mmc: sh-mmcif: add OF support, make platform data optional
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mod_devicetable.h>
58 #include <linux/pagemap.h>
59 #include <linux/platform_device.h>
60 #include <linux/pm_qos.h>
61 #include <linux/pm_runtime.h>
62 #include <linux/spinlock.h>
63 #include <linux/module.h>
64
65 #define DRIVER_NAME     "sh_mmcif"
66 #define DRIVER_VERSION  "2010-04-28"
67
68 /* CE_CMD_SET */
69 #define CMD_MASK                0x3f000000
70 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
71 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
72 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
73 #define CMD_SET_RBSY            (1 << 21) /* R1b */
74 #define CMD_SET_CCSEN           (1 << 20)
75 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
76 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
77 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
78 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
79 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
80 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
81 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
82 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
83 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
84 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
85 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
86 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
87 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
88 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
89 #define CMD_SET_CCSH            (1 << 5)
90 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
91 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
92 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
93
94 /* CE_CMD_CTRL */
95 #define CMD_CTRL_BREAK          (1 << 0)
96
97 /* CE_BLOCK_SET */
98 #define BLOCK_SIZE_MASK         0x0000ffff
99
100 /* CE_INT */
101 #define INT_CCSDE               (1 << 29)
102 #define INT_CMD12DRE            (1 << 26)
103 #define INT_CMD12RBE            (1 << 25)
104 #define INT_CMD12CRE            (1 << 24)
105 #define INT_DTRANE              (1 << 23)
106 #define INT_BUFRE               (1 << 22)
107 #define INT_BUFWEN              (1 << 21)
108 #define INT_BUFREN              (1 << 20)
109 #define INT_CCSRCV              (1 << 19)
110 #define INT_RBSYE               (1 << 17)
111 #define INT_CRSPE               (1 << 16)
112 #define INT_CMDVIO              (1 << 15)
113 #define INT_BUFVIO              (1 << 14)
114 #define INT_WDATERR             (1 << 11)
115 #define INT_RDATERR             (1 << 10)
116 #define INT_RIDXERR             (1 << 9)
117 #define INT_RSPERR              (1 << 8)
118 #define INT_CCSTO               (1 << 5)
119 #define INT_CRCSTO              (1 << 4)
120 #define INT_WDATTO              (1 << 3)
121 #define INT_RDATTO              (1 << 2)
122 #define INT_RBSYTO              (1 << 1)
123 #define INT_RSPTO               (1 << 0)
124 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
125                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
126                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
127                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL                0x00000000
131 #define MASK_MCCSDE             (1 << 29)
132 #define MASK_MCMD12DRE          (1 << 26)
133 #define MASK_MCMD12RBE          (1 << 25)
134 #define MASK_MCMD12CRE          (1 << 24)
135 #define MASK_MDTRANE            (1 << 23)
136 #define MASK_MBUFRE             (1 << 22)
137 #define MASK_MBUFWEN            (1 << 21)
138 #define MASK_MBUFREN            (1 << 20)
139 #define MASK_MCCSRCV            (1 << 19)
140 #define MASK_MRBSYE             (1 << 17)
141 #define MASK_MCRSPE             (1 << 16)
142 #define MASK_MCMDVIO            (1 << 15)
143 #define MASK_MBUFVIO            (1 << 14)
144 #define MASK_MWDATERR           (1 << 11)
145 #define MASK_MRDATERR           (1 << 10)
146 #define MASK_MRIDXERR           (1 << 9)
147 #define MASK_MRSPERR            (1 << 8)
148 #define MASK_MCCSTO             (1 << 5)
149 #define MASK_MCRCSTO            (1 << 4)
150 #define MASK_MWDATTO            (1 << 3)
151 #define MASK_MRDATTO            (1 << 2)
152 #define MASK_MRBSYTO            (1 << 1)
153 #define MASK_MRSPTO             (1 << 0)
154
155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 /* CE_HOST_STS1 */
161 #define STS1_CMDSEQ             (1 << 31)
162
163 /* CE_HOST_STS2 */
164 #define STS2_CRCSTE             (1 << 31)
165 #define STS2_CRC16E             (1 << 30)
166 #define STS2_AC12CRCE           (1 << 29)
167 #define STS2_RSPCRC7E           (1 << 28)
168 #define STS2_CRCSTEBE           (1 << 27)
169 #define STS2_RDATEBE            (1 << 26)
170 #define STS2_AC12REBE           (1 << 25)
171 #define STS2_RSPEBE             (1 << 24)
172 #define STS2_AC12IDXE           (1 << 23)
173 #define STS2_RSPIDXE            (1 << 22)
174 #define STS2_CCSTO              (1 << 15)
175 #define STS2_RDATTO             (1 << 14)
176 #define STS2_DATBSYTO           (1 << 13)
177 #define STS2_CRCSTTO            (1 << 12)
178 #define STS2_AC12BSYTO          (1 << 11)
179 #define STS2_RSPBSYTO           (1 << 10)
180 #define STS2_AC12RSPTO          (1 << 9)
181 #define STS2_RSPTO              (1 << 8)
182 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
183                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
184 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
185                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
186                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
187                                  STS2_AC12RSPTO | STS2_RSPTO)
188
189 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
190 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
191 #define CLKDEV_INIT             400000   /* 400 KHz */
192
193 enum mmcif_state {
194         STATE_IDLE,
195         STATE_REQUEST,
196         STATE_IOS,
197 };
198
199 enum mmcif_wait_for {
200         MMCIF_WAIT_FOR_REQUEST,
201         MMCIF_WAIT_FOR_CMD,
202         MMCIF_WAIT_FOR_MREAD,
203         MMCIF_WAIT_FOR_MWRITE,
204         MMCIF_WAIT_FOR_READ,
205         MMCIF_WAIT_FOR_WRITE,
206         MMCIF_WAIT_FOR_READ_END,
207         MMCIF_WAIT_FOR_WRITE_END,
208         MMCIF_WAIT_FOR_STOP,
209 };
210
211 struct sh_mmcif_host {
212         struct mmc_host *mmc;
213         struct mmc_request *mrq;
214         struct platform_device *pd;
215         struct sh_dmae_slave dma_slave_tx;
216         struct sh_dmae_slave dma_slave_rx;
217         struct clk *hclk;
218         unsigned int clk;
219         int bus_width;
220         bool sd_error;
221         bool dying;
222         long timeout;
223         void __iomem *addr;
224         u32 *pio_ptr;
