4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
68 #define DRIVER_NAME "sh_mmcif"
69 #define DRIVER_VERSION "2010-04-28"
72 #define CMD_MASK 0x3f000000
73 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN (1 << 20)
78 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH (1 << 5)
93 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
99 #define CMD_CTRL_BREAK (1 << 0)
102 #define BLOCK_SIZE_MASK 0x0000ffff
105 #define INT_CCSDE (1 << 29)
106 #define INT_CMD12DRE (1 << 26)
107 #define INT_CMD12RBE (1 << 25)
108 #define INT_CMD12CRE (1 << 24)
109 #define INT_DTRANE (1 << 23)
110 #define INT_BUFRE (1 << 22)
111 #define INT_BUFWEN (1 << 21)
112 #define INT_BUFREN (1 << 20)
113 #define INT_CCSRCV (1 << 19)
114 #define INT_RBSYE (1 << 17)
115 #define INT_CRSPE (1 << 16)
116 #define INT_CMDVIO (1 << 15)
117 #define INT_BUFVIO (1 << 14)
118 #define INT_WDATERR (1 << 11)
119 #define INT_RDATERR (1 << 10)
120 #define INT_RIDXERR (1 << 9)
121 #define INT_RSPERR (1 << 8)
122 #define INT_CCSTO (1 << 5)
123 #define INT_CRCSTO (1 << 4)
124 #define INT_WDATTO (1 << 3)
125 #define INT_RDATTO (1 << 2)
126 #define INT_RBSYTO (1 << 1)
127 #define INT_RSPTO (1 << 0)
128 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
131 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
140 #define MASK_ALL 0x00000000
141 #define MASK_MCCSDE (1 << 29)
142 #define MASK_MCMD12DRE (1 << 26)
143 #define MASK_MCMD12RBE (1 << 25)
144 #define MASK_MCMD12CRE (1 << 24)
145 #define MASK_MDTRANE (1 << 23)
146 #define MASK_MBUFRE (1 << 22)
147 #define MASK_MBUFWEN (1 << 21)
148 #define MASK_MBUFREN (1 << 20)
149 #define MASK_MCCSRCV (1 << 19)
150 #define MASK_MRBSYE (1 << 17)
151 #define MASK_MCRSPE (1 << 16)
152 #define MASK_MCMDVIO (1 << 15)
153 #define MASK_MBUFVIO (1 << 14)
154 #define MASK_MWDATERR (1 << 11)
155 #define MASK_MRDATERR (1 << 10)
156 #define MASK_MRIDXERR (1 << 9)
157 #define MASK_MRSPERR (1 << 8)
158 #define MASK_MCCSTO (1 << 5)
159 #define MASK_MCRCSTO (1 << 4)
160 #define MASK_MWDATTO (1 << 3)
161 #define MASK_MRDATTO (1 << 2)
162 #define MASK_MRBSYTO (1 << 1)
163 #define MASK_MRSPTO (1 << 0)
165 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 MASK_MCRCSTO | MASK_MWDATTO | \
168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
171 MASK_MBUFREN | MASK_MBUFWEN | \
172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
173 MASK_MCMD12RBE | MASK_MCMD12CRE)
176 #define STS1_CMDSEQ (1 << 31)
179 #define STS2_CRCSTE (1 << 31)
180 #define STS2_CRC16E (1 << 30)
181 #define STS2_AC12CRCE (1 << 29)
182 #define STS2_RSPCRC7E (1 << 28)
183 #define STS2_CRCSTEBE (1 << 27)
184 #define STS2_RDATEBE (1 << 26)
185 #define STS2_AC12REBE (1 << 25)
186 #define STS2_RSPEBE (1 << 24)
187 #define STS2_AC12IDXE (1 << 23)
188 #define STS2_RSPIDXE (1 << 22)
189 #define STS2_CCSTO (1 << 15)
190 #define STS2_RDATTO (1 << 14)
191 #define STS2_DATBSYTO (1 << 13)
192 #define STS2_CRCSTTO (1 << 12)
193 #define STS2_AC12BSYTO (1 << 11)
194 #define STS2_RSPBSYTO (1 << 10)
195 #define STS2_AC12RSPTO (1 << 9)
196 #define STS2_RSPTO (1 << 8)
197 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
200 STS2_DATBSYTO | STS2_CRCSTTO | \
201 STS2_AC12BSYTO | STS2_RSPBSYTO | \
202 STS2_AC12RSPTO | STS2_RSPTO)
204 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
206 #define CLKDEV_INIT 400000 /* 400 KHz */
215 enum mmcif_wait_for {
216 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_MREAD,
219 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_WRITE,
222 MMCIF_WAIT_FOR_READ_END,
223 MMCIF_WAIT_FOR_WRITE_END,
227 struct sh_mmcif_host {
228 struct mmc_host *mmc;
229 struct mmc_request *mrq;
230 struct platform_device *pd;
234 unsigned char timing;
240 spinlock_t lock; /* protect sh_mmcif_host::state */
241 enum mmcif_state state;
242 enum mmcif_wait_for wait_for;
243 struct delayed_work timeout_work;
249 bool ccs_enable; /* Command Completion Signal support */
250 bool clk_ctrl2_enable;
251 struct mutex thread_lock;
254 struct dma_chan *chan_rx;
255 struct dma_chan *chan_tx;
