cmdarg >> 24;
61 cmdo[3] = cmdarg >> 16;
62 cmdo[4] = cmdarg >> 8;
64 cmdo[6] = (crc7(0, &cmdo[1], 5) << 1) | 0x01;
65 spi_xfer(spi, sizeof(cmdo) * 8, cmdo, NULL, 0);
66 for (i = 0; i < CTOUT; i++) {
67 spi_xfer(spi, 1 * 8, NULL, &r1, 0);
68 if (i && (r1 & 0x80) == 0) /* r1 response */
71 debug("%s:cmd%d resp%d %x\n", __func__, cmdidx, i, r1);
75 static uint mmc_spi_readdata(struct mmc *mmc, void *xbuf,
78 struct spi_slave *spi = mmc->priv;
84 for (i = 0; i < RTOUT; i++) {
85 spi_xfer(spi, 1 * 8, NULL, &r1, 0);
86 if (r1 != 0xff) /* data token */
89 debug("%s:tok%d %x\n", __func__, i, r1);
90 if (r1 == SPI_TOKEN_SINGLE) {
91 spi_xfer(spi, bsize * 8, NULL, buf, 0);
92 spi_xfer(spi, 2 * 8, NULL, &crc, 0);
93 #ifdef CONFIG_MMC_SPI_CRC_ON
94 if (swab16(cyg_crc16(buf, bsize)) != crc) {
95 debug("%s: CRC error\n", mmc->name);
110 static uint mmc_spi_writedata(struct mmc *mmc, const void *xbuf,
111 u32 bcnt, u32 bsize, int multi)
113 struct spi_slave *spi = mmc->priv;
114 const u8 *buf = xbuf;
120 tok[1] = multi ? SPI_TOKEN_MULTI_WRITE : SPI_TOKEN_SINGLE;
122 #ifdef CONFIG_MMC_SPI_CRC_ON
123 crc = swab16(cyg_crc16((u8 *)buf, bsize));
125 spi_xfer(spi, 2 * 8, tok, NULL, 0);
126 spi_xfer(spi, bsize * 8, buf, NULL, 0);
127 spi_xfer(spi, 2 * 8, &crc, NULL, 0);
128 for (i = 0; i < CTOUT; i++) {
129 spi_xfer(spi, 1 * 8, NULL, &r1, 0);
130 if ((r1 & 0x10) == 0) /* response token */
133 debug("%s:tok%d %x\n", __func__, i, r1);
134 if (SPI_MMC_RESPONSE_CODE(r1) == SPI_RESPONSE_ACCEPTED) {
135 for (i = 0; i < WTOUT; i++) { /* wait busy */
136 spi_xfer(spi, 1 * 8, NULL, &r1, 0);
137 if (i && r1 == 0xff) {
143 debug("%s:wtout %x\n", __func__, r1);
148 debug("%s: err %x\n", __func__, r1);
154 if (multi && bcnt == -1) { /* stop multi write */
155 tok[1] = SPI_TOKEN_STOP_TRAN;
156 spi_xfer(spi, 2 * 8, tok, NULL, 0);
157 for (i = 0; i < WTOUT; i++) { /* wait busy */
158 spi_xfer(spi, 1 * 8, NULL, &r1, 0);
159 if (i && r1 == 0xff) {
165 debug("%s:wstop %x\n", __func__, r1);
172 static int mmc_spi_request(struct mmc *mmc, struct mmc_cmd *cmd,
173 struct mmc_data *data)
175 struct spi_slave *spi = mmc->priv;
179 debug("%s:cmd%d %x %x %x\n", __func__,
180 cmd->cmdidx, cmd->resp_type, cmd->cmdarg, cmd->flags);
182 spi_cs_activate(spi);
183 r1 = mmc_spi_sendcmd(mmc, cmd->cmdidx, cmd->cmdarg);
184 if (r1 == 0xff) { /* no response */
187 } else if (r1 & R1_SPI_COM_CRC) {
190 } else if (r1 & ~R1_SPI_IDLE) { /* other errors */
193 } else if (cmd->resp_type == MMC_RSP_R2) {
194 r1 = mmc_spi_readdata(mmc, cmd->response, 1, 16);
195 for (i = 0; i < 4; i++)
196 cmd->response[i] = swab32(cmd->response[i]);
197 debug("r128 %x %x %x %x\n", cmd->response[0], cmd->response[1],
198 cmd->response[2], cmd->response[3]);
200 switch (cmd->cmdidx) {
201 case SD_CMD_APP_SEND_OP_COND:
202 case MMC_CMD_SEND_OP_COND:
203 cmd->response[0] = (r1 & R1_SPI_IDLE) ? 0 : OCR_BUSY;
205 case SD_CMD_SEND_IF_COND:
206 case MMC_CMD_SPI_READ_OCR:
207 spi_xfer(spi, 4 * 8, NULL, cmd->response, 0);
208 cmd->response[0] = swab32(cmd->response[0]);
209 debug("r32 %x\n", cmd->response[0]);
213 debug("%s:data %x %x %x\n", __func__,
214 data->flags, data->blocks, data->blocksize);
215 if (data->flags == MMC_DATA_READ)
216 r1 = mmc_spi_readdata(mmc, data->dest,
217 data->blocks, data->blocksize);
218 else if (data->flags == MMC_DATA_WRITE)
219 r1 = mmc_spi_writedata(mmc, data->src,
220 data->blocks, data->blocksize,
221 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK));
222 if (r1 & R1_SPI_COM_CRC)
224 else if (r1) /* other errors */
228 spi_cs_deactivate(spi);
229 spi_release_bus(spi);
233 static void mmc_spi_set_ios(struct mmc *mmc)
235 struct spi_slave *spi = mmc->priv;
236 debug("%s: clock %u\n", __func__, mmc->clock);
238 spi_set_speed(spi, mmc->clock);
241 static int mmc_spi_init_p(struct mmc *mmc)
243 struct spi_slave *spi = mmc->priv;
245 spi_set_speed(spi, MMC_SPI_MIN_CLOCK);
247 /* cs deactivated for 100+ clock */
248 spi_xfer(spi, 18 * 8, NULL, NULL, 0);
249 spi_release_bus(spi);
253 struct mmc *mmc_spi_init(uint bus, uint cs, uint speed, uint mode)
257 mmc = malloc(sizeof(*mmc));
260 memset(mmc, 0, sizeof(*mmc));
261 mmc->priv = spi_setup_slave(bus, cs, speed, mode);
266 sprintf(mmc->name, "MMC_SPI");
267 mmc->send_cmd = mmc_spi_request;
268 mmc->set_ios = mmc_spi_set_ios;
269 mmc->init = mmc_spi_init_p;
270 mmc->host_caps = MMC_MODE_SPI;
272 mmc->voltages = MMC_SPI_VOLTAGE;
274 mmc->f_min = MMC_SPI_MIN_CLOCK;
275 mmc->block_dev.part_type = PART_TYPE_DOS;