225         spinlock_t lock;                /* protect sh_mmcif_host::state */
226         enum mmcif_state state;
227         enum mmcif_wait_for wait_for;
228         struct delayed_work timeout_work;
229         size_t blocksize;
230         int sg_idx;
231         int sg_blkidx;
232         bool power;
233         bool card_present;
234
235         /* DMA support */
236         struct dma_chan         *chan_rx;
237         struct dma_chan         *chan_tx;
238         struct completion       dma_complete;
239         bool                    dma_active;
240 };
241
242 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
243                                         unsigned int reg, u32 val)
244 {
245         writel(val | readl(host->addr + reg), host->addr + reg);
246 }
247
248 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
249                                         unsigned int reg, u32 val)
250 {
251         writel(~val & readl(host->addr + reg), host->addr + reg);
252 }
253
254 static void mmcif_dma_complete(void *arg)
255 {
256         struct sh_mmcif_host *host = arg;
257         struct mmc_data *data = host->mrq->data;
258
259         dev_dbg(&host->pd->dev, "Command completed\n");
260
261         if (WARN(!data, "%s: NULL data in DMA completion!\n",
262                  dev_name(&host->pd->dev)))
263                 return;
264
265         if (data->flags & MMC_DATA_READ)
266                 dma_unmap_sg(host->chan_rx->device->dev,
267                              data->sg, data->sg_len,
268                              DMA_FROM_DEVICE);
269         else
270                 dma_unmap_sg(host->chan_tx->device->dev,
271                              data->sg, data->sg_len,
272                              DMA_TO_DEVICE);
273
274         complete(&host->dma_complete);
275 }
276
277 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
278 {
279         struct mmc_data *data = host->mrq->data;
280         struct scatterlist *sg = data->sg;
281         struct dma_async_tx_descriptor *desc = NULL;
282         struct dma_chan *chan = host->chan_rx;
283         dma_cookie_t cookie = -EINVAL;
284         int ret;
285
286         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
287                          DMA_FROM_DEVICE);
288         if (ret > 0) {
289                 host->dma_active = true;
290                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
291                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
292         }
293
294         if (desc) {
295                 desc->callback = mmcif_dma_complete;
296                 desc->callback_param = host;
297                 cookie = dmaengine_submit(desc);
298                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
299                 dma_async_issue_pending(chan);
300         }
301         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
302                 __func__, data->sg_len, ret, cookie);
303
304         if (!desc) {
305                 /* DMA failed, fall back to PIO */
306                 if (ret >= 0)
307                         ret = -EIO;
308                 host->chan_rx = NULL;
309                 host->dma_active = false;
310                 dma_release_channel(chan);
311                 /* Free the Tx channel too */
312                 chan = host->chan_tx;
313                 if (chan) {
314                         host->chan_tx = NULL;
315                         dma_release_channel(chan);
316                 }
317                 dev_warn(&host->pd->dev,
318                          "DMA failed: %d, falling back to PIO\n", ret);
319                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
320         }
321
322         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
323                 desc, cookie, data->sg_len);
324 }
325
326 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
327 {
328         struct mmc_data *data = host->mrq->data;
329         struct scatterlist *sg = data->sg;
330         struct dma_async_tx_descriptor *desc = NULL;
331         struct dma_chan *chan = host->chan_tx;
332         dma_cookie_t cookie = -EINVAL;
333         int ret;
334
335         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
336                          DMA_TO_DEVICE);
337         if (ret > 0) {
338                 host->dma_active = true;
339                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
340                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
341         }
342
343         if (desc) {
344                 desc->callback = mmcif_dma_complete;
345                 desc->callback_param = host;
346                 cookie = dmaengine_submit(desc);
347                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
348                 dma_async_issue_pending(chan);
349         }
350         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
351                 __func__, data->sg_len, ret, cookie);
352
353         if (!desc) {
354                 /* DMA failed, fall back to PIO */
355                 if (ret >= 0)
356                         ret = -EIO;
357                 host->chan_tx = NULL;
358                 host->dma_active = false;
359                 dma_release_channel(chan);
360                 /* Free the Rx channel too */
361                 chan = host->chan_rx;
362                 if (chan) {
363                         host->chan_rx = NULL;
364                         dma_release_channel(chan);
365                 }
366                 dev_warn(&host->pd->dev,
367                          "DMA failed: %d, falling back to PIO\n", ret);
368                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
369         }
370
371         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
372                 desc, cookie);
373 }
374
375 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
376 {
377         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
378         chan->private = arg;
379         return true;
380 }
381
382 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
383                                  struct sh_mmcif_plat_data *pdata)
384 {
385         struct sh_dmae_slave *tx, *rx;
386         host->dma_active = false;
387
388         if (!pdata)
389                 return;
390
391         /* We can only either use DMA for both Tx and Rx or not use it at all */
392         if (pdata->dma) {
393                 dev_warn(&host->pd->dev,
394                          "Update your platform to use embedded DMA slave IDs\n");
395                 tx = &pdata->dma->chan_priv_tx;
396                 rx = &pdata->dma->chan_priv_rx;
397         } else {
398                 tx = &host->dma_slave_tx;
399                 tx->slave_id = pdata->slave_id_tx;