256 struct completion dma_complete;
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
263 writel(val | readl(host->addr + reg), host->addr + reg);
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
269 writel(~val & readl(host->addr + reg), host->addr + reg);
272 static void mmcif_dma_complete(void *arg)
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
277 dev_dbg(&host->pd->dev, "Command completed\n");
279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 dev_name(&host->pd->dev)))
283 complete(&host->dma_complete);
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 struct mmc_data *data = host->mrq->data;
289 struct scatterlist *sg = data->sg;
290 struct dma_async_tx_descriptor *desc = NULL;
291 struct dma_chan *chan = host->chan_rx;
292 dma_cookie_t cookie = -EINVAL;
295 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 host->dma_active = true;
299 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
304 desc->callback = mmcif_dma_complete;
305 desc->callback_param = host;
306 cookie = dmaengine_submit(desc);
307 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 dma_async_issue_pending(chan);
310 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 __func__, data->sg_len, ret, cookie);
314 /* DMA failed, fall back to PIO */
317 host->chan_rx = NULL;
318 host->dma_active = false;
319 dma_release_channel(chan);
320 /* Free the Tx channel too */
321 chan = host->chan_tx;
323 host->chan_tx = NULL;
324 dma_release_channel(chan);
326 dev_warn(&host->pd->dev,
327 "DMA failed: %d, falling back to PIO\n", ret);
328 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 desc, cookie, data->sg_len);
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337 struct mmc_data *data = host->mrq->data;
338 struct scatterlist *sg = data->sg;
339 struct dma_async_tx_descriptor *desc = NULL;
340 struct dma_chan *chan = host->chan_tx;
341 dma_cookie_t cookie = -EINVAL;
344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
347 host->dma_active = true;
348 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353 desc->callback = mmcif_dma_complete;
354 desc->callback_param = host;
355 cookie = dmaengine_submit(desc);
356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 dma_async_issue_pending(chan);
359 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__, data->sg_len, ret, cookie);
363 /* DMA failed, fall back to PIO */
366 host->chan_tx = NULL;
367 host->dma_active = false;
368 dma_release_channel(chan);
369 /* Free the Rx channel too */
370 chan = host->chan_rx;
372 host->chan_rx = NULL;
373 dma_release_channel(chan);
375 dev_warn(&host->pd->dev,
376 "DMA failed: %d, falling back to PIO\n", ret);
377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 struct sh_mmcif_plat_data *pdata,
387 enum dma_transfer_direction direction)
389 struct dma_slave_config cfg = { 0, };
390 struct dma_chan *chan;
391 unsigned int slave_id;
392 struct resource *res;
397 dma_cap_set(DMA_SLAVE, mask);
400 slave_id = direction == DMA_MEM_TO_DEV
401 ? pdata->slave_id_tx : pdata->slave_id_rx;
405 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 (void *)(unsigned long)slave_id, &host->pd->dev,
407 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
409 dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
415 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
417 /* In the OF case the driver will get the slave ID from the DT */
418 cfg.slave_id = slave_id;
419 cfg.direction = direction;
421 if (direction == DMA_DEV_TO_MEM) {
422 cfg.src_addr = res->start + MMCIF_CE_DATA;
423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
425 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429 ret = dmaengine_slave_config(chan, &cfg);
431 dma_release_channel(chan);
438 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
439 struct sh_mmcif_plat_data *pdata)
441 host->dma_active = false;
444 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
446 } else if (!host->pd->dev.of_node) {
450 /* We can only either use DMA for both Tx and Rx or not use it at all */
