Merge branch 'v3.5-rc7-fixes' of git://github.com/lunn/linux into fixes
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/pagemap.h>
60 #include <linux/platform_device.h>
61 #include <linux/pm_qos.h>
62 #include <linux/pm_runtime.h>
63 #include <linux/spinlock.h>
64 #include <linux/module.h>
65
66 #define DRIVER_NAME     "sh_mmcif"
67 #define DRIVER_VERSION  "2010-04-28"
68
69 /* CE_CMD_SET */
70 #define CMD_MASK                0x3f000000
71 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
72 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
73 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
74 #define CMD_SET_RBSY            (1 << 21) /* R1b */
75 #define CMD_SET_CCSEN           (1 << 20)
76 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
77 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
78 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
79 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
80 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
81 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
82 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
83 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
84 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
85 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
86 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
87 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
88 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
89 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
90 #define CMD_SET_CCSH            (1 << 5)
91 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
92 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
93 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
94
95 /* CE_CMD_CTRL */
96 #define CMD_CTRL_BREAK          (1 << 0)
97
98 /* CE_BLOCK_SET */
99 #define BLOCK_SIZE_MASK         0x0000ffff
100
101 /* CE_INT */
102 #define INT_CCSDE               (1 << 29)
103 #define INT_CMD12DRE            (1 << 26)
104 #define INT_CMD12RBE            (1 << 25)
105 #define INT_CMD12CRE            (1 << 24)
106 #define INT_DTRANE              (1 << 23)
107 #define INT_BUFRE               (1 << 22)
108 #define INT_BUFWEN              (1 << 21)
109 #define INT_BUFREN              (1 << 20)
110 #define INT_CCSRCV              (1 << 19)
111 #define INT_RBSYE               (1 << 17)
112 #define INT_CRSPE               (1 << 16)
113 #define INT_CMDVIO              (1 << 15)
114 #define INT_BUFVIO              (1 << 14)
115 #define INT_WDATERR             (1 << 11)
116 #define INT_RDATERR             (1 << 10)
117 #define INT_RIDXERR             (1 << 9)
118 #define INT_RSPERR              (1 << 8)
119 #define INT_CCSTO               (1 << 5)
120 #define INT_CRCSTO              (1 << 4)
121 #define INT_WDATTO              (1 << 3)
122 #define INT_RDATTO              (1 << 2)
123 #define INT_RBSYTO              (1 << 1)
124 #define INT_RSPTO               (1 << 0)
125 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
126                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
127                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
128                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
129
130 /* CE_INT_MASK */
131 #define MASK_ALL                0x00000000
132 #define MASK_MCCSDE             (1 << 29)
133 #define MASK_MCMD12DRE          (1 << 26)
134 #define MASK_MCMD12RBE          (1 << 25)
135 #define MASK_MCMD12CRE          (1 << 24)
136 #define MASK_MDTRANE            (1 << 23)
137 #define MASK_MBUFRE             (1 << 22)
138 #define MASK_MBUFWEN            (1 << 21)
139 #define MASK_MBUFREN            (1 << 20)
140 #define MASK_MCCSRCV            (1 << 19)
141 #define MASK_MRBSYE             (1 << 17)
142 #define MASK_MCRSPE             (1 << 16)
143 #define MASK_MCMDVIO            (1 << 15)
144 #define MASK_MBUFVIO            (1 << 14)
145 #define MASK_MWDATERR           (1 << 11)
146 #define MASK_MRDATERR           (1 << 10)
147 #define MASK_MRIDXERR           (1 << 9)
148 #define MASK_MRSPERR            (1 << 8)
149 #define MASK_MCCSTO             (1 << 5)
150 #define MASK_MCRCSTO            (1 << 4)
151 #define MASK_MWDATTO            (1 << 3)
152 #define MASK_MRDATTO            (1 << 2)
153 #define MASK_MRBSYTO            (1 << 1)
154 #define MASK_MRSPTO             (1 << 0)
155
156 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
157                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
158                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
159                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160
161 /* CE_HOST_STS1 */
162 #define STS1_CMDSEQ             (1 << 31)
163
164 /* CE_HOST_STS2 */
165 #define STS2_CRCSTE             (1 << 31)
166 #define STS2_CRC16E             (1 << 30)
167 #define STS2_AC12CRCE           (1 << 29)
168 #define STS2_RSPCRC7E           (1 << 28)
169 #define STS2_CRCSTEBE           (1 << 27)
170 #define STS2_RDATEBE            (1 << 26)
171 #define STS2_AC12REBE           (1 << 25)
172 #define STS2_RSPEBE             (1 << 24)
173 #define STS2_AC12IDXE           (1 << 23)
174 #define STS2_RSPIDXE            (1 << 22)
175 #define STS2_CCSTO              (1 << 15)
176 #define STS2_RDATTO             (1 << 14)
177 #define STS2_DATBSYTO           (1 << 13)
178 #define STS2_CRCSTTO            (1 << 12)
179 #define STS2_AC12BSYTO          (1 << 11)
180 #define STS2_RSPBSYTO           (1 << 10)
181 #define STS2_AC12RSPTO          (1 << 9)
182 #define STS2_RSPTO              (1 << 8)
183 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
184                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
185 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
186                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
187                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
188                                  STS2_AC12RSPTO | STS2_RSPTO)
189
190 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
191 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
192 #define CLKDEV_INIT             400000   /* 400 KHz */
193
194 enum mmcif_state {
195         STATE_IDLE,
196         STATE_REQUEST,
197         STATE_IOS,
198 };
199
200 enum mmcif_wait_for {
201         MMCIF_WAIT_FOR_REQUEST,
202         MMCIF_WAIT_FOR_CMD,
203         MMCIF_WAIT_FOR_MREAD,
204         MMCIF_WAIT_FOR_MWRITE,
205         MMCIF_WAIT_FOR_READ,
206         MMCIF_WAIT_FOR_WRITE,
207         MMCIF_WAIT_FOR_READ_END,
208         MMCIF_WAIT_FOR_WRITE_END,
209         MMCIF_WAIT_FOR_STOP,
210 };
211
212 struct sh_mmcif_host {
213         struct mmc_host *mmc;
214         struct mmc_request *mrq;
215         struct platform_device *pd;
216         struct sh_dmae_slave dma_slave_tx;
217         struct sh_dmae_slave dma_slave_rx;
218         struct clk *hclk;
219         unsigned int clk;
