mmc: sh_mmcif: remove unneeded struct sh_mmcif_dma, prepare to shdma conversion
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63
64 #define DRIVER_NAME     "sh_mmcif"
65 #define DRIVER_VERSION  "2010-04-28"
66
67 /* CE_CMD_SET */
68 #define CMD_MASK                0x3f000000
69 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY            (1 << 21) /* R1b */
73 #define CMD_SET_CCSEN           (1 << 20)
74 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH            (1 << 5)
89 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
92
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK          (1 << 0)
95
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK         0x0000ffff
98
99 /* CE_INT */
100 #define INT_CCSDE               (1 << 29)
101 #define INT_CMD12DRE            (1 << 26)
102 #define INT_CMD12RBE            (1 << 25)
103 #define INT_CMD12CRE            (1 << 24)
104 #define INT_DTRANE              (1 << 23)
105 #define INT_BUFRE               (1 << 22)
106 #define INT_BUFWEN              (1 << 21)
107 #define INT_BUFREN              (1 << 20)
108 #define INT_CCSRCV              (1 << 19)
109 #define INT_RBSYE               (1 << 17)
110 #define INT_CRSPE               (1 << 16)
111 #define INT_CMDVIO              (1 << 15)
112 #define INT_BUFVIO              (1 << 14)
113 #define INT_WDATERR             (1 << 11)
114 #define INT_RDATERR             (1 << 10)
115 #define INT_RIDXERR             (1 << 9)
116 #define INT_RSPERR              (1 << 8)
117 #define INT_CCSTO               (1 << 5)
118 #define INT_CRCSTO              (1 << 4)
119 #define INT_WDATTO              (1 << 3)
120 #define INT_RDATTO              (1 << 2)
121 #define INT_RBSYTO              (1 << 1)
122 #define INT_RSPTO               (1 << 0)
123 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
124                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
126                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ             (1 << 31)
161
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE             (1 << 31)
164 #define STS2_CRC16E             (1 << 30)
165 #define STS2_AC12CRCE           (1 << 29)
166 #define STS2_RSPCRC7E           (1 << 28)
167 #define STS2_CRCSTEBE           (1 << 27)
168 #define STS2_RDATEBE            (1 << 26)
169 #define STS2_AC12REBE           (1 << 25)
170 #define STS2_RSPEBE             (1 << 24)
171 #define STS2_AC12IDXE           (1 << 23)
172 #define STS2_RSPIDXE            (1 << 22)
173 #define STS2_CCSTO              (1 << 15)
174 #define STS2_RDATTO             (1 << 14)
175 #define STS2_DATBSYTO           (1 << 13)
176 #define STS2_CRCSTTO            (1 << 12)
177 #define STS2_AC12BSYTO          (1 << 11)
178 #define STS2_RSPBSYTO           (1 << 10)
179 #define STS2_AC12RSPTO          (1 << 9)
180 #define STS2_RSPTO              (1 << 8)
181 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
182                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
184                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
185                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
186                                  STS2_AC12RSPTO | STS2_RSPTO)
187
188 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
190 #define CLKDEV_INIT             400000   /* 400 KHz */
191
192 enum mmcif_state {
193         STATE_IDLE,
194         STATE_REQUEST,
195         STATE_IOS,
196 };
197
198 enum mmcif_wait_for {
199         MMCIF_WAIT_FOR_REQUEST,
200         MMCIF_WAIT_FOR_CMD,
201         MMCIF_WAIT_FOR_MREAD,
202         MMCIF_WAIT_FOR_MWRITE,
203         MMCIF_WAIT_FOR_READ,
204         MMCIF_WAIT_FOR_WRITE,
205         MMCIF_WAIT_FOR_READ_END,
206         MMCIF_WAIT_FOR_WRITE_END,
207         MMCIF_WAIT_FOR_STOP,
208 };
209
210 struct sh_mmcif_host {
211         struct mmc_host *mmc;
212         struct mmc_request *mrq;
213         struct platform_device *pd;
214         struct sh_dmae_slave dma_slave_tx;
215         struct sh_dmae_slave dma_slave_rx;
216         struct clk *hclk;
217         unsigned int clk;
218         int bus_width;
219         bool sd_error;
220         bool dying;
221         long timeout;
222         void __iomem *addr;
223         u32 *pio_ptr;
224         spinlock_t lock;                /* protect sh_mmcif_host::state */
225         enum mmcif_state state;
226         enum mmcif_wait_for wait_for;
227         struct delayed_work timeout_work;
228         size_t blocksize;
229         int sg_idx;
230         int sg_blkidx;
231         bool power;
232         bool card_present;
233
234         /* DMA support */
235         struct dma_chan         *chan_rx;
236         struct dma_chan         *chan_tx;
237         struct completion       dma_complete;
238         bool                    dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242                                         unsigned int reg, u32 val)
243 {
244         writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248                                         unsigned int reg, u32 val)
249 {
250         writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255         struct sh_mmcif_host *host = arg;
256         struct mmc_data *data = host->mrq->data;
257
258         dev_dbg(&host->pd->dev, "Command completed\n");
259
260         if (WARN(!data, "%s: NULL data in DMA completion!\n",
261                  dev_name(&host->pd->dev)))
262                 return;
263
264         if (data->flags & MMC_DATA_READ)
265                 dma_unmap_sg(host->chan_rx->device->dev,
266                              data->sg, data->sg_len,
267                              DMA_FROM_DEVICE);
268         else
269                 dma_unmap_sg(host->chan_tx->device->dev,
270                              data->sg, data->sg_len,
271                              DMA_TO_DEVICE);
272
273         complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278         struct mmc_data *data = host->mrq->data;
279         struct scatterlist *sg = data->sg;
280         struct dma_async_tx_descriptor *desc = NULL;
281         struct dma_chan *chan = host->chan_rx;
282         dma_cookie_t cookie = -EINVAL;