451 host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
455 host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
456 if (!host->chan_rx) {
457 dma_release_channel(host->chan_tx);
458 host->chan_tx = NULL;
462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
464 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465 /* Descriptors are freed automatically */
467 struct dma_chan *chan = host->chan_tx;
468 host->chan_tx = NULL;
469 dma_release_channel(chan);
472 struct dma_chan *chan = host->chan_rx;
473 host->chan_rx = NULL;
474 dma_release_channel(chan);
477 host->dma_active = false;
480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
482 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
483 bool sup_pclk = p ? p->sup_pclk : false;
485 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490 if (sup_pclk && clk == host->clk)
491 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
493 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
494 ((fls(DIV_ROUND_UP(host->clk,
495 clk) - 1) - 1) << 16));
497 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
500 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
504 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
506 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
507 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
508 if (host->ccs_enable)
510 if (host->clk_ctrl2_enable)
511 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
512 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
513 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
515 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
518 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
523 host->sd_error = false;
525 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
526 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
527 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
528 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
530 if (state1 & STS1_CMDSEQ) {
531 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
532 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
533 for (timeout = 10000000; timeout; timeout--) {
534 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
540 dev_err(&host->pd->dev,
541 "Forced end of command sequence timeout err\n");
544 sh_mmcif_sync_reset(host);
545 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
549 if (state2 & STS2_CRC_ERR) {
550 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
551 host->state, host->wait_for);
553 } else if (state2 & STS2_TIMEOUT_ERR) {
554 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
555 host->state, host->wait_for);
558 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
559 host->state, host->wait_for);
565 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
567 struct mmc_data *data = host->mrq->data;
569 host->sg_blkidx += host->blocksize;
571 /* data->sg->length must be a multiple of host->blocksize? */
572 BUG_ON(host->sg_blkidx > data->sg->length);
574 if (host->sg_blkidx == data->sg->length) {
576 if (++host->sg_idx < data->sg_len)
577 host->pio_ptr = sg_virt(++data->sg);
582 return host->sg_idx != data->sg_len;
585 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
586 struct mmc_request *mrq)
588 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
589 BLOCK_SIZE_MASK) + 3;
591 host->wait_for = MMCIF_WAIT_FOR_READ;
593 /* buf read enable */
594 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
597 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
599 struct mmc_data *data = host->mrq->data;
600 u32 *p = sg_virt(data->sg);
603 if (host->sd_error) {
604 data->error = sh_mmcif_error_manage(host);
605 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
609 for (i = 0; i < host->blocksize / 4; i++)
610 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
612 /* buffer read end */
613 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
614 host->wait_for = MMCIF_WAIT_FOR_READ_END;
619 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
620 struct mmc_request *mrq)
622 struct mmc_data *data = mrq->data;