400                 rx = &host->dma_slave_rx;
401                 rx->slave_id = pdata->slave_id_rx;
402         }
403         if (tx->slave_id > 0 && rx->slave_id > 0) {
404                 dma_cap_mask_t mask;
405
406                 dma_cap_zero(mask);
407                 dma_cap_set(DMA_SLAVE, mask);
408
409                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
410                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
411                         host->chan_tx);
412
413                 if (!host->chan_tx)
414                         return;
415
416                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
417                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
418                         host->chan_rx);
419
420                 if (!host->chan_rx) {
421                         dma_release_channel(host->chan_tx);
422                         host->chan_tx = NULL;
423                         return;
424                 }
425
426                 init_completion(&host->dma_complete);
427         }
428 }
429
430 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
431 {
432         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
433         /* Descriptors are freed automatically */
434         if (host->chan_tx) {
435                 struct dma_chan *chan = host->chan_tx;
436                 host->chan_tx = NULL;
437                 dma_release_channel(chan);
438         }
439         if (host->chan_rx) {
440                 struct dma_chan *chan = host->chan_rx;
441                 host->chan_rx = NULL;
442                 dma_release_channel(chan);
443         }
444
445         host->dma_active = false;
446 }
447
448 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
449 {
450         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
451         bool sup_pclk = p ? p->sup_pclk : false;
452
453         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
454         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
455
456         if (!clk)
457                 return;
458         if (sup_pclk && clk == host->clk)
459                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
460         else
461                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
462                                 ((fls(DIV_ROUND_UP(host->clk,
463                                                    clk) - 1) - 1) << 16));
464
465         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
466 }
467
468 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
469 {
470         u32 tmp;
471
472         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
473
474         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
475         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
476         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
477                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
478         /* byte swap on */
479         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
480 }
481
482 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
483 {
484         u32 state1, state2;
485         int ret, timeout;
486
487         host->sd_error = false;
488
489         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
490         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
491         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
492         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
493
494         if (state1 & STS1_CMDSEQ) {
495                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
496                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
497                 for (timeout = 10000000; timeout; timeout--) {
498                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
499                               & STS1_CMDSEQ))
500                                 break;
501                         mdelay(1);
502                 }
503                 if (!timeout) {
504                         dev_err(&host->pd->dev,
505                                 "Forced end of command sequence timeout err\n");
506                         return -EIO;
507                 }
508                 sh_mmcif_sync_reset(host);
509                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
510                 return -EIO;
511         }
512
513         if (state2 & STS2_CRC_ERR) {
514                 dev_dbg(&host->pd->dev, ": CRC error\n");
515                 ret = -EIO;
516         } else if (state2 & STS2_TIMEOUT_ERR) {
517                 dev_dbg(&host->pd->dev, ": Timeout\n");
518                 ret = -ETIMEDOUT;
519         } else {
520                 dev_dbg(&host->pd->dev, ": End/Index error\n");
521                 ret = -EIO;
522         }
523         return ret;
524 }
525
526 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
527 {
528         struct mmc_data *data = host->mrq->data;
529
530         host->sg_blkidx += host->blocksize;
531
532         /* data->sg->length must be a multiple of host->blocksize? */
533         BUG_ON(host->sg_blkidx > data->sg->length);
534
535         if (host->sg_blkidx == data->sg->length) {
536                 host->sg_blkidx = 0;
537                 if (++host->sg_idx < data->sg_len)
538                         host->pio_ptr = sg_virt(++data->sg);
539         } else {
540                 host->pio_ptr = p;
541         }
542
543         if (host->sg_idx == data->sg_len)
544                 return false;
545
546         return true;
547 }
548
549 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
550                                  struct mmc_request *mrq)
551 {
552         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
553                            BLOCK_SIZE_MASK) + 3;
554
555         host->wait_for = MMCIF_WAIT_FOR_READ;
556         schedule_delayed_work(&host->timeout_work, host->timeout);
557
558         /* buf read enable */
559         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
560 }
561
562 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
563 {
564         struct mmc_data *data = host->mrq->data;
565         u32 *p = sg_virt(data->sg);
566         int i;
567
568         if (host->sd_error) {
569                 data->error = sh_mmcif_error_manage(host);
570                 return false;
571         }
572
573         for (i = 0; i < host->blocksize / 4; i++)
574                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
575
576         /* buffer read end */
577         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
578         host->wait_for = MMCIF_WAIT_FOR_READ_END;
579
580         return true;
581 }
582
583 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
584                                 struct mmc_request *mrq)