283         int ret;
284
285         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286                          DMA_FROM_DEVICE);
287         if (ret > 0) {
288                 host->dma_active = true;
289                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291         }
292
293         if (desc) {
294                 desc->callback = mmcif_dma_complete;
295                 desc->callback_param = host;
296                 cookie = dmaengine_submit(desc);
297                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298                 dma_async_issue_pending(chan);
299         }
300         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301                 __func__, data->sg_len, ret, cookie);
302
303         if (!desc) {
304                 /* DMA failed, fall back to PIO */
305                 if (ret >= 0)
306                         ret = -EIO;
307                 host->chan_rx = NULL;
308                 host->dma_active = false;
309                 dma_release_channel(chan);
310                 /* Free the Tx channel too */
311                 chan = host->chan_tx;
312                 if (chan) {
313                         host->chan_tx = NULL;
314                         dma_release_channel(chan);
315                 }
316                 dev_warn(&host->pd->dev,
317                          "DMA failed: %d, falling back to PIO\n", ret);
318                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319         }
320
321         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322                 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327         struct mmc_data *data = host->mrq->data;
328         struct scatterlist *sg = data->sg;
329         struct dma_async_tx_descriptor *desc = NULL;
330         struct dma_chan *chan = host->chan_tx;
331         dma_cookie_t cookie = -EINVAL;
332         int ret;
333
334         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335                          DMA_TO_DEVICE);
336         if (ret > 0) {
337                 host->dma_active = true;
338                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340         }
341
342         if (desc) {
343                 desc->callback = mmcif_dma_complete;
344                 desc->callback_param = host;
345                 cookie = dmaengine_submit(desc);
346                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347                 dma_async_issue_pending(chan);
348         }
349         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350                 __func__, data->sg_len, ret, cookie);
351
352         if (!desc) {
353                 /* DMA failed, fall back to PIO */
354                 if (ret >= 0)
355                         ret = -EIO;
356                 host->chan_tx = NULL;
357                 host->dma_active = false;
358                 dma_release_channel(chan);
359                 /* Free the Rx channel too */
360                 chan = host->chan_rx;
361                 if (chan) {
362                         host->chan_rx = NULL;
363                         dma_release_channel(chan);
364                 }
365                 dev_warn(&host->pd->dev,
366                          "DMA failed: %d, falling back to PIO\n", ret);
367                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368         }
369
370         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371                 desc, cookie);
372 }
373
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377         chan->private = arg;
378         return true;
379 }
380
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382                                  struct sh_mmcif_plat_data *pdata)
383 {
384         struct sh_dmae_slave *tx, *rx;
385         host->dma_active = false;
386
387         /* We can only either use DMA for both Tx and Rx or not use it at all */
388         tx = &host->dma_slave_tx;
389         tx->shdma_slave.slave_id = pdata->slave_id_tx;
390         rx = &host->dma_slave_rx;
391         rx->shdma_slave.slave_id = pdata->slave_id_rx;
392
393         if (tx->shdma_slave.slave_id > 0 && rx->shdma_slave.slave_id > 0) {
394                 dma_cap_mask_t mask;
395
396                 dma_cap_zero(mask);
397                 dma_cap_set(DMA_SLAVE, mask);
398
399                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
400                                                     &tx->shdma_slave);
401                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
402                         host->chan_tx);
403
404                 if (!host->chan_tx)
405                         return;
406
407                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
408                                                     &rx->shdma_slave);
409                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
410                         host->chan_rx);
411
412                 if (!host->chan_rx) {
413                         dma_release_channel(host->chan_tx);
414                         host->chan_tx = NULL;
415                         return;
416                 }
417
418                 init_completion(&host->dma_complete);
419         }
420 }
421
422 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
423 {
424         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
425         /* Descriptors are freed automatically */
426         if (host->chan_tx) {
427                 struct dma_chan *chan = host->chan_tx;
428                 host->chan_tx = NULL;
429                 dma_release_channel(chan);
430         }
431         if (host->chan_rx) {
432                 struct dma_chan *chan = host->chan_rx;
433                 host->chan_rx = NULL;
434                 dma_release_channel(chan);
435         }
436
437         host->dma_active = false;
438 }
439
440 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
441 {
442         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
443
444         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
445         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
446
447         if (!clk)
448                 return;