624 if (!data->sg_len || !data->sg->length)
627 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
630 host->wait_for = MMCIF_WAIT_FOR_MREAD;
633 host->pio_ptr = sg_virt(data->sg);
635 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
638 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
640 struct mmc_data *data = host->mrq->data;
641 u32 *p = host->pio_ptr;
644 if (host->sd_error) {
645 data->error = sh_mmcif_error_manage(host);
646 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
650 BUG_ON(!data->sg->length);
652 for (i = 0; i < host->blocksize / 4; i++)
653 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
655 if (!sh_mmcif_next_block(host, p))
658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
663 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
664 struct mmc_request *mrq)
666 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667 BLOCK_SIZE_MASK) + 3;
669 host->wait_for = MMCIF_WAIT_FOR_WRITE;
671 /* buf write enable */
672 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
675 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
677 struct mmc_data *data = host->mrq->data;
678 u32 *p = sg_virt(data->sg);
681 if (host->sd_error) {
682 data->error = sh_mmcif_error_manage(host);
683 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
687 for (i = 0; i < host->blocksize / 4; i++)
688 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
690 /* buffer write end */
691 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
692 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
697 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
698 struct mmc_request *mrq)
700 struct mmc_data *data = mrq->data;
702 if (!data->sg_len || !data->sg->length)
705 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
708 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
711 host->pio_ptr = sg_virt(data->sg);
713 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
716 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
718 struct mmc_data *data = host->mrq->data;
719 u32 *p = host->pio_ptr;
722 if (host->sd_error) {
723 data->error = sh_mmcif_error_manage(host);
724 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
728 BUG_ON(!data->sg->length);
730 for (i = 0; i < host->blocksize / 4; i++)
731 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
733 if (!sh_mmcif_next_block(host, p))
736 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
741 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
742 struct mmc_command *cmd)
744 if (cmd->flags & MMC_RSP_136) {
745 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
746 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
747 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
748 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
750 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
753 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
754 struct mmc_command *cmd)
756 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
759 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
760 struct mmc_request *mrq)
762 struct mmc_data *data = mrq->data;
763 struct mmc_command *cmd = mrq->cmd;
764 u32 opc = cmd->opcode;
767 /* Response Type check */
768 switch (mmc_resp_type(cmd)) {
770 tmp |= CMD_SET_RTYP_NO;
775 tmp |= CMD_SET_RTYP_6B;
778 tmp |= CMD_SET_RTYP_17B;
781 dev_err(&host->pd->dev, "Unsupported response type.\n");
786 case MMC_SLEEP_AWAKE:
788 case MMC_STOP_TRANSMISSION:
789 case MMC_SET_WRITE_PROT:
790 case MMC_CLR_WRITE_PROT:
798 switch (host->bus_width) {
799 case MMC_BUS_WIDTH_1:
800 tmp |= CMD_SET_DATW_1;
802 case MMC_BUS_WIDTH_4:
803 tmp |= CMD_SET_DATW_4;
805 case MMC_BUS_WIDTH_8:
806 tmp |= CMD_SET_DATW_8;
809 dev_err(&host->pd->dev, "Unsupported bus width.\n");
812 switch (host->timing) {
813 case MMC_TIMING_MMC_DDR52:
815 * MMC core will only set this timing, if the host
816 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
817 * capability. MMCIF implementations with this
818 * capability, e.g. sh73a0, will have to set it
819 * in their platform data.