220         int bus_width;
221         bool sd_error;
222         bool dying;
223         long timeout;
224         void __iomem *addr;
225         u32 *pio_ptr;
226         spinlock_t lock;                /* protect sh_mmcif_host::state */
227         enum mmcif_state state;
228         enum mmcif_wait_for wait_for;
229         struct delayed_work timeout_work;
230         size_t blocksize;
231         int sg_idx;
232         int sg_blkidx;
233         bool power;
234         bool card_present;
235
236         /* DMA support */
237         struct dma_chan         *chan_rx;
238         struct dma_chan         *chan_tx;
239         struct completion       dma_complete;
240         bool                    dma_active;
241 };
242
243 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
244                                         unsigned int reg, u32 val)
245 {
246         writel(val | readl(host->addr + reg), host->addr + reg);
247 }
248
249 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
250                                         unsigned int reg, u32 val)
251 {
252         writel(~val & readl(host->addr + reg), host->addr + reg);
253 }
254
255 static void mmcif_dma_complete(void *arg)
256 {
257         struct sh_mmcif_host *host = arg;
258         struct mmc_data *data = host->mrq->data;
259
260         dev_dbg(&host->pd->dev, "Command completed\n");
261
262         if (WARN(!data, "%s: NULL data in DMA completion!\n",
263                  dev_name(&host->pd->dev)))
264                 return;
265
266         if (data->flags & MMC_DATA_READ)
267                 dma_unmap_sg(host->chan_rx->device->dev,
268                              data->sg, data->sg_len,
269                              DMA_FROM_DEVICE);
270         else
271                 dma_unmap_sg(host->chan_tx->device->dev,
272                              data->sg, data->sg_len,
273                              DMA_TO_DEVICE);
274
275         complete(&host->dma_complete);
276 }
277
278 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
279 {
280         struct mmc_data *data = host->mrq->data;
281         struct scatterlist *sg = data->sg;
282         struct dma_async_tx_descriptor *desc = NULL;
283         struct dma_chan *chan = host->chan_rx;
284         dma_cookie_t cookie = -EINVAL;
285         int ret;
286
287         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
288                          DMA_FROM_DEVICE);
289         if (ret > 0) {
290                 host->dma_active = true;
291                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
292                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
293         }
294
295         if (desc) {
296                 desc->callback = mmcif_dma_complete;
297                 desc->callback_param = host;
298                 cookie = dmaengine_submit(desc);
299                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
300                 dma_async_issue_pending(chan);
301         }
302         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
303                 __func__, data->sg_len, ret, cookie);
304
305         if (!desc) {
306                 /* DMA failed, fall back to PIO */
307                 if (ret >= 0)
308                         ret = -EIO;
309                 host->chan_rx = NULL;
310                 host->dma_active = false;
311                 dma_release_channel(chan);
312                 /* Free the Tx channel too */
313                 chan = host->chan_tx;
314                 if (chan) {
315                         host->chan_tx = NULL;
316                         dma_release_channel(chan);
317                 }
318                 dev_warn(&host->pd->dev,
319                          "DMA failed: %d, falling back to PIO\n", ret);
320                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
321         }
322
323         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
324                 desc, cookie, data->sg_len);
325 }
326
327 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
328 {
329         struct mmc_data *data = host->mrq->data;
330         struct scatterlist *sg = data->sg;
331         struct dma_async_tx_descriptor *desc = NULL;
332         struct dma_chan *chan = host->chan_tx;
333         dma_cookie_t cookie = -EINVAL;
334         int ret;
335
336         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
337                          DMA_TO_DEVICE);
338         if (ret > 0) {
339                 host->dma_active = true;
340                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
341                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
342         }
343
344         if (desc) {
345                 desc->callback = mmcif_dma_complete;
346                 desc->callback_param = host;
347                 cookie = dmaengine_submit(desc);
348                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
349                 dma_async_issue_pending(chan);
350         }
351         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
352                 __func__, data->sg_len, ret, cookie);
353
354         if (!desc) {
355                 /* DMA failed, fall back to PIO */
356                 if (ret >= 0)
357                         ret = -EIO;
358                 host->chan_tx = NULL;
359                 host->dma_active = false;
360                 dma_release_channel(chan);
361                 /* Free the Rx channel too */
362                 chan = host->chan_rx;
363                 if (chan) {
364                         host->chan_rx = NULL;
365                         dma_release_channel(chan);
366                 }
367                 dev_warn(&host->pd->dev,
368                          "DMA failed: %d, falling back to PIO\n", ret);
369                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
370         }
371
372         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
373                 desc, cookie);
374 }
375
376 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
377 {
378         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
379         chan->private = arg;
380         return true;
381 }
382
383 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
384                                  struct sh_mmcif_plat_data *pdata)
385 {
386         struct sh_dmae_slave *tx, *rx;
387         host->dma_active = false;
388
389         if (!pdata)
390                 return;
391
392         /* We can only either use DMA for both Tx and Rx or not use it at all */
393         if (pdata->dma) {
394                 dev_warn(&host->pd->dev,
395                          "Update your platform to use embedded DMA slave IDs\n");
396                 tx = &pdata->dma->chan_priv_tx;
397                 rx = &pdata->dma->chan_priv_rx;
398         } else {
399                 tx = &host->dma_slave_tx;