585 {
586         struct mmc_data *data = mrq->data;
587
588         if (!data->sg_len || !data->sg->length)
589                 return;
590
591         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
592                 BLOCK_SIZE_MASK;
593
594         host->wait_for = MMCIF_WAIT_FOR_MREAD;
595         host->sg_idx = 0;
596         host->sg_blkidx = 0;
597         host->pio_ptr = sg_virt(data->sg);
598         schedule_delayed_work(&host->timeout_work, host->timeout);
599         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
600 }
601
602 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
603 {
604         struct mmc_data *data = host->mrq->data;
605         u32 *p = host->pio_ptr;
606         int i;
607
608         if (host->sd_error) {
609                 data->error = sh_mmcif_error_manage(host);
610                 return false;
611         }
612
613         BUG_ON(!data->sg->length);
614
615         for (i = 0; i < host->blocksize / 4; i++)
616                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
617
618         if (!sh_mmcif_next_block(host, p))
619                 return false;
620
621         schedule_delayed_work(&host->timeout_work, host->timeout);
622         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
623
624         return true;
625 }
626
627 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
628                                         struct mmc_request *mrq)
629 {
630         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
631                            BLOCK_SIZE_MASK) + 3;
632
633         host->wait_for = MMCIF_WAIT_FOR_WRITE;
634         schedule_delayed_work(&host->timeout_work, host->timeout);
635
636         /* buf write enable */
637         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
638 }
639
640 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
641 {
642         struct mmc_data *data = host->mrq->data;
643         u32 *p = sg_virt(data->sg);
644         int i;
645
646         if (host->sd_error) {
647                 data->error = sh_mmcif_error_manage(host);
648                 return false;
649         }
650
651         for (i = 0; i < host->blocksize / 4; i++)
652                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
653
654         /* buffer write end */
655         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
656         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
657
658         return true;
659 }
660
661 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
662                                 struct mmc_request *mrq)
663 {
664         struct mmc_data *data = mrq->data;
665
666         if (!data->sg_len || !data->sg->length)
667                 return;
668
669         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
670                 BLOCK_SIZE_MASK;
671
672         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
673         host->sg_idx = 0;
674         host->sg_blkidx = 0;
675         host->pio_ptr = sg_virt(data->sg);
676         schedule_delayed_work(&host->timeout_work, host->timeout);
677         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
678 }
679
680 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
681 {
682         struct mmc_data *data = host->mrq->data;
683         u32 *p = host->pio_ptr;
684         int i;
685
686         if (host->sd_error) {
687                 data->error = sh_mmcif_error_manage(host);
688                 return false;
689         }
690
691         BUG_ON(!data->sg->length);
692
693         for (i = 0; i < host->blocksize / 4; i++)
694                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
695
696         if (!sh_mmcif_next_block(host, p))
697                 return false;
698
699         schedule_delayed_work(&host->timeout_work, host->timeout);
700         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
701
702         return true;
703 }
704
705 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
706                                                 struct mmc_command *cmd)
707 {
708         if (cmd->flags & MMC_RSP_136) {
709                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
710                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
711                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
712                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
713         } else
714                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
715 }
716
717 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
718                                                 struct mmc_command *cmd)
719 {
720         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
721 }
722
723 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
724                             struct mmc_request *mrq)
725 {
726         struct mmc_data *data = mrq->data;
727         struct mmc_command *cmd = mrq->cmd;
728         u32 opc = cmd->opcode;
729         u32 tmp = 0;
730
731         /* Response Type check */
732         switch (mmc_resp_type(cmd)) {
733         case MMC_RSP_NONE:
734                 tmp |= CMD_SET_RTYP_NO;
735                 break;
736         case MMC_RSP_R1:
737         case MMC_RSP_R1B:
738         case MMC_RSP_R3:
739                 tmp |= CMD_SET_RTYP_6B;
740                 break;
741         case MMC_RSP_R2:
742                 tmp |= CMD_SET_RTYP_17B;
743                 break;
744         default:
745                 dev_err(&host->pd->dev, "Unsupported response type.\n");
746                 break;
747         }
748         switch (opc) {
749         /* RBSY */
750         case MMC_SWITCH:
751         case MMC_STOP_TRANSMISSION:
752         case MMC_SET_WRITE_PROT:
753         case MMC_CLR_WRITE_PROT:
754         case MMC_ERASE:
755                 tmp |= CMD_SET_RBSY;
756                 break;
757         }
758         /* WDAT / DATW */
759         if (data) {
760                 tmp |= CMD_SET_WDAT;
761                 switch (host->bus_width) {
762                 case MMC_BUS_WIDTH_1:
763                         tmp |= CMD_SET_DATW_1;
764                         break;
765                 case MMC_BUS_WIDTH_4:
766                         tmp |= CMD_SET_DATW_4;
767                         break;
768                 case MMC_BUS_WIDTH_8:
769                         tmp |= CMD_SET_DATW_8;
770                         break;
771                 default:
772                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
773                         break;
774                 }
775         }
776         /* DWEN */
777         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
778                 tmp |= CMD_SET_DWEN;
779         /* CMLTE/CMD12EN */