826 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
829 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
830 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
831 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
834 /* RIDXC[1:0] check bits */
835 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
836 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
837 tmp |= CMD_SET_RIDXC_BITS;
838 /* RCRC7C[1:0] check bits */
839 if (opc == MMC_SEND_OP_COND)
840 tmp |= CMD_SET_CRC7C_BITS;
841 /* RCRC7C[1:0] internal CRC7 */
842 if (opc == MMC_ALL_SEND_CID ||
843 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
844 tmp |= CMD_SET_CRC7C_INTERNAL;
846 return (opc << 24) | tmp;
849 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
850 struct mmc_request *mrq, u32 opc)
853 case MMC_READ_MULTIPLE_BLOCK:
854 sh_mmcif_multi_read(host, mrq);
856 case MMC_WRITE_MULTIPLE_BLOCK:
857 sh_mmcif_multi_write(host, mrq);
859 case MMC_WRITE_BLOCK:
860 sh_mmcif_single_write(host, mrq);
862 case MMC_READ_SINGLE_BLOCK:
863 case MMC_SEND_EXT_CSD:
864 sh_mmcif_single_read(host, mrq);
867 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
872 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
873 struct mmc_request *mrq)
875 struct mmc_command *cmd = mrq->cmd;
876 u32 opc = cmd->opcode;
880 /* response busy check */
881 case MMC_SLEEP_AWAKE:
883 case MMC_STOP_TRANSMISSION:
884 case MMC_SET_WRITE_PROT:
885 case MMC_CLR_WRITE_PROT:
887 mask = MASK_START_CMD | MASK_MRBSYE;
890 mask = MASK_START_CMD | MASK_MCRSPE;
894 if (host->ccs_enable)
898 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
899 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
902 opc = sh_mmcif_set_cmd(host, mrq);
904 if (host->ccs_enable)
905 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
907 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
908 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
910 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
912 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
914 host->wait_for = MMCIF_WAIT_FOR_CMD;
915 schedule_delayed_work(&host->timeout_work, host->timeout);
918 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
919 struct mmc_request *mrq)
921 switch (mrq->cmd->opcode) {
922 case MMC_READ_MULTIPLE_BLOCK:
923 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
925 case MMC_WRITE_MULTIPLE_BLOCK:
926 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
929 dev_err(&host->pd->dev, "unsupported stop cmd\n");
930 mrq->stop->error = sh_mmcif_error_manage(host);
934 host->wait_for = MMCIF_WAIT_FOR_STOP;
937 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
939 struct sh_mmcif_host *host = mmc_priv(mmc);
942 spin_lock_irqsave(&host->lock, flags);
943 if (host->state != STATE_IDLE) {
944 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
945 spin_unlock_irqrestore(&host->lock, flags);
946 mrq->cmd->error = -EAGAIN;
947 mmc_request_done(mmc, mrq);
951 host->state = STATE_REQUEST;
952 spin_unlock_irqrestore(&host->lock, flags);
954 switch (mrq->cmd->opcode) {
955 /* MMCIF does not support SD/SDIO command */
956 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
957 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
958 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
961 case SD_IO_RW_DIRECT:
962 host->state = STATE_IDLE;
963 mrq->cmd->error = -ETIMEDOUT;
964 mmc_request_done(mmc, mrq);
972 sh_mmcif_start_cmd(host, mrq);
975 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
977 int ret = clk_prepare_enable(host->hclk);
980 host->clk = clk_get_rate(host->hclk);
981 host->mmc->f_max = host->clk / 2;
982 host->mmc->f_min = host->clk / 512;
988 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
990 struct mmc_host *mmc = host->mmc;
992 if (!IS_ERR(mmc->supply.vmmc))
993 /* Errors ignored... */
994 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
995 ios->power_mode ? ios->vdd : 0);
998 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1000 struct sh_mmcif_host *host = mmc_priv(mmc);
1001 unsigned long flags;
1003 spin_lock_irqsave(&host->lock, flags);
1004 if (host->state != STATE_IDLE) {