400                 tx->slave_id = pdata->slave_id_tx;
401                 rx = &host->dma_slave_rx;
402                 rx->slave_id = pdata->slave_id_rx;
403         }
404         if (tx->slave_id > 0 && rx->slave_id > 0) {
405                 dma_cap_mask_t mask;
406
407                 dma_cap_zero(mask);
408                 dma_cap_set(DMA_SLAVE, mask);
409
410                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
411                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
412                         host->chan_tx);
413
414                 if (!host->chan_tx)
415                         return;
416
417                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
418                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
419                         host->chan_rx);
420
421                 if (!host->chan_rx) {
422                         dma_release_channel(host->chan_tx);
423                         host->chan_tx = NULL;
424                         return;
425                 }
426
427                 init_completion(&host->dma_complete);
428         }
429 }
430
431 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
432 {
433         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
434         /* Descriptors are freed automatically */
435         if (host->chan_tx) {
436                 struct dma_chan *chan = host->chan_tx;
437                 host->chan_tx = NULL;
438                 dma_release_channel(chan);
439         }
440         if (host->chan_rx) {
441                 struct dma_chan *chan = host->chan_rx;
442                 host->chan_rx = NULL;
443                 dma_release_channel(chan);
444         }
445
446         host->dma_active = false;
447 }
448
449 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
450 {
451         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
452         bool sup_pclk = p ? p->sup_pclk : false;
453
454         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
455         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
456
457         if (!clk)
458                 return;
459         if (sup_pclk && clk == host->clk)
460                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
461         else
462                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
463                                 ((fls(DIV_ROUND_UP(host->clk,
464                                                    clk) - 1) - 1) << 16));
465
466         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
467 }
468
469 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
470 {
471         u32 tmp;
472
473         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
474
475         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
476         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
477         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
478                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
479         /* byte swap on */
480         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
481 }
482
483 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
484 {
485         u32 state1, state2;
486         int ret, timeout;
487
488         host->sd_error = false;
489
490         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
491         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
492         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
493         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
494
495         if (state1 & STS1_CMDSEQ) {
496                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
497                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
498                 for (timeout = 10000000; timeout; timeout--) {
499                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
500                               & STS1_CMDSEQ))
501                                 break;
502                         mdelay(1);
503                 }
504                 if (!timeout) {
505                         dev_err(&host->pd->dev,
506                                 "Forced end of command sequence timeout err\n");
507                         return -EIO;
508                 }
509                 sh_mmcif_sync_reset(host);
510                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
511                 return -EIO;
512         }
513
514         if (state2 & STS2_CRC_ERR) {
515                 dev_dbg(&host->pd->dev, ": CRC error\n");
516                 ret = -EIO;
517         } else if (state2 & STS2_TIMEOUT_ERR) {
518                 dev_dbg(&host->pd->dev, ": Timeout\n");
519                 ret = -ETIMEDOUT;
520         } else {
521                 dev_dbg(&host->pd->dev, ": End/Index error\n");
522                 ret = -EIO;
523         }
524         return ret;
525 }
526
527 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
528 {
529         struct mmc_data *data = host->mrq->data;
530
531         host->sg_blkidx += host->blocksize;
532
533         /* data->sg->length must be a multiple of host->blocksize? */
534         BUG_ON(host->sg_blkidx > data->sg->length);
535
536         if (host->sg_blkidx == data->sg->length) {
537                 host->sg_blkidx = 0;
538                 if (++host->sg_idx < data->sg_len)
539                         host->pio_ptr = sg_virt(++data->sg);
540         } else {
541                 host->pio_ptr = p;
542         }
543
544         if (host->sg_idx == data->sg_len)
545                 return false;
546
547         return true;
548 }
549
550 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
551                                  struct mmc_request *mrq)
552 {
553         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
554                            BLOCK_SIZE_MASK) + 3;
555
556         host->wait_for = MMCIF_WAIT_FOR_READ;
557         schedule_delayed_work(&host->timeout_work, host->timeout);
558
559         /* buf read enable */
560         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
561 }
562
563 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
564 {
565         struct mmc_data *data = host->mrq->data;
566         u32 *p = sg_virt(data->sg);
567         int i;
568
569         if (host->sd_error) {
570                 data->error = sh_mmcif_error_manage(host);
571                 return false;
572         }
573
574         for (i = 0; i < host->blocksize / 4; i++)
575                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
576
577         /* buffer read end */
578         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
579         host->wait_for = MMCIF_WAIT_FOR_READ_END;
580
581         return true;
582 }
583
584 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
585                                 struct mmc_request *mrq)
586 {
587         struct mmc_data *data = mrq->data;