449         if (p->sup_pclk && clk == host->clk)
450                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
451         else
452                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
453                                 ((fls(DIV_ROUND_UP(host->clk,
454                                                    clk) - 1) - 1) << 16));
455
456         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
457 }
458
459 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
460 {
461         u32 tmp;
462
463         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
464
465         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
466         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
467         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
468                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
469         /* byte swap on */
470         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
471 }
472
473 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
474 {
475         u32 state1, state2;
476         int ret, timeout;
477
478         host->sd_error = false;
479
480         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
481         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
482         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
483         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
484
485         if (state1 & STS1_CMDSEQ) {
486                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
487                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
488                 for (timeout = 10000000; timeout; timeout--) {
489                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
490                               & STS1_CMDSEQ))
491                                 break;
492                         mdelay(1);
493                 }
494                 if (!timeout) {
495                         dev_err(&host->pd->dev,
496                                 "Forced end of command sequence timeout err\n");
497                         return -EIO;
498                 }
499                 sh_mmcif_sync_reset(host);
500                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
501                 return -EIO;
502         }
503
504         if (state2 & STS2_CRC_ERR) {
505                 dev_dbg(&host->pd->dev, ": CRC error\n");
506                 ret = -EIO;
507         } else if (state2 & STS2_TIMEOUT_ERR) {
508                 dev_dbg(&host->pd->dev, ": Timeout\n");
509                 ret = -ETIMEDOUT;
510         } else {
511                 dev_dbg(&host->pd->dev, ": End/Index error\n");
512                 ret = -EIO;
513         }
514         return ret;
515 }
516
517 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
518 {
519         struct mmc_data *data = host->mrq->data;
520
521         host->sg_blkidx += host->blocksize;
522
523         /* data->sg->length must be a multiple of host->blocksize? */
524         BUG_ON(host->sg_blkidx > data->sg->length);
525
526         if (host->sg_blkidx == data->sg->length) {
527                 host->sg_blkidx = 0;
528                 if (++host->sg_idx < data->sg_len)
529                         host->pio_ptr = sg_virt(++data->sg);
530         } else {
531                 host->pio_ptr = p;
532         }
533
534         if (host->sg_idx == data->sg_len)
535                 return false;
536
537         return true;
538 }
539
540 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
541                                  struct mmc_request *mrq)
542 {
543         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
544                            BLOCK_SIZE_MASK) + 3;
545
546         host->wait_for = MMCIF_WAIT_FOR_READ;
547         schedule_delayed_work(&host->timeout_work, host->timeout);
548
549         /* buf read enable */
550         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
551 }
552
553 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
554 {
555         struct mmc_data *data = host->mrq->data;
556         u32 *p = sg_virt(data->sg);
557         int i;
558
559         if (host->sd_error) {
560                 data->error = sh_mmcif_error_manage(host);
561                 return false;
562         }
563
564         for (i = 0; i < host->blocksize / 4; i++)
565                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
566
567         /* buffer read end */
568         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
569         host->wait_for = MMCIF_WAIT_FOR_READ_END;
570
571         return true;
572 }
573
574 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
575                                 struct mmc_request *mrq)
576 {
577         struct mmc_data *data = mrq->data;
578
579         if (!data->sg_len || !data->sg->length)
580                 return;
581
582         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
583                 BLOCK_SIZE_MASK;
584
585         host->wait_for = MMCIF_WAIT_FOR_MREAD;
586         host->sg_idx = 0;
587         host->sg_blkidx = 0;
588         host->pio_ptr = sg_virt(data->sg);
589         schedule_delayed_work(&host->timeout_work, host->timeout);
590         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
591 }
592
593 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
594 {
595         struct mmc_data *data = host->mrq->data;
596         u32 *p = host->pio_ptr;
597         int i;
598
599         if (host->sd_error) {
600                 data->error = sh_mmcif_error_manage(host);
601                 return false;
602         }
603
604         BUG_ON(!data->sg->length);
605
606         for (i = 0; i < host->blocksize / 4; i++)
607                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
608
609         if (!sh_mmcif_next_block(host, p))
610                 return false;
611
612         schedule_delayed_work(&host->timeout_work, host->timeout);
613         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
614
615         return true;
616 }
617
618 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
619                                         struct mmc_request *mrq)
620 {