1005 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1006 spin_unlock_irqrestore(&host->lock, flags);
1010 host->state = STATE_IOS;
1011 spin_unlock_irqrestore(&host->lock, flags);
1013 if (ios->power_mode == MMC_POWER_UP) {
1014 if (!host->card_present) {
1015 /* See if we also get DMA */
1016 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1017 host->card_present = true;
1019 sh_mmcif_set_power(host, ios);
1020 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1022 sh_mmcif_clock_control(host, 0);
1023 if (ios->power_mode == MMC_POWER_OFF) {
1024 if (host->card_present) {
1025 sh_mmcif_release_dma(host);
1026 host->card_present = false;
1030 pm_runtime_put_sync(&host->pd->dev);
1031 clk_disable_unprepare(host->hclk);
1032 host->power = false;
1033 if (ios->power_mode == MMC_POWER_OFF)
1034 sh_mmcif_set_power(host, ios);
1036 host->state = STATE_IDLE;
1042 sh_mmcif_clk_update(host);
1043 pm_runtime_get_sync(&host->pd->dev);
1045 sh_mmcif_sync_reset(host);
1047 sh_mmcif_clock_control(host, ios->clock);
1050 host->timing = ios->timing;
1051 host->bus_width = ios->bus_width;
1052 host->state = STATE_IDLE;
1055 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1057 struct sh_mmcif_host *host = mmc_priv(mmc);
1058 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1059 int ret = mmc_gpio_get_cd(mmc);
1064 if (!p || !p->get_cd)
1067 return p->get_cd(host->pd);
1070 static struct mmc_host_ops sh_mmcif_ops = {
1071 .request = sh_mmcif_request,
1072 .set_ios = sh_mmcif_set_ios,
1073 .get_cd = sh_mmcif_get_cd,
1076 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078 struct mmc_command *cmd = host->mrq->cmd;
1079 struct mmc_data *data = host->mrq->data;
1082 if (host->sd_error) {
1083 switch (cmd->opcode) {
1084 case MMC_ALL_SEND_CID:
1085 case MMC_SELECT_CARD:
1087 cmd->error = -ETIMEDOUT;
1090 cmd->error = sh_mmcif_error_manage(host);
1093 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1094 cmd->opcode, cmd->error);
1095 host->sd_error = false;
1098 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1103 sh_mmcif_get_response(host, cmd);
1109 * Completion can be signalled from DMA callback and error, so, have to
1110 * reset here, before setting .dma_active
1112 init_completion(&host->dma_complete);
1114 if (data->flags & MMC_DATA_READ) {
1116 sh_mmcif_start_dma_rx(host);
1119 sh_mmcif_start_dma_tx(host);
1122 if (!host->dma_active) {
1123 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1124 return !data->error;
1127 /* Running in the IRQ thread, can sleep */
1128 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131 if (data->flags & MMC_DATA_READ)
1132 dma_unmap_sg(host->chan_rx->device->dev,
1133 data->sg, data->sg_len,
1136 dma_unmap_sg(host->chan_tx->device->dev,
1137 data->sg, data->sg_len,
1140 if (host->sd_error) {
1141 dev_err(host->mmc->parent,
1142 "Error IRQ while waiting for DMA completion!\n");
1143 /* Woken up by an error IRQ: abort DMA */
1144 data->error = sh_mmcif_error_manage(host);
1146 dev_err(host->mmc->parent, "DMA timeout!\n");
1147 data->error = -ETIMEDOUT;
1148 } else if (time < 0) {
1149 dev_err(host->mmc->parent,
1150 "wait_for_completion_...() error %ld!\n", time);
1153 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1154 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1155 host->dma_active = false;
1158 data->bytes_xfered = 0;
1160 if (data->flags & MMC_DATA_READ)
1161 dmaengine_terminate_all(host->chan_rx);
1163 dmaengine_terminate_all(host->chan_tx);
1169 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1171 struct sh_mmcif_host *host = dev_id;
1172 struct mmc_request *mrq;
1175 cancel_delayed_work_sync(&host->timeout_work);
1177 mutex_lock(&host->thread_lock);
1181 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1182 host->state, host->wait_for);
1183 mutex_unlock(&host->thread_lock);
1188 * All handlers return true, if processing continues, and false, if the
1189 * request has to be completed - successfully or not
1191 switch (host->wait_for) {
1192 case MMCIF_WAIT_FOR_REQUEST:
1193 /* We're too late, the timeout has already kicked in */
1194 mutex_unlock(&host->thread_lock);
1196 case MMCIF_WAIT_FOR_CMD:
1197 /* Wait for data? */
1198 wait = sh_mmcif_end_cmd(host);