780         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
781                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
782                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
783                                 data->blocks << 16);
784         }
785         /* RIDXC[1:0] check bits */
786         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
787             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
788                 tmp |= CMD_SET_RIDXC_BITS;
789         /* RCRC7C[1:0] check bits */
790         if (opc == MMC_SEND_OP_COND)
791                 tmp |= CMD_SET_CRC7C_BITS;
792         /* RCRC7C[1:0] internal CRC7 */
793         if (opc == MMC_ALL_SEND_CID ||
794                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
795                 tmp |= CMD_SET_CRC7C_INTERNAL;
796
797         return (opc << 24) | tmp;
798 }
799
800 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
801                                struct mmc_request *mrq, u32 opc)
802 {
803         switch (opc) {
804         case MMC_READ_MULTIPLE_BLOCK:
805                 sh_mmcif_multi_read(host, mrq);
806                 return 0;
807         case MMC_WRITE_MULTIPLE_BLOCK:
808                 sh_mmcif_multi_write(host, mrq);
809                 return 0;
810         case MMC_WRITE_BLOCK:
811                 sh_mmcif_single_write(host, mrq);
812                 return 0;
813         case MMC_READ_SINGLE_BLOCK:
814         case MMC_SEND_EXT_CSD:
815                 sh_mmcif_single_read(host, mrq);
816                 return 0;
817         default:
818                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
819                 return -EINVAL;
820         }
821 }
822
823 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
824                                struct mmc_request *mrq)
825 {
826         struct mmc_command *cmd = mrq->cmd;
827         u32 opc = cmd->opcode;
828         u32 mask;
829
830         switch (opc) {
831         /* response busy check */
832         case MMC_SWITCH:
833         case MMC_STOP_TRANSMISSION:
834         case MMC_SET_WRITE_PROT:
835         case MMC_CLR_WRITE_PROT:
836         case MMC_ERASE:
837                 mask = MASK_START_CMD | MASK_MRBSYE;
838                 break;
839         default:
840                 mask = MASK_START_CMD | MASK_MCRSPE;
841                 break;
842         }
843
844         if (mrq->data) {
845                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
846                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
847                                 mrq->data->blksz);
848         }
849         opc = sh_mmcif_set_cmd(host, mrq);
850
851         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
852         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
853         /* set arg */
854         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
855         /* set cmd */
856         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
857
858         host->wait_for = MMCIF_WAIT_FOR_CMD;
859         schedule_delayed_work(&host->timeout_work, host->timeout);
860 }
861
862 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
863                               struct mmc_request *mrq)
864 {
865         switch (mrq->cmd->opcode) {
866         case MMC_READ_MULTIPLE_BLOCK:
867                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
868                 break;
869         case MMC_WRITE_MULTIPLE_BLOCK:
870                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
871                 break;
872         default:
873                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
874                 mrq->stop->error = sh_mmcif_error_manage(host);
875                 return;
876         }
877
878         host->wait_for = MMCIF_WAIT_FOR_STOP;
879         schedule_delayed_work(&host->timeout_work, host->timeout);
880 }
881
882 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
883 {
884         struct sh_mmcif_host *host = mmc_priv(mmc);
885         unsigned long flags;
886
887         spin_lock_irqsave(&host->lock, flags);
888         if (host->state != STATE_IDLE) {
889                 spin_unlock_irqrestore(&host->lock, flags);
890                 mrq->cmd->error = -EAGAIN;
891                 mmc_request_done(mmc, mrq);
892                 return;
893         }
894
895         host->state = STATE_REQUEST;
896         spin_unlock_irqrestore(&host->lock, flags);
897
898         switch (mrq->cmd->opcode) {
899         /* MMCIF does not support SD/SDIO command */
900         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
901         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
902                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
903                         break;
904         case MMC_APP_CMD:
905                 host->state = STATE_IDLE;
906                 mrq->cmd->error = -ETIMEDOUT;
907                 mmc_request_done(mmc, mrq);
908                 return;
909         default:
910                 break;
911         }
912
913         host->mrq = mrq;
914
915         sh_mmcif_start_cmd(host, mrq);
916 }
917
918 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
919 {
920         int ret = clk_enable(host->hclk);
921
922         if (!ret) {
923                 host->clk = clk_get_rate(host->hclk);
924                 host->mmc->f_max = host->clk / 2;
925                 host->mmc->f_min = host->clk / 512;
926         }
927
928         return ret;
929 }
930
931 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
932 {
933         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
934         struct mmc_host *mmc = host->mmc;
935
936         if (pd && pd->set_pwr)
937                 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
938         if (!IS_ERR(mmc->supply.vmmc))
939                 /* Errors ignored... */
940                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
941                                       ios->power_mode ? ios->vdd : 0);
942 }
943
944 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
945 {
946         struct sh_mmcif_host *host = mmc_priv(mmc);
947         unsigned long flags;
948
949         spin_lock_irqsave(&host->lock, flags);
950         if (host->state != STATE_IDLE) {
951                 spin_unlock_irqrestore(&host->lock, flags);
952                 return;
953         }
954
955         host->state = STATE_IOS;
956         spin_unlock_irqrestore(&host->lock, flags);
957
958         if (ios->power_mode == MMC_POWER_UP) {
959                 if (!host->card_present) {
960                         /* See if we also get DMA */
961                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