621         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
622                            BLOCK_SIZE_MASK) + 3;
623
624         host->wait_for = MMCIF_WAIT_FOR_WRITE;
625         schedule_delayed_work(&host->timeout_work, host->timeout);
626
627         /* buf write enable */
628         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
629 }
630
631 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
632 {
633         struct mmc_data *data = host->mrq->data;
634         u32 *p = sg_virt(data->sg);
635         int i;
636
637         if (host->sd_error) {
638                 data->error = sh_mmcif_error_manage(host);
639                 return false;
640         }
641
642         for (i = 0; i < host->blocksize / 4; i++)
643                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
644
645         /* buffer write end */
646         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
647         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
648
649         return true;
650 }
651
652 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
653                                 struct mmc_request *mrq)
654 {
655         struct mmc_data *data = mrq->data;
656
657         if (!data->sg_len || !data->sg->length)
658                 return;
659
660         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
661                 BLOCK_SIZE_MASK;
662
663         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
664         host->sg_idx = 0;
665         host->sg_blkidx = 0;
666         host->pio_ptr = sg_virt(data->sg);
667         schedule_delayed_work(&host->timeout_work, host->timeout);
668         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
669 }
670
671 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
672 {
673         struct mmc_data *data = host->mrq->data;
674         u32 *p = host->pio_ptr;
675         int i;
676
677         if (host->sd_error) {
678                 data->error = sh_mmcif_error_manage(host);
679                 return false;
680         }
681
682         BUG_ON(!data->sg->length);
683
684         for (i = 0; i < host->blocksize / 4; i++)
685                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
686
687         if (!sh_mmcif_next_block(host, p))
688                 return false;
689
690         schedule_delayed_work(&host->timeout_work, host->timeout);
691         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
692
693         return true;
694 }
695
696 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
697                                                 struct mmc_command *cmd)
698 {
699         if (cmd->flags & MMC_RSP_136) {
700                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
701                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
702                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
703                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
704         } else
705                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
706 }
707
708 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
709                                                 struct mmc_command *cmd)
710 {
711         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
712 }
713
714 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
715                             struct mmc_request *mrq)
716 {
717         struct mmc_data *data = mrq->data;
718         struct mmc_command *cmd = mrq->cmd;
719         u32 opc = cmd->opcode;
720         u32 tmp = 0;
721
722         /* Response Type check */
723         switch (mmc_resp_type(cmd)) {
724         case MMC_RSP_NONE:
725                 tmp |= CMD_SET_RTYP_NO;
726                 break;
727         case MMC_RSP_R1:
728         case MMC_RSP_R1B:
729         case MMC_RSP_R3:
730                 tmp |= CMD_SET_RTYP_6B;
731                 break;
732         case MMC_RSP_R2:
733                 tmp |= CMD_SET_RTYP_17B;
734                 break;
735         default:
736                 dev_err(&host->pd->dev, "Unsupported response type.\n");
737                 break;
738         }
739         switch (opc) {
740         /* RBSY */
741         case MMC_SWITCH:
742         case MMC_STOP_TRANSMISSION:
743         case MMC_SET_WRITE_PROT:
744         case MMC_CLR_WRITE_PROT:
745         case MMC_ERASE:
746                 tmp |= CMD_SET_RBSY;
747                 break;
748         }
749         /* WDAT / DATW */
750         if (data) {
751                 tmp |= CMD_SET_WDAT;
752                 switch (host->bus_width) {
753                 case MMC_BUS_WIDTH_1:
754                         tmp |= CMD_SET_DATW_1;
755                         break;
756                 case MMC_BUS_WIDTH_4:
757                         tmp |= CMD_SET_DATW_4;
758                         break;
759                 case MMC_BUS_WIDTH_8:
760                         tmp |= CMD_SET_DATW_8;
761                         break;
762                 default:
763                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
764                         break;
765                 }
766         }
767         /* DWEN */
768         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
769                 tmp |= CMD_SET_DWEN;
770         /* CMLTE/CMD12EN */
771         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
772                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
773                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
774                                 data->blocks << 16);
775         }
776         /* RIDXC[1:0] check bits */
777         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
778             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
779                 tmp |= CMD_SET_RIDXC_BITS;
780         /* RCRC7C[1:0] check bits */
781         if (opc == MMC_SEND_OP_COND)
782                 tmp |= CMD_SET_CRC7C_BITS;
783         /* RCRC7C[1:0] internal CRC7 */
784         if (opc == MMC_ALL_SEND_CID ||
785                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
786                 tmp |= CMD_SET_CRC7C_INTERNAL;
787
788         return (opc << 24) | tmp;