1200 case MMCIF_WAIT_FOR_MREAD:
1201 /* Wait for more data? */
1202 wait = sh_mmcif_mread_block(host);
1204 case MMCIF_WAIT_FOR_READ:
1205 /* Wait for data end? */
1206 wait = sh_mmcif_read_block(host);
1208 case MMCIF_WAIT_FOR_MWRITE:
1209 /* Wait data to write? */
1210 wait = sh_mmcif_mwrite_block(host);
1212 case MMCIF_WAIT_FOR_WRITE:
1213 /* Wait for data end? */
1214 wait = sh_mmcif_write_block(host);
1216 case MMCIF_WAIT_FOR_STOP:
1217 if (host->sd_error) {
1218 mrq->stop->error = sh_mmcif_error_manage(host);
1219 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1222 sh_mmcif_get_cmd12response(host, mrq->stop);
1223 mrq->stop->error = 0;
1225 case MMCIF_WAIT_FOR_READ_END:
1226 case MMCIF_WAIT_FOR_WRITE_END:
1227 if (host->sd_error) {
1228 mrq->data->error = sh_mmcif_error_manage(host);
1229 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1237 schedule_delayed_work(&host->timeout_work, host->timeout);
1238 /* Wait for more data */
1239 mutex_unlock(&host->thread_lock);
1243 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1244 struct mmc_data *data = mrq->data;
1245 if (!mrq->cmd->error && data && !data->error)
1246 data->bytes_xfered =
1247 data->blocks * data->blksz;
1249 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1250 sh_mmcif_stop_cmd(host, mrq);
1251 if (!mrq->stop->error) {
1252 schedule_delayed_work(&host->timeout_work, host->timeout);
1253 mutex_unlock(&host->thread_lock);
1259 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1260 host->state = STATE_IDLE;
1262 mmc_request_done(host->mmc, mrq);
1264 mutex_unlock(&host->thread_lock);
1269 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1271 struct sh_mmcif_host *host = dev_id;
1274 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1275 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1276 if (host->ccs_enable)
1277 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1279 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1280 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1282 if (state & ~MASK_CLEAN)
1283 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1286 if (state & INT_ERR_STS || state & ~INT_ALL) {
1287 host->sd_error = true;
1288 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1290 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1292 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1293 if (!host->dma_active)
1294 return IRQ_WAKE_THREAD;
1295 else if (host->sd_error)
1296 mmcif_dma_complete(host);
1298 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1304 static void mmcif_timeout_work(struct work_struct *work)
1306 struct delayed_work *d = container_of(work, struct delayed_work, work);
1307 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1308 struct mmc_request *mrq = host->mrq;
1309 unsigned long flags;
1312 /* Don't run after mmc_remove_host() */
1315 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1316 host->wait_for, mrq->cmd->opcode);
1318 spin_lock_irqsave(&host->lock, flags);
1319 if (host->state == STATE_IDLE) {
1320 spin_unlock_irqrestore(&host->lock, flags);
1324 host->state = STATE_TIMEOUT;
1325 spin_unlock_irqrestore(&host->lock, flags);
1328 * Handle races with cancel_delayed_work(), unless
1329 * cancel_delayed_work_sync() is used
1331 switch (host->wait_for) {
1332 case MMCIF_WAIT_FOR_CMD:
1333 mrq->cmd->error = sh_mmcif_error_manage(host);
1335 case MMCIF_WAIT_FOR_STOP:
1336 mrq->stop->error = sh_mmcif_error_manage(host);
1338 case MMCIF_WAIT_FOR_MREAD:
1339 case MMCIF_WAIT_FOR_MWRITE:
1340 case MMCIF_WAIT_FOR_READ:
1341 case MMCIF_WAIT_FOR_WRITE:
1342 case MMCIF_WAIT_FOR_READ_END:
1343 case MMCIF_WAIT_FOR_WRITE_END:
1344 mrq->data->error = sh_mmcif_error_manage(host);
1350 host->state = STATE_IDLE;
1351 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1353 mmc_request_done(host->mmc, mrq);
1356 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1358 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1359 struct mmc_host *mmc = host->mmc;
1361 mmc_regulator_get_supply(mmc);
1366 if (!mmc->ocr_avail)
1367 mmc->ocr_avail = pd->ocr;
1369 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1372 static int sh_mmcif_probe(struct platform_device *pdev)