962                         host->card_present = true;
963                 }
964                 sh_mmcif_set_power(host, ios);
965         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
966                 /* clock stop */
967                 sh_mmcif_clock_control(host, 0);
968                 if (ios->power_mode == MMC_POWER_OFF) {
969                         if (host->card_present) {
970                                 sh_mmcif_release_dma(host);
971                                 host->card_present = false;
972                         }
973                 }
974                 if (host->power) {
975                         pm_runtime_put(&host->pd->dev);
976                         clk_disable(host->hclk);
977                         host->power = false;
978                         if (ios->power_mode == MMC_POWER_OFF)
979                                 sh_mmcif_set_power(host, ios);
980                 }
981                 host->state = STATE_IDLE;
982                 return;
983         }
984
985         if (ios->clock) {
986                 if (!host->power) {
987                         sh_mmcif_clk_update(host);
988                         pm_runtime_get_sync(&host->pd->dev);
989                         host->power = true;
990                         sh_mmcif_sync_reset(host);
991                 }
992                 sh_mmcif_clock_control(host, ios->clock);
993         }
994
995         host->bus_width = ios->bus_width;
996         host->state = STATE_IDLE;
997 }
998
999 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1000 {
1001         struct sh_mmcif_host *host = mmc_priv(mmc);
1002         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1003
1004         if (!p || !p->get_cd)
1005                 return -ENOSYS;
1006         else
1007                 return p->get_cd(host->pd);
1008 }
1009
1010 static struct mmc_host_ops sh_mmcif_ops = {
1011         .request        = sh_mmcif_request,
1012         .set_ios        = sh_mmcif_set_ios,
1013         .get_cd         = sh_mmcif_get_cd,
1014 };
1015
1016 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1017 {
1018         struct mmc_command *cmd = host->mrq->cmd;
1019         struct mmc_data *data = host->mrq->data;
1020         long time;
1021
1022         if (host->sd_error) {
1023                 switch (cmd->opcode) {
1024                 case MMC_ALL_SEND_CID:
1025                 case MMC_SELECT_CARD:
1026                 case MMC_APP_CMD:
1027                         cmd->error = -ETIMEDOUT;
1028                         host->sd_error = false;
1029                         break;
1030                 default:
1031                         cmd->error = sh_mmcif_error_manage(host);
1032                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1033                                 cmd->opcode, cmd->error);
1034                         break;
1035                 }
1036                 return false;
1037         }
1038         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1039                 cmd->error = 0;
1040                 return false;
1041         }
1042
1043         sh_mmcif_get_response(host, cmd);
1044
1045         if (!data)
1046                 return false;
1047
1048         if (data->flags & MMC_DATA_READ) {
1049                 if (host->chan_rx)
1050                         sh_mmcif_start_dma_rx(host);
1051         } else {
1052                 if (host->chan_tx)
1053                         sh_mmcif_start_dma_tx(host);
1054         }
1055
1056         if (!host->dma_active) {
1057                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1058                 if (!data->error)
1059                         return true;
1060                 return false;
1061         }
1062
1063         /* Running in the IRQ thread, can sleep */
1064         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1065                                                          host->timeout);
1066         if (host->sd_error) {
1067                 dev_err(host->mmc->parent,
1068                         "Error IRQ while waiting for DMA completion!\n");
1069                 /* Woken up by an error IRQ: abort DMA */
1070                 if (data->flags & MMC_DATA_READ)
1071                         dmaengine_terminate_all(host->chan_rx);
1072                 else
1073                         dmaengine_terminate_all(host->chan_tx);
1074                 data->error = sh_mmcif_error_manage(host);
1075         } else if (!time) {
1076                 data->error = -ETIMEDOUT;
1077         } else if (time < 0) {
1078                 data->error = time;
1079         }
1080         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1081                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1082         host->dma_active = false;
1083
1084         if (data->error)
1085                 data->bytes_xfered = 0;
1086
1087         return false;
1088 }
1089
1090 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1091 {
1092         struct sh_mmcif_host *host = dev_id;
1093         struct mmc_request *mrq = host->mrq;
1094         struct mmc_data *data = mrq->data;
1095
1096         cancel_delayed_work_sync(&host->timeout_work);
1097
1098         /*
1099          * All handlers return true, if processing continues, and false, if the
1100          * request has to be completed - successfully or not
1101          */
1102         switch (host->wait_for) {
1103         case MMCIF_WAIT_FOR_REQUEST:
1104                 /* We're too late, the timeout has already kicked in */
1105                 return IRQ_HANDLED;
1106         case MMCIF_WAIT_FOR_CMD:
1107                 if (sh_mmcif_end_cmd(host))
1108                         /* Wait for data */
1109                         return IRQ_HANDLED;
1110                 break;
1111         case MMCIF_WAIT_FOR_MREAD:
1112                 if (sh_mmcif_mread_block(host))
1113                         /* Wait for more data */
1114                         return IRQ_HANDLED;
1115                 break;
1116         case MMCIF_WAIT_FOR_READ:
1117                 if (sh_mmcif_read_block(host))
1118                         /* Wait for data end */
1119                         return IRQ_HANDLED;
1120                 break;
1121         case MMCIF_WAIT_FOR_MWRITE:
1122                 if (sh_mmcif_mwrite_block(host))
1123                         /* Wait data to write */
1124                         return IRQ_HANDLED;
1125                 break;
1126         case MMCIF_WAIT_FOR_WRITE:
1127                 if (sh_mmcif_write_block(host))
1128                         /* Wait for data end */
1129                         return IRQ_HANDLED;
1130                 break;
1131         case MMCIF_WAIT_FOR_STOP:
1132                 if (host->sd_error) {