789 }
790
791 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
792                                struct mmc_request *mrq, u32 opc)
793 {
794         switch (opc) {
795         case MMC_READ_MULTIPLE_BLOCK:
796                 sh_mmcif_multi_read(host, mrq);
797                 return 0;
798         case MMC_WRITE_MULTIPLE_BLOCK:
799                 sh_mmcif_multi_write(host, mrq);
800                 return 0;
801         case MMC_WRITE_BLOCK:
802                 sh_mmcif_single_write(host, mrq);
803                 return 0;
804         case MMC_READ_SINGLE_BLOCK:
805         case MMC_SEND_EXT_CSD:
806                 sh_mmcif_single_read(host, mrq);
807                 return 0;
808         default:
809                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
810                 return -EINVAL;
811         }
812 }
813
814 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
815                                struct mmc_request *mrq)
816 {
817         struct mmc_command *cmd = mrq->cmd;
818         u32 opc = cmd->opcode;
819         u32 mask;
820
821         switch (opc) {
822         /* response busy check */
823         case MMC_SWITCH:
824         case MMC_STOP_TRANSMISSION:
825         case MMC_SET_WRITE_PROT:
826         case MMC_CLR_WRITE_PROT:
827         case MMC_ERASE:
828                 mask = MASK_START_CMD | MASK_MRBSYE;
829                 break;
830         default:
831                 mask = MASK_START_CMD | MASK_MCRSPE;
832                 break;
833         }
834
835         if (mrq->data) {
836                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
837                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
838                                 mrq->data->blksz);
839         }
840         opc = sh_mmcif_set_cmd(host, mrq);
841
842         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
843         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
844         /* set arg */
845         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
846         /* set cmd */
847         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
848
849         host->wait_for = MMCIF_WAIT_FOR_CMD;
850         schedule_delayed_work(&host->timeout_work, host->timeout);
851 }
852
853 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
854                               struct mmc_request *mrq)
855 {
856         switch (mrq->cmd->opcode) {
857         case MMC_READ_MULTIPLE_BLOCK:
858                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
859                 break;
860         case MMC_WRITE_MULTIPLE_BLOCK:
861                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
862                 break;
863         default:
864                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
865                 mrq->stop->error = sh_mmcif_error_manage(host);
866                 return;
867         }
868
869         host->wait_for = MMCIF_WAIT_FOR_STOP;
870         schedule_delayed_work(&host->timeout_work, host->timeout);
871 }
872
873 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
874 {
875         struct sh_mmcif_host *host = mmc_priv(mmc);
876         unsigned long flags;
877
878         spin_lock_irqsave(&host->lock, flags);
879         if (host->state != STATE_IDLE) {
880                 spin_unlock_irqrestore(&host->lock, flags);
881                 mrq->cmd->error = -EAGAIN;
882                 mmc_request_done(mmc, mrq);
883                 return;
884         }
885
886         host->state = STATE_REQUEST;
887         spin_unlock_irqrestore(&host->lock, flags);
888
889         switch (mrq->cmd->opcode) {
890         /* MMCIF does not support SD/SDIO command */
891         case SD_IO_SEND_OP_COND:
892         case MMC_APP_CMD:
893                 host->state = STATE_IDLE;
894                 mrq->cmd->error = -ETIMEDOUT;
895                 mmc_request_done(mmc, mrq);
896                 return;
897         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
898                 if (!mrq->data) {
899                         /* send_if_cond cmd (not support) */
900                         host->state = STATE_IDLE;
901                         mrq->cmd->error = -ETIMEDOUT;
902                         mmc_request_done(mmc, mrq);
903                         return;
904                 }
905                 break;
906         default:
907                 break;
908         }
909
910         host->mrq = mrq;
911
912         sh_mmcif_start_cmd(host, mrq);
913 }
914
915 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
916 {
917         struct sh_mmcif_host *host = mmc_priv(mmc);
918         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
919         unsigned long flags;
920
921         spin_lock_irqsave(&host->lock, flags);
922         if (host->state != STATE_IDLE) {
923                 spin_unlock_irqrestore(&host->lock, flags);
924                 return;
925         }
926
927         host->state = STATE_IOS;
928         spin_unlock_irqrestore(&host->lock, flags);
929
930         if (ios->power_mode == MMC_POWER_UP) {
931                 if (!host->card_present) {
932                         /* See if we also get DMA */
933                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
934                         host->card_present = true;
935                 }
936         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
937                 /* clock stop */
938                 sh_mmcif_clock_control(host, 0);
939                 if (ios->power_mode == MMC_POWER_OFF) {
940                         if (host->card_present) {
941                                 sh_mmcif_release_dma(host);
942                                 host->card_present = false;
943                         }
944                 }
945                 if (host->power) {
946                         pm_runtime_put(&host->pd->dev);
947                         host->power = false;
948                         if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
949                                 p->down_pwr(host->pd);
950                 }
951                 host->state = STATE_IDLE;
952                 return;