588
589         if (!data->sg_len || !data->sg->length)
590                 return;
591
592         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
593                 BLOCK_SIZE_MASK;
594
595         host->wait_for = MMCIF_WAIT_FOR_MREAD;
596         host->sg_idx = 0;
597         host->sg_blkidx = 0;
598         host->pio_ptr = sg_virt(data->sg);
599         schedule_delayed_work(&host->timeout_work, host->timeout);
600         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
601 }
602
603 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
604 {
605         struct mmc_data *data = host->mrq->data;
606         u32 *p = host->pio_ptr;
607         int i;
608
609         if (host->sd_error) {
610                 data->error = sh_mmcif_error_manage(host);
611                 return false;
612         }
613
614         BUG_ON(!data->sg->length);
615
616         for (i = 0; i < host->blocksize / 4; i++)
617                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
618
619         if (!sh_mmcif_next_block(host, p))
620                 return false;
621
622         schedule_delayed_work(&host->timeout_work, host->timeout);
623         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
624
625         return true;
626 }
627
628 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
629                                         struct mmc_request *mrq)
630 {
631         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
632                            BLOCK_SIZE_MASK) + 3;
633
634         host->wait_for = MMCIF_WAIT_FOR_WRITE;
635         schedule_delayed_work(&host->timeout_work, host->timeout);
636
637         /* buf write enable */
638         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
639 }
640
641 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
642 {
643         struct mmc_data *data = host->mrq->data;
644         u32 *p = sg_virt(data->sg);
645         int i;
646
647         if (host->sd_error) {
648                 data->error = sh_mmcif_error_manage(host);
649                 return false;
650         }
651
652         for (i = 0; i < host->blocksize / 4; i++)
653                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
654
655         /* buffer write end */
656         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
657         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
658
659         return true;
660 }
661
662 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
663                                 struct mmc_request *mrq)
664 {
665         struct mmc_data *data = mrq->data;
666
667         if (!data->sg_len || !data->sg->length)
668                 return;
669
670         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
671                 BLOCK_SIZE_MASK;
672
673         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
674         host->sg_idx = 0;
675         host->sg_blkidx = 0;
676         host->pio_ptr = sg_virt(data->sg);
677         schedule_delayed_work(&host->timeout_work, host->timeout);
678         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
679 }
680
681 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
682 {
683         struct mmc_data *data = host->mrq->data;
684         u32 *p = host->pio_ptr;
685         int i;
686
687         if (host->sd_error) {
688                 data->error = sh_mmcif_error_manage(host);
689                 return false;
690         }
691
692         BUG_ON(!data->sg->length);
693
694         for (i = 0; i < host->blocksize / 4; i++)
695                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
696
697         if (!sh_mmcif_next_block(host, p))
698                 return false;
699
700         schedule_delayed_work(&host->timeout_work, host->timeout);
701         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
702
703         return true;
704 }
705
706 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
707                                                 struct mmc_command *cmd)
708 {
709         if (cmd->flags & MMC_RSP_136) {
710                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
711                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
712                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
713                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
714         } else
715                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
716 }
717
718 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
719                                                 struct mmc_command *cmd)
720 {
721         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
722 }
723
724 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
725                             struct mmc_request *mrq)
726 {
727         struct mmc_data *data = mrq->data;
728         struct mmc_command *cmd = mrq->cmd;
729         u32 opc = cmd->opcode;
730         u32 tmp = 0;
731
732         /* Response Type check */
733         switch (mmc_resp_type(cmd)) {
734         case MMC_RSP_NONE:
735                 tmp |= CMD_SET_RTYP_NO;
736                 break;
737         case MMC_RSP_R1:
738         case MMC_RSP_R1B:
739         case MMC_RSP_R3:
740                 tmp |= CMD_SET_RTYP_6B;
741                 break;
742         case MMC_RSP_R2:
743                 tmp |= CMD_SET_RTYP_17B;
744                 break;
745         default:
746                 dev_err(&host->pd->dev, "Unsupported response type.\n");
747                 break;
748         }
749         switch (opc) {
750         /* RBSY */
751         case MMC_SWITCH:
752         case MMC_STOP_TRANSMISSION:
753         case MMC_SET_WRITE_PROT:
754         case MMC_CLR_WRITE_PROT:
755         case MMC_ERASE:
756                 tmp |= CMD_SET_RBSY;
757                 break;
758         }
759         /* WDAT / DATW */
760         if (data) {
761                 tmp |= CMD_SET_WDAT;
762                 switch (host->bus_width) {
763                 case MMC_BUS_WIDTH_1:
764                         tmp |= CMD_SET_DATW_1;
765                         break;
766                 case MMC_BUS_WIDTH_4:
767                         tmp |= CMD_SET_DATW_4;
768                         break;
769                 case MMC_BUS_WIDTH_8:
770                         tmp |= CMD_SET_DATW_8;
771                         break;
772                 default:
773                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
774                         break;
775                 }
776         }
777         /* DWEN */
778         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
779                 tmp |= CMD_SET_DWEN;
780         /* CMLTE/CMD12EN */
781         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
782                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
783                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