1133                         mrq->stop->error = sh_mmcif_error_manage(host);
1134                         break;
1135                 }
1136                 sh_mmcif_get_cmd12response(host, mrq->stop);
1137                 mrq->stop->error = 0;
1138                 break;
1139         case MMCIF_WAIT_FOR_READ_END:
1140         case MMCIF_WAIT_FOR_WRITE_END:
1141                 if (host->sd_error)
1142                         data->error = sh_mmcif_error_manage(host);
1143                 break;
1144         default:
1145                 BUG();
1146         }
1147
1148         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1149                 if (!mrq->cmd->error && data && !data->error)
1150                         data->bytes_xfered =
1151                                 data->blocks * data->blksz;
1152
1153                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1154                         sh_mmcif_stop_cmd(host, mrq);
1155                         if (!mrq->stop->error)
1156                                 return IRQ_HANDLED;
1157                 }
1158         }
1159
1160         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1161         host->state = STATE_IDLE;
1162         host->mrq = NULL;
1163         mmc_request_done(host->mmc, mrq);
1164
1165         return IRQ_HANDLED;
1166 }
1167
1168 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1169 {
1170         struct sh_mmcif_host *host = dev_id;
1171         u32 state;
1172         int err = 0;
1173
1174         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1175
1176         if (state & INT_ERR_STS) {
1177                 /* error interrupts - process first */
1178                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1179                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1180                 err = 1;
1181         } else if (state & INT_RBSYE) {
1182                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1183                                 ~(INT_RBSYE | INT_CRSPE));
1184                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1185         } else if (state & INT_CRSPE) {
1186                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1187                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1188         } else if (state & INT_BUFREN) {
1189                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1190                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1191         } else if (state & INT_BUFWEN) {
1192                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1193                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1194         } else if (state & INT_CMD12DRE) {
1195                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1196                         ~(INT_CMD12DRE | INT_CMD12RBE |
1197                           INT_CMD12CRE | INT_BUFRE));
1198                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1199         } else if (state & INT_BUFRE) {
1200                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1201                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1202         } else if (state & INT_DTRANE) {
1203                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1204                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1205         } else if (state & INT_CMD12RBE) {
1206                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1207                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1208                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1209         } else {
1210                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1211                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1212                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1213                 err = 1;
1214         }
1215         if (err) {
1216                 host->sd_error = true;
1217                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1218         }
1219         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1220                 if (!host->dma_active)
1221                         return IRQ_WAKE_THREAD;
1222                 else if (host->sd_error)
1223                         mmcif_dma_complete(host);
1224         } else {
1225                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1226         }
1227
1228         return IRQ_HANDLED;
1229 }
1230
1231 static void mmcif_timeout_work(struct work_struct *work)
1232 {
1233         struct delayed_work *d = container_of(work, struct delayed_work, work);
1234         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1235         struct mmc_request *mrq = host->mrq;
1236
1237         if (host->dying)
1238                 /* Don't run after mmc_remove_host() */
1239                 return;
1240
1241         /*
1242          * Handle races with cancel_delayed_work(), unless
1243          * cancel_delayed_work_sync() is used
1244          */
1245         switch (host->wait_for) {
1246         case MMCIF_WAIT_FOR_CMD:
1247                 mrq->cmd->error = sh_mmcif_error_manage(host);
1248                 break;
1249         case MMCIF_WAIT_FOR_STOP:
1250                 mrq->stop->error = sh_mmcif_error_manage(host);
1251                 break;
1252         case MMCIF_WAIT_FOR_MREAD:
1253         case MMCIF_WAIT_FOR_MWRITE:
1254         case MMCIF_WAIT_FOR_READ:
1255         case MMCIF_WAIT_FOR_WRITE:
1256         case MMCIF_WAIT_FOR_READ_END:
1257         case MMCIF_WAIT_FOR_WRITE_END:
1258                 mrq->data->error = sh_mmcif_error_manage(host);
1259                 break;
1260         default:
1261                 BUG();
1262         }
1263
1264         host->state = STATE_IDLE;
1265         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1266         host->mrq = NULL;
1267         mmc_request_done(host->mmc, mrq);
1268 }
1269
1270 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1271 {
1272         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1273         struct mmc_host *mmc = host->mmc;
1274
1275         mmc_regulator_get_supply(mmc);
1276
1277         if (!pd)
1278                 return;
1279
1280         if (!mmc->ocr_avail)
1281                 mmc->ocr_avail = pd->ocr;
1282         else if (pd->ocr)
1283                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1284 }
1285
1286 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1287 {
1288         int ret = 0, irq[2];
1289         struct mmc_host *mmc;
1290         struct sh_mmcif_host *host;
1291         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1292         struct resource *res;
1293         void __iomem *reg;