953         }
954
955         if (ios->clock) {
956                 if (!host->power) {
957                         if (p->set_pwr)
958                                 p->set_pwr(host->pd, ios->power_mode);
959                         pm_runtime_get_sync(&host->pd->dev);
960                         host->power = true;
961                         sh_mmcif_sync_reset(host);
962                 }
963                 sh_mmcif_clock_control(host, ios->clock);
964         }
965
966         host->bus_width = ios->bus_width;
967         host->state = STATE_IDLE;
968 }
969
970 static int sh_mmcif_get_cd(struct mmc_host *mmc)
971 {
972         struct sh_mmcif_host *host = mmc_priv(mmc);
973         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
974
975         if (!p->get_cd)
976                 return -ENOSYS;
977         else
978                 return p->get_cd(host->pd);
979 }
980
981 static struct mmc_host_ops sh_mmcif_ops = {
982         .request        = sh_mmcif_request,
983         .set_ios        = sh_mmcif_set_ios,
984         .get_cd         = sh_mmcif_get_cd,
985 };
986
987 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
988 {
989         struct mmc_command *cmd = host->mrq->cmd;
990         struct mmc_data *data = host->mrq->data;
991         long time;
992
993         if (host->sd_error) {
994                 switch (cmd->opcode) {
995                 case MMC_ALL_SEND_CID:
996                 case MMC_SELECT_CARD:
997                 case MMC_APP_CMD:
998                         cmd->error = -ETIMEDOUT;
999                         host->sd_error = false;
1000                         break;
1001                 default:
1002                         cmd->error = sh_mmcif_error_manage(host);
1003                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1004                                 cmd->opcode, cmd->error);
1005                         break;
1006                 }
1007                 return false;
1008         }
1009         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1010                 cmd->error = 0;
1011                 return false;
1012         }
1013
1014         sh_mmcif_get_response(host, cmd);
1015
1016         if (!data)
1017                 return false;
1018
1019         if (data->flags & MMC_DATA_READ) {
1020                 if (host->chan_rx)
1021                         sh_mmcif_start_dma_rx(host);
1022         } else {
1023                 if (host->chan_tx)
1024                         sh_mmcif_start_dma_tx(host);
1025         }
1026
1027         if (!host->dma_active) {
1028                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1029                 if (!data->error)
1030                         return true;
1031                 return false;
1032         }
1033
1034         /* Running in the IRQ thread, can sleep */
1035         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1036                                                          host->timeout);
1037         if (host->sd_error) {
1038                 dev_err(host->mmc->parent,
1039                         "Error IRQ while waiting for DMA completion!\n");
1040                 /* Woken up by an error IRQ: abort DMA */
1041                 if (data->flags & MMC_DATA_READ)
1042                         dmaengine_terminate_all(host->chan_rx);
1043                 else
1044                         dmaengine_terminate_all(host->chan_tx);
1045                 data->error = sh_mmcif_error_manage(host);
1046         } else if (!time) {
1047                 data->error = -ETIMEDOUT;
1048         } else if (time < 0) {
1049                 data->error = time;
1050         }
1051         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1052                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1053         host->dma_active = false;
1054
1055         if (data->error)
1056                 data->bytes_xfered = 0;
1057
1058         return false;
1059 }
1060
1061 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1062 {
1063         struct sh_mmcif_host *host = dev_id;
1064         struct mmc_request *mrq = host->mrq;
1065         struct mmc_data *data = mrq->data;
1066
1067         cancel_delayed_work_sync(&host->timeout_work);
1068
1069         /*
1070          * All handlers return true, if processing continues, and false, if the
1071          * request has to be completed - successfully or not
1072          */
1073         switch (host->wait_for) {
1074         case MMCIF_WAIT_FOR_REQUEST:
1075                 /* We're too late, the timeout has already kicked in */
1076                 return IRQ_HANDLED;
1077         case MMCIF_WAIT_FOR_CMD:
1078                 if (sh_mmcif_end_cmd(host))
1079                         /* Wait for data */
1080                         return IRQ_HANDLED;
1081                 break;
1082         case MMCIF_WAIT_FOR_MREAD:
1083                 if (sh_mmcif_mread_block(host))
1084                         /* Wait for more data */
1085                         return IRQ_HANDLED;
1086                 break;
1087         case MMCIF_WAIT_FOR_READ:
1088                 if (sh_mmcif_read_block(host))
1089                         /* Wait for data end */
1090                         return IRQ_HANDLED;
1091                 break;
1092         case MMCIF_WAIT_FOR_MWRITE:
1093                 if (sh_mmcif_mwrite_block(host))
1094                         /* Wait data to write */
1095                         return IRQ_HANDLED;
1096                 break;
1097         case MMCIF_WAIT_FOR_WRITE:
1098                 if (sh_mmcif_write_block(host))
1099                         /* Wait for data end */
1100                         return IRQ_HANDLED;
1101                 break;
1102         case MMCIF_WAIT_FOR_STOP:
1103                 if (host->sd_error) {
1104                         mrq->stop->error = sh_mmcif_error_manage(host);
1105                         break;
1106                 }
1107                 sh_mmcif_get_cmd12response(host, mrq->stop);
1108                 mrq->stop->error = 0;
1109                 break;
1110         case MMCIF_WAIT_FOR_READ_END:
1111         case MMCIF_WAIT_FOR_WRITE_END:
1112                 if (host->sd_error)
1113                         data->error = sh_mmcif_error_manage(host);
1114                 break;
1115         default:
1116                 BUG();
1117         }
1118
1119         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1120                 if (!mrq->cmd->error && data && !data->error)
1121                         data->bytes_xfered =
1122                                 data->blocks * data->blksz;
1123
1124                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1125                         sh_mmcif_stop_cmd(host, mrq);
1126                         if (!mrq->stop->error)
1127                                 return IRQ_HANDLED;
1128                 }
1129         }
1130
1131         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1132         host->state = STATE_IDLE;
1133         host->mrq = NULL;
1134         mmc_request_done(host->mmc, mrq);
1135
1136         return IRQ_HANDLED;
1137 }
1138
1139 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1140 {
1141         struct sh_mmcif_host *host = dev_id;
1142         u32 state;
1143         int err = 0;
1144
1145         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1146
1147         if (state & INT_ERR_STS) {
1148                 /* error interrupts - process first */
1149                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1150                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1151                 err = 1;
1152         } else if (state & INT_RBSYE) {
1153                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1154                                 ~(INT_RBSYE | INT_CRSPE));
1155                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1156         } else if (state & INT_CRSPE) {
1157                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1158                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1159         } else if (state & INT_BUFREN) {
1160                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1161                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1162         } else if (state & INT_BUFWEN) {
1163                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1164                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1165         } else if (state & INT_CMD12DRE) {
1166                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1167                         ~(INT_CMD12DRE | INT_CMD12RBE |
1168                           INT_CMD12CRE | INT_BUFRE));
1169                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1170         } else if (state & INT_BUFRE) {
1171                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1172                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1173         } else if (state & INT_DTRANE) {
1174                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1175                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1176         } else if (state & INT_CMD12RBE) {
1177                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1178                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1179                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1180         } else {
1181                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1182                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1183                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1184                 err = 1;
1185         }
1186         if (err) {
1187                 host->sd_error = true;
1188                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1189         }
1190         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1191                 if (!host->dma_active)
1192                         return IRQ_WAKE_THREAD;
1193                 else if (host->sd_error)
1194                         mmcif_dma_complete(host);
1195         } else {
1196                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1197         }
1198
1199         return IRQ_HANDLED;
1200 }
1201
1202 static void mmcif_timeout_work(struct work_struct *work)
1203 {
1204         struct delayed_work *d = container_of(work, struct delayed_work, work);
1205         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1206         struct mmc_request *mrq = host->mrq;
1207
1208         if (host->dying)
1209                 /* Don't run after mmc_remove_host() */
1210                 return;
1211
1212         /*
1213          * Handle races with cancel_delayed_work(), unless
1214          * cancel_delayed_work_sync() is used
1215          */
1216         switch (host->wait_for) {
1217         case MMCIF_WAIT_FOR_CMD:
1218                 mrq->cmd->error = sh_mmcif_error_manage(host);
1219                 break;
1220         case MMCIF_WAIT_FOR_STOP:
1221                 mrq->stop->error = sh_mmcif_error_manage(host);
1222                 break;
1223         case MMCIF_WAIT_FOR_MREAD:
1224         case MMCIF_WAIT_FOR_MWRITE:
1225         case MMCIF_WAIT_FOR_READ:
1226         case MMCIF_WAIT_FOR_WRITE:
1227         case MMCIF_WAIT_FOR_READ_END:
1228         case MMCIF_WAIT_FOR_WRITE_END:
1229                 mrq->data->error = sh_mmcif_error_manage(host);
1230                 break;
1231         default:
1232                 BUG();
1233         }
1234
1235         host->state = STATE_IDLE;
1236         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1237         host->mrq = NULL;
1238         mmc_request_done(host->mmc, mrq);
1239 }
1240
1241 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1242 {
1243         int ret = 0, irq[2];
1244         struct mmc_host *mmc;
1245         struct sh_mmcif_host *host;
1246         struct sh_mmcif_plat_data *pd;
1247         struct resource *res;
1248         void __iomem *reg;
1249         char clk_name[8];
1250
1251         irq[0] = platform_get_irq(pdev, 0);
1252         irq[1] = platform_get_irq(pdev, 1);
1253         if (irq[0] < 0 || irq[1] < 0) {
1254                 dev_err(&pdev->dev, "Get irq error\n");
1255                 return -ENXIO;