784                                 data->blocks << 16);
785         }
786         /* RIDXC[1:0] check bits */
787         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
788             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
789                 tmp |= CMD_SET_RIDXC_BITS;
790         /* RCRC7C[1:0] check bits */
791         if (opc == MMC_SEND_OP_COND)
792                 tmp |= CMD_SET_CRC7C_BITS;
793         /* RCRC7C[1:0] internal CRC7 */
794         if (opc == MMC_ALL_SEND_CID ||
795                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
796                 tmp |= CMD_SET_CRC7C_INTERNAL;
797
798         return (opc << 24) | tmp;
799 }
800
801 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
802                                struct mmc_request *mrq, u32 opc)
803 {
804         switch (opc) {
805         case MMC_READ_MULTIPLE_BLOCK:
806                 sh_mmcif_multi_read(host, mrq);
807                 return 0;
808         case MMC_WRITE_MULTIPLE_BLOCK:
809                 sh_mmcif_multi_write(host, mrq);
810                 return 0;
811         case MMC_WRITE_BLOCK:
812                 sh_mmcif_single_write(host, mrq);
813                 return 0;
814         case MMC_READ_SINGLE_BLOCK:
815         case MMC_SEND_EXT_CSD:
816                 sh_mmcif_single_read(host, mrq);
817                 return 0;
818         default:
819                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
820                 return -EINVAL;
821         }
822 }
823
824 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
825                                struct mmc_request *mrq)
826 {
827         struct mmc_command *cmd = mrq->cmd;
828         u32 opc = cmd->opcode;
829         u32 mask;
830
831         switch (opc) {
832         /* response busy check */
833         case MMC_SWITCH:
834         case MMC_STOP_TRANSMISSION:
835         case MMC_SET_WRITE_PROT:
836         case MMC_CLR_WRITE_PROT:
837         case MMC_ERASE:
838                 mask = MASK_START_CMD | MASK_MRBSYE;
839                 break;
840         default:
841                 mask = MASK_START_CMD | MASK_MCRSPE;
842                 break;
843         }
844
845         if (mrq->data) {
846                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
847                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
848                                 mrq->data->blksz);
849         }
850         opc = sh_mmcif_set_cmd(host, mrq);
851
852         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
853         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
854         /* set arg */
855         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
856         /* set cmd */
857         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
858
859         host->wait_for = MMCIF_WAIT_FOR_CMD;
860         schedule_delayed_work(&host->timeout_work, host->timeout);
861 }
862
863 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
864                               struct mmc_request *mrq)
865 {
866         switch (mrq->cmd->opcode) {
867         case MMC_READ_MULTIPLE_BLOCK:
868                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
869                 break;
870         case MMC_WRITE_MULTIPLE_BLOCK:
871                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
872                 break;
873         default:
874                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
875                 mrq->stop->error = sh_mmcif_error_manage(host);
876                 return;
877         }
878
879         host->wait_for = MMCIF_WAIT_FOR_STOP;
880         schedule_delayed_work(&host->timeout_work, host->timeout);
881 }
882
883 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
884 {
885         struct sh_mmcif_host *host = mmc_priv(mmc);
886         unsigned long flags;
887
888         spin_lock_irqsave(&host->lock, flags);
889         if (host->state != STATE_IDLE) {
890                 spin_unlock_irqrestore(&host->lock, flags);
891                 mrq->cmd->error = -EAGAIN;
892                 mmc_request_done(mmc, mrq);
893                 return;
894         }
895
896         host->state = STATE_REQUEST;
897         spin_unlock_irqrestore(&host->lock, flags);
898
899         switch (mrq->cmd->opcode) {
900         /* MMCIF does not support SD/SDIO command */
901         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
902         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
903                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
904                         break;
905         case MMC_APP_CMD:
906                 host->state = STATE_IDLE;
907                 mrq->cmd->error = -ETIMEDOUT;
908                 mmc_request_done(mmc, mrq);
909                 return;
910         default:
911                 break;
912         }
913
914         host->mrq = mrq;
915
916         sh_mmcif_start_cmd(host, mrq);
917 }
918
919 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
920 {
921         int ret = clk_enable(host->hclk);
922
923         if (!ret) {
924                 host->clk = clk_get_rate(host->hclk);
925                 host->mmc->f_max = host->clk / 2;
926                 host->mmc->f_min = host->clk / 512;
927         }
928
929         return ret;
930 }
931
932 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
933 {
934         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
935         struct mmc_host *mmc = host->mmc;
936
937         if (pd && pd->set_pwr)
938                 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
939         if (!IS_ERR(mmc->supply.vmmc))
940                 /* Errors ignored... */
941                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
942                                       ios->power_mode ? ios->vdd : 0);
943 }
944
945 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
946 {
947         struct sh_mmcif_host *host = mmc_priv(mmc);
948         unsigned long flags;
949
950         spin_lock_irqsave(&host->lock, flags);
951         if (host->state != STATE_IDLE) {
952                 spin_unlock_irqrestore(&host->lock, flags);
953                 return;
954         }
955
956         host->state = STATE_IOS;
957         spin_unlock_irqrestore(&host->lock, flags);
958
959         if (ios->power_mode == MMC_POWER_UP) {
960                 if (!host->card_present) {
961                         /* See if we also get DMA */
962                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
963                         host->card_present = true;
964                 }
965                 sh_mmcif_set_power(host, ios);
966         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
967                 /* clock stop */
968                 sh_mmcif_clock_control(host, 0);