1294         char clk_name[8];
1295
1296         irq[0] = platform_get_irq(pdev, 0);
1297         irq[1] = platform_get_irq(pdev, 1);
1298         if (irq[0] < 0 || irq[1] < 0) {
1299                 dev_err(&pdev->dev, "Get irq error\n");
1300                 return -ENXIO;
1301         }
1302         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1303         if (!res) {
1304                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1305                 return -ENXIO;
1306         }
1307         reg = ioremap(res->start, resource_size(res));
1308         if (!reg) {
1309                 dev_err(&pdev->dev, "ioremap error.\n");
1310                 return -ENOMEM;
1311         }
1312
1313         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1314         if (!mmc) {
1315                 ret = -ENOMEM;
1316                 goto ealloch;
1317         }
1318         host            = mmc_priv(mmc);
1319         host->mmc       = mmc;
1320         host->addr      = reg;
1321         host->timeout   = 1000;
1322
1323         host->pd = pdev;
1324
1325         spin_lock_init(&host->lock);
1326
1327         mmc->ops = &sh_mmcif_ops;
1328         sh_mmcif_init_ocr(host);
1329
1330         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1331         if (pd && pd->caps)
1332                 mmc->caps |= pd->caps;
1333         mmc->max_segs = 32;
1334         mmc->max_blk_size = 512;
1335         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1336         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1337         mmc->max_seg_size = mmc->max_req_size;
1338
1339         platform_set_drvdata(pdev, host);
1340
1341         pm_runtime_enable(&pdev->dev);
1342         host->power = false;
1343
1344         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1345         host->hclk = clk_get(&pdev->dev, clk_name);
1346         if (IS_ERR(host->hclk)) {
1347                 ret = PTR_ERR(host->hclk);
1348                 dev_err(&pdev->dev, "cannot get clock \"%s\": %d\n", clk_name, ret);
1349                 goto eclkget;
1350         }
1351         ret = sh_mmcif_clk_update(host);
1352         if (ret < 0)
1353                 goto eclkupdate;
1354
1355         ret = pm_runtime_resume(&pdev->dev);
1356         if (ret < 0)
1357                 goto eresume;
1358
1359         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1360
1361         sh_mmcif_sync_reset(host);
1362         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1363
1364         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1365         if (ret) {
1366                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1367                 goto ereqirq0;
1368         }
1369         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1370         if (ret) {
1371                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1372                 goto ereqirq1;
1373         }
1374
1375         clk_disable(host->hclk);
1376         ret = mmc_add_host(mmc);
1377         if (ret < 0)
1378                 goto emmcaddh;
1379
1380         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1381
1382         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1383         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1384                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1385         return ret;
1386
1387 emmcaddh:
1388         free_irq(irq[1], host);
1389 ereqirq1:
1390         free_irq(irq[0], host);
1391 ereqirq0:
1392         pm_runtime_suspend(&pdev->dev);
1393 eresume:
1394         clk_disable(host->hclk);
1395 eclkupdate:
1396         clk_put(host->hclk);
1397 eclkget:
1398         pm_runtime_disable(&pdev->dev);
1399         mmc_free_host(mmc);
1400 ealloch:
1401         iounmap(reg);
1402         return ret;
1403 }
1404
1405 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1406 {
1407         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1408         int irq[2];
1409
1410         host->dying = true;
1411         clk_enable(host->hclk);
1412         pm_runtime_get_sync(&pdev->dev);
1413
1414         dev_pm_qos_hide_latency_limit(&pdev->dev);
1415
1416         mmc_remove_host(host->mmc);
1417         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1418
1419         /*
1420          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1421          * mmc_remove_host() call above. But swapping order doesn't help either
1422          * (a query on the linux-mmc mailing list didn't bring any replies).
1423          */
1424         cancel_delayed_work_sync(&host->timeout_work);
1425
1426         if (host->addr)
1427                 iounmap(host->addr);
1428
1429         irq[0] = platform_get_irq(pdev, 0);
1430         irq[1] = platform_get_irq(pdev, 1);
1431
1432         free_irq(irq[0], host);
1433         free_irq(irq[1], host);
1434
1435         platform_set_drvdata(pdev, NULL);
1436
1437         mmc_free_host(host->mmc);
1438         pm_runtime_put_sync(&pdev->dev);
1439         clk_disable(host->hclk);
1440         pm_runtime_disable(&pdev->dev);
1441
1442         return 0;
1443 }
1444
1445 #ifdef CONFIG_PM
1446 static int sh_mmcif_suspend(struct device *dev)
1447 {
1448         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1449         int ret = mmc_suspend_host(host->mmc);
1450
1451         if (!ret)
1452                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1453
1454         return ret;
1455 }
1456
1457 static int sh_mmcif_resume(struct device *dev)
1458 {
1459         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1460
1461         return mmc_resume_host(host->mmc);
1462 }
1463 #else
1464 #define sh_mmcif_suspend        NULL
1465 #define sh_mmcif_resume         NULL
1466 #endif  /* CONFIG_PM */
1467
1468 static const struct of_device_id mmcif_of_match[] = {
1469         { .compatible = "renesas,sh-mmcif" },
1470         { }
1471 };
1472 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1473
1474 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1475         .suspend = sh_mmcif_suspend,
1476         .resume = sh_mmcif_resume,
1477 };
1478
1479 static struct platform_driver sh_mmcif_driver = {
1480         .probe          = sh_mmcif_probe,
1481         .remove         = sh_mmcif_remove,
1482         .driver         = {
1483                 .name   = DRIVER_NAME,
1484                 .pm     = &sh_mmcif_dev_pm_ops,
1485                 .owner  = THIS_MODULE,
1486                 .of_match_table = mmcif_of_match,
1487         },
1488 };
1489
1490 module_platform_driver(sh_mmcif_driver);
1491
1492 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1493 MODULE_LICENSE("GPL");
1494 MODULE_ALIAS("platform:" DRIVER_NAME);
1495 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");