1256         }
1257         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1258         if (!res) {
1259                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1260                 return -ENXIO;
1261         }
1262         reg = ioremap(res->start, resource_size(res));
1263         if (!reg) {
1264                 dev_err(&pdev->dev, "ioremap error.\n");
1265                 return -ENOMEM;
1266         }
1267         pd = pdev->dev.platform_data;
1268         if (!pd) {
1269                 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1270                 ret = -ENXIO;
1271                 goto clean_up;
1272         }
1273         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1274         if (!mmc) {
1275                 ret = -ENOMEM;
1276                 goto clean_up;
1277         }
1278         host            = mmc_priv(mmc);
1279         host->mmc       = mmc;
1280         host->addr      = reg;
1281         host->timeout   = 1000;
1282
1283         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1284         host->hclk = clk_get(&pdev->dev, clk_name);
1285         if (IS_ERR(host->hclk)) {
1286                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1287                 ret = PTR_ERR(host->hclk);
1288                 goto clean_up1;
1289         }
1290         clk_enable(host->hclk);
1291         host->clk = clk_get_rate(host->hclk);
1292         host->pd = pdev;
1293
1294         spin_lock_init(&host->lock);
1295
1296         mmc->ops = &sh_mmcif_ops;
1297         mmc->f_max = host->clk / 2;
1298         mmc->f_min = host->clk / 512;
1299         if (pd->ocr)
1300                 mmc->ocr_avail = pd->ocr;
1301         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1302         if (pd->caps)
1303                 mmc->caps |= pd->caps;
1304         mmc->max_segs = 32;
1305         mmc->max_blk_size = 512;
1306         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1307         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1308         mmc->max_seg_size = mmc->max_req_size;
1309
1310         sh_mmcif_sync_reset(host);
1311         platform_set_drvdata(pdev, host);
1312
1313         pm_runtime_enable(&pdev->dev);
1314         host->power = false;
1315
1316         ret = pm_runtime_resume(&pdev->dev);
1317         if (ret < 0)
1318                 goto clean_up2;
1319
1320         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1321
1322         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1323
1324         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1325         if (ret) {
1326                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1327                 goto clean_up3;
1328         }
1329         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1330         if (ret) {
1331                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1332                 goto clean_up4;
1333         }
1334
1335         ret = mmc_add_host(mmc);
1336         if (ret < 0)
1337                 goto clean_up5;
1338
1339         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1340
1341         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1342         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1343                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1344         return ret;
1345
1346 clean_up5:
1347         free_irq(irq[1], host);
1348 clean_up4:
1349         free_irq(irq[0], host);
1350 clean_up3:
1351         pm_runtime_suspend(&pdev->dev);
1352 clean_up2:
1353         pm_runtime_disable(&pdev->dev);
1354         clk_disable(host->hclk);
1355 clean_up1:
1356         mmc_free_host(mmc);
1357 clean_up:
1358         if (reg)
1359                 iounmap(reg);
1360         return ret;
1361 }
1362
1363 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1364 {
1365         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1366         int irq[2];
1367
1368         host->dying = true;
1369         pm_runtime_get_sync(&pdev->dev);
1370
1371         dev_pm_qos_hide_latency_limit(&pdev->dev);
1372
1373         mmc_remove_host(host->mmc);
1374         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1375
1376         /*
1377          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1378          * mmc_remove_host() call above. But swapping order doesn't help either
1379          * (a query on the linux-mmc mailing list didn't bring any replies).
1380          */
1381         cancel_delayed_work_sync(&host->timeout_work);
1382
1383         if (host->addr)
1384                 iounmap(host->addr);
1385
1386         irq[0] = platform_get_irq(pdev, 0);
1387         irq[1] = platform_get_irq(pdev, 1);
1388
1389         free_irq(irq[0], host);
1390         free_irq(irq[1], host);
1391
1392         platform_set_drvdata(pdev, NULL);
1393
1394         clk_disable(host->hclk);
1395         mmc_free_host(host->mmc);
1396         pm_runtime_put_sync(&pdev->dev);
1397         pm_runtime_disable(&pdev->dev);
1398
1399         return 0;
1400 }
1401
1402 #ifdef CONFIG_PM
1403 static int sh_mmcif_suspend(struct device *dev)
1404 {
1405         struct platform_device *pdev = to_platform_device(dev);
1406         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1407         int ret = mmc_suspend_host(host->mmc);
1408
1409         if (!ret) {
1410                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1411                 clk_disable(host->hclk);
1412         }
1413
1414         return ret;
1415 }
1416
1417 static int sh_mmcif_resume(struct device *dev)
1418 {
1419         struct platform_device *pdev = to_platform_device(dev);
1420         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1421
1422         clk_enable(host->hclk);
1423
1424         return mmc_resume_host(host->mmc);
1425 }
1426 #else
1427 #define sh_mmcif_suspend        NULL
1428 #define sh_mmcif_resume         NULL
1429 #endif  /* CONFIG_PM */
1430
1431 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1432         .suspend = sh_mmcif_suspend,
1433         .resume = sh_mmcif_resume,
1434 };
1435
1436 static struct platform_driver sh_mmcif_driver