969                 if (ios->power_mode == MMC_POWER_OFF) {
970                         if (host->card_present) {
971                                 sh_mmcif_release_dma(host);
972                                 host->card_present = false;
973                         }
974                 }
975                 if (host->power) {
976                         pm_runtime_put(&host->pd->dev);
977                         clk_disable(host->hclk);
978                         host->power = false;
979                         if (ios->power_mode == MMC_POWER_OFF)
980                                 sh_mmcif_set_power(host, ios);
981                 }
982                 host->state = STATE_IDLE;
983                 return;
984         }
985
986         if (ios->clock) {
987                 if (!host->power) {
988                         sh_mmcif_clk_update(host);
989                         pm_runtime_get_sync(&host->pd->dev);
990                         host->power = true;
991                         sh_mmcif_sync_reset(host);
992                 }
993                 sh_mmcif_clock_control(host, ios->clock);
994         }
995
996         host->bus_width = ios->bus_width;
997         host->state = STATE_IDLE;
998 }
999
1000 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1001 {
1002         struct sh_mmcif_host *host = mmc_priv(mmc);
1003         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1004         int ret = mmc_gpio_get_cd(mmc);
1005
1006         if (ret >= 0)
1007                 return ret;
1008
1009         if (!p || !p->get_cd)
1010                 return -ENOSYS;
1011         else
1012                 return p->get_cd(host->pd);
1013 }
1014
1015 static struct mmc_host_ops sh_mmcif_ops = {
1016         .request        = sh_mmcif_request,
1017         .set_ios        = sh_mmcif_set_ios,
1018         .get_cd         = sh_mmcif_get_cd,
1019 };
1020
1021 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1022 {
1023         struct mmc_command *cmd = host->mrq->cmd;
1024         struct mmc_data *data = host->mrq->data;
1025         long time;
1026
1027         if (host->sd_error) {
1028                 switch (cmd->opcode) {
1029                 case MMC_ALL_SEND_CID:
1030                 case MMC_SELECT_CARD:
1031                 case MMC_APP_CMD:
1032                         cmd->error = -ETIMEDOUT;
1033                         host->sd_error = false;
1034                         break;
1035                 default:
1036                         cmd->error = sh_mmcif_error_manage(host);
1037                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1038                                 cmd->opcode, cmd->error);
1039                         break;
1040                 }
1041                 return false;
1042         }
1043         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1044                 cmd->error = 0;
1045                 return false;
1046         }
1047
1048         sh_mmcif_get_response(host, cmd);
1049
1050         if (!data)
1051                 return false;
1052
1053         if (data->flags & MMC_DATA_READ) {
1054                 if (host->chan_rx)
1055                         sh_mmcif_start_dma_rx(host);
1056         } else {
1057                 if (host->chan_tx)
1058                         sh_mmcif_start_dma_tx(host);
1059         }
1060
1061         if (!host->dma_active) {
1062                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1063                 if (!data->error)
1064                         return true;
1065                 return false;
1066         }
1067
1068         /* Running in the IRQ thread, can sleep */
1069         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1070                                                          host->timeout);
1071         if (host->sd_error) {
1072                 dev_err(host->mmc->parent,
1073                         "Error IRQ while waiting for DMA completion!\n");
1074                 /* Woken up by an error IRQ: abort DMA */
1075                 if (data->flags & MMC_DATA_READ)
1076                         dmaengine_terminate_all(host->chan_rx);
1077                 else
1078                         dmaengine_terminate_all(host->chan_tx);
1079                 data->error = sh_mmcif_error_manage(host);
1080         } else if (!time) {
1081                 data->error = -ETIMEDOUT;
1082         } else if (time < 0) {
1083                 data->error = time;
1084         }
1085         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1086                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1087         host->dma_active = false;
1088
1089         if (data->error)
1090                 data->bytes_xfered = 0;
1091
1092         return false;
1093 }
1094
1095 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1096 {
1097         struct sh_mmcif_host *host = dev_id;
1098         struct mmc_request *mrq = host->mrq;
1099         struct mmc_data *data = mrq->data;
1100
1101         cancel_delayed_work_sync(&host->timeout_work);
1102
1103         /*
1104          * All handlers return true, if processing continues, and false, if the
1105          * request has to be completed - successfully or not
1106          */
1107         switch (host->wait_for) {
1108         case MMCIF_WAIT_FOR_REQUEST:
1109                 /* We're too late, the timeout has already kicked in */
1110                 return IRQ_HANDLED;
1111         case MMCIF_WAIT_FOR_CMD:
1112                 if (sh_mmcif_end_cmd(host))
1113                         /* Wait for data */
1114                         return IRQ_HANDLED;
1115                 break;
1116         case MMCIF_WAIT_FOR_MREAD:
1117                 if (sh_mmcif_mread_block(host))
1118                         /* Wait for more data */
1119                         return IRQ_HANDLED;
1120                 break;
1121         case MMCIF_WAIT_FOR_READ:
1122                 if (sh_mmcif_read_block(host))
1123                         /* Wait for data end */
1124                         return IRQ_HANDLED;
1125                 break;
1126         case MMCIF_WAIT_FOR_MWRITE:
1127                 if (sh_mmcif_mwrite_block(host))
1128                         /* Wait data to write */
1129                         return IRQ_HANDLED;
1130                 break;
1131         case MMCIF_WAIT_FOR_WRITE:
1132                 if (sh_mmcif_write_block(host))
1133                         /* Wait for data end */
1134                         return IRQ_HANDLED;
1135                 break;
1136         case MMCIF_WAIT_FOR_STOP:
1137                 if (host->sd_error) {
1138                         mrq->stop->error = sh_mmcif_error_manage(host);
1139                         break;
1140                 }
1141                 sh_mmcif_get_cmd12response(host, mrq->stop);
1142                 mrq->stop->error = 0;
1143                 break;