1374 int ret = 0, irq[2];
1375 struct mmc_host *mmc;
1376 struct sh_mmcif_host *host;
1377 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1378 struct resource *res;
1382 irq[0] = platform_get_irq(pdev, 0);
1383 irq[1] = platform_get_irq(pdev, 1);
1385 dev_err(&pdev->dev, "Get irq error\n");
1389 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1390 reg = devm_ioremap_resource(&pdev->dev, res);
1392 return PTR_ERR(reg);
1394 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1398 ret = mmc_of_parse(mmc);
1402 host = mmc_priv(mmc);
1405 host->timeout = msecs_to_jiffies(1000);
1406 host->ccs_enable = !pd || !pd->ccs_unsupported;
1407 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1411 spin_lock_init(&host->lock);
1413 mmc->ops = &sh_mmcif_ops;
1414 sh_mmcif_init_ocr(host);
1416 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1418 mmc->caps |= pd->caps;
1420 mmc->max_blk_size = 512;
1421 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1422 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1423 mmc->max_seg_size = mmc->max_req_size;
1425 platform_set_drvdata(pdev, host);
1427 pm_runtime_enable(&pdev->dev);
1428 host->power = false;
1430 host->hclk = devm_clk_get(&pdev->dev, NULL);
1431 if (IS_ERR(host->hclk)) {
1432 ret = PTR_ERR(host->hclk);
1433 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1436 ret = sh_mmcif_clk_update(host);
1440 ret = pm_runtime_resume(&pdev->dev);
1444 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1446 sh_mmcif_sync_reset(host);
1447 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1449 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1450 ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1451 sh_mmcif_irqt, 0, name, host);
1453 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1457 ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1458 sh_mmcif_intr, sh_mmcif_irqt,
1459 0, "sh_mmc:int", host);
1461 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1466 if (pd && pd->use_cd_gpio) {
1467 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1472 mutex_init(&host->thread_lock);
1474 ret = mmc_add_host(mmc);
1478 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1480 dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1481 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1482 clk_get_rate(host->hclk) / 1000000UL);
1484 clk_disable_unprepare(host->hclk);
1488 clk_disable_unprepare(host->hclk);
1490 pm_runtime_disable(&pdev->dev);
1496 static int sh_mmcif_remove(struct platform_device *pdev)
1498 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1501 clk_prepare_enable(host->hclk);
1502 pm_runtime_get_sync(&pdev->dev);
1504 dev_pm_qos_hide_latency_limit(&pdev->dev);
1506 mmc_remove_host(host->mmc);
1507 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1510 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1511 * mmc_remove_host() call above. But swapping order doesn't help either
1512 * (a query on the linux-mmc mailing list didn't bring any replies).
1514 cancel_delayed_work_sync(&host->timeout_work);
1516 clk_disable_unprepare(host->hclk);
1517 mmc_free_host(host->mmc);
1518 pm_runtime_put_sync(&pdev->dev);
1519 pm_runtime_disable(&pdev->dev);
1524 #ifdef CONFIG_PM_SLEEP
1525 static int sh_mmcif_suspend(struct device *dev)
1527 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1529 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1534 static int sh_mmcif_resume(struct device *dev)
1540 static const struct of_device_id mmcif_of_match[] = {
1541 { .compatible = "renesas,sh-mmcif" },
1544 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1546 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1547 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1550 static struct platform_driver sh_mmcif_driver = {
1551 .probe = sh_mmcif_probe,
1552 .remove = sh_mmcif_remove,
1554 .name = DRIVER_NAME,
1555 .pm = &sh_mmcif_dev_pm_ops,
1556 .owner = THIS_MODULE,
1557 .of_match_table = mmcif_of_match,
1561 module_platform_driver(sh_mmcif_driver);
1563 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("platform:" DRIVER_NAME);
1566 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");