1144         case MMCIF_WAIT_FOR_READ_END:
1145         case MMCIF_WAIT_FOR_WRITE_END:
1146                 if (host->sd_error)
1147                         data->error = sh_mmcif_error_manage(host);
1148                 break;
1149         default:
1150                 BUG();
1151         }
1152
1153         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1154                 if (!mrq->cmd->error && data && !data->error)
1155                         data->bytes_xfered =
1156                                 data->blocks * data->blksz;
1157
1158                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1159                         sh_mmcif_stop_cmd(host, mrq);
1160                         if (!mrq->stop->error)
1161                                 return IRQ_HANDLED;
1162                 }
1163         }
1164
1165         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1166         host->state = STATE_IDLE;
1167         host->mrq = NULL;
1168         mmc_request_done(host->mmc, mrq);
1169
1170         return IRQ_HANDLED;
1171 }
1172
1173 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1174 {
1175         struct sh_mmcif_host *host = dev_id;
1176         u32 state;
1177         int err = 0;
1178
1179         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1180
1181         if (state & INT_ERR_STS) {
1182                 /* error interrupts - process first */
1183                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1184                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1185                 err = 1;
1186         } else if (state & INT_RBSYE) {
1187                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1188                                 ~(INT_RBSYE | INT_CRSPE));
1189                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1190         } else if (state & INT_CRSPE) {
1191                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1192                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1193         } else if (state & INT_BUFREN) {
1194                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1195                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1196         } else if (state & INT_BUFWEN) {
1197                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1198                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1199         } else if (state & INT_CMD12DRE) {
1200                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1201                         ~(INT_CMD12DRE | INT_CMD12RBE |
1202                           INT_CMD12CRE | INT_BUFRE));
1203                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1204         } else if (state & INT_BUFRE) {
1205                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1206                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1207         } else if (state & INT_DTRANE) {
1208                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1209                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1210         } else if (state & INT_CMD12RBE) {
1211                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1212                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1213                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1214         } else {
1215                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1216                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1217                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1218                 err = 1;
1219         }
1220         if (err) {
1221                 host->sd_error = true;
1222                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1223         }
1224         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1225                 if (!host->dma_active)
1226                         return IRQ_WAKE_THREAD;
1227                 else if (host->sd_error)
1228                         mmcif_dma_complete(host);
1229         } else {
1230                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1231         }
1232
1233         return IRQ_HANDLED;
1234 }
1235
1236 static void mmcif_timeout_work(struct work_struct *work)
1237 {
1238         struct delayed_work *d = container_of(work, struct delayed_work, work);
1239         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1240         struct mmc_request *mrq = host->mrq;
1241
1242         if (host->dying)
1243                 /* Don't run after mmc_remove_host() */
1244                 return;
1245
1246         /*
1247          * Handle races with cancel_delayed_work(), unless
1248          * cancel_delayed_work_sync() is used
1249          */
1250         switch (host->wait_for) {
1251         case MMCIF_WAIT_FOR_CMD:
1252                 mrq->cmd->error = sh_mmcif_error_manage(host);
1253                 break;
1254         case MMCIF_WAIT_FOR_STOP:
1255                 mrq->stop->error = sh_mmcif_error_manage(host);
1256                 break;
1257         case MMCIF_WAIT_FOR_MREAD:
1258         case MMCIF_WAIT_FOR_MWRITE:
1259         case MMCIF_WAIT_FOR_READ:
1260         case MMCIF_WAIT_FOR_WRITE:
1261         case MMCIF_WAIT_FOR_READ_END:
1262         case MMCIF_WAIT_FOR_WRITE_END:
1263                 mrq->data->error = sh_mmcif_error_manage(host);
1264                 break;
1265         default:
1266                 BUG();
1267         }
1268
1269         host->state = STATE_IDLE;
1270         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1271         host->mrq = NULL;
1272         mmc_request_done(host->mmc, mrq);
1273 }
1274
1275 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1276 {
1277         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1278         struct mmc_host *mmc = host->mmc;
1279
1280         mmc_regulator_get_supply(mmc);
1281
1282         if (!pd)
1283                 return;
1284
1285         if (!mmc->ocr_avail)
1286                 mmc->ocr_avail = pd->ocr;
1287         else if (pd->ocr)
1288                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1289 }
1290
1291 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1292 {
1293         int ret = 0, irq[2];
1294         struct mmc_host *mmc;
1295         struct sh_mmcif_host *host;
1296         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1297         struct resource *res;
1298         void __iomem *reg;
1299         char clk_name[8];
1300
1301         irq[0] = platform_get_irq(pdev, 0);
1302         irq[1] = platform_get_irq(pdev, 1);
1303         if (irq[0] < 0 || irq[1] < 0) {
1304                 dev_err(&pdev->dev, "Get irq error\n");
1305                 return -ENXIO;
1306         }
1307         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308         if (!res) {
1309                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1310                 return -ENXIO;
1311         }
1312         reg = ioremap(res->start, resource_size(res));
1313         if (!reg) {
1314                 dev_err(&pdev->dev, "ioremap error.\n");
1315                 return -ENOMEM;
1316         }
1317
1318         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1319         if (!mmc) {
1320                 ret = -ENOMEM;
1321                 goto ealloch;
1322         }
1323         host            = mmc_priv(mmc);
1324         host->mmc       = mmc;
1325         host->addr      = reg;
1326         host->timeout   = 1000;
1327
1328         host->pd = pdev;
1329
1330         spin_lock_init(&host->lock);
1331
1332         mmc->ops = &sh_mmcif_ops;
1333         sh_mmcif_init_ocr(host);
1334
1335         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1336         if (pd && pd->caps)
1337                 mmc->caps |= pd->caps;
1338         mmc->max_segs = 32;
1339         mmc->max_blk_size = 512;
1340         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1341         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1342         mmc->max_seg_size = mmc->max_req_size;
1343
1344         platform_set_drvdata(pdev, host);
1345
1346         pm_runtime_enable(&pdev->dev);
1347         host->power = false;
1348
1349         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1350         host->hclk = clk_get(&pdev->dev, clk_name);
1351         if (IS_ERR(host->hclk)) {
1352                 ret = PTR_ERR(host->hclk);
1353                 dev_err(&pdev->dev, "cannot get clock \"%s\": %d\n", clk_name, ret);
1354                 goto eclkget;
1355         }
1356         ret = sh_mmcif_clk_update(host);
1357         if (ret < 0)
1358                 goto eclkupdate;
1359
1360         ret = pm_runtime_resume(&pdev->dev);
1361         if (ret < 0)
1362                 goto eresume;
1363
1364         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1365
1366         sh_mmcif_sync_reset(host);
1367         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1368
1369         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1370         if (ret) {
1371                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1372                 goto ereqirq0;
1373         }
1374         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1375         if (ret) {
1376                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1377                 goto ereqirq1;
1378         }
1379
1380         if (pd && pd->use_cd_gpio) {
1381                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1382                 if (ret < 0)
1383                         goto erqcd;
1384         }
1385
1386         clk_disable(host->hclk);
1387         ret = mmc_add_host(mmc);
1388         if (ret < 0)
1389                 goto emmcaddh;
1390
1391         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1392
1393         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1394         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1395                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1396         return ret;
1397
1398 emmcaddh:
1399         if (pd && pd->use_cd_gpio)
1400                 mmc_gpio_free_cd(mmc);
1401 erqcd:
1402         free_irq(irq[1], host);
1403 ereqirq1:
1404         free_irq(irq[0], host);
1405 ereqirq0:
1406         pm_runtime_suspend(&pdev->dev);
1407 eresume:
1408         clk_disable(host->hclk);
1409 eclkupdate:
1410         clk_put(host->hclk);
1411 eclkget:
1412         pm_runtime_disable(&pdev->dev);
1413         mmc_free_host(mmc);
1414 ealloch:
1415         iounmap(reg);
1416         return ret;
1417 }
1418
1419 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1420 {
1421         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1422         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1423         int irq[2];
1424
1425         host->dying = true;
1426         clk_enable(host->hclk);
1427         pm_runtime_get_sync(&pdev->dev);
1428
1429         dev_pm_qos_hide_latency_limit(&pdev->dev);
1430
1431         if (pd && pd->use_cd_gpio)
1432                 mmc_gpio_free_cd(host->mmc);
1433
1434         mmc_remove_host(host->mmc);
1435         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1436
1437         /*
1438          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1439          * mmc_remove_host() call above. But swapping order doesn't help either
1440          * (a query on the linux-mmc mailing list didn't bring any replies).
1441          */
1442         cancel_delayed_work_sync(&host->timeout_work);
1443
1444         if (host->addr)
1445                 iounmap(host->addr);
1446
1447         irq[0] = platform_get_irq(pdev, 0);
1448         irq[1] = platform_get_irq(pdev, 1);
1449
1450         free_irq(irq[0], host);
1451         free_irq(irq[1], host);
1452
1453         platform_set_drvdata(pdev, NULL);
1454
1455         mmc_free_host(host->mmc);
1456         pm_runtime_put_sync(&pdev->dev);
1457         clk_disable(host->hclk);
1458         pm_runtime_disable(&pdev->dev);
1459
1460         return 0;
1461 }
1462
1463 #ifdef CONFIG_PM
1464 static int sh_mmcif_suspend(struct device *dev)
1465 {
1466         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1467         int ret = mmc_suspend_host(host->mmc);
1468
1469         if (!ret)
1470                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1471
1472         return ret;
1473 }
1474
1475 static int sh_mmcif_resume(struct device *dev)
1476 {
1477         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1478
1479         return mmc_resume_host(host->mmc);
1480 }
1481 #else
1482 #define sh_mmcif_suspend        NULL
1483 #define sh_mmcif_resume         NULL
1484 #endif  /* CONFIG_PM */
1485
1486 static const struct of_device_id mmcif_of_match[] = {
1487         { .compatible = "renesas,sh-mmcif" },
1488         { }
1489 };
1490 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1491
1492 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1493         .suspend = sh_mmcif_suspend,
1494         .resume = sh_mmcif_resume,
1495 };
1496
1497 static struct platform_driver sh_mmcif_driver = {
1498         .probe          = sh_mmcif_probe,
1499         .remove         = sh_mmcif_remove,
1500         .driver         = {
1501                 .name   = DRIVER_NAME,
1502                 .pm     = &sh_mmcif_dev_pm_ops,
1503                 .owner  = THIS_MODULE,
1504                 .of_match_table = mmcif_of_match,
1505         },
1506 };
1507
1508 module_platform_driver(sh_mmcif_driver);
1509
1510 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1511 MODULE_LICENSE("GPL");
1512 MODULE_ALIAS("platform:" DRIVER_NAME);
1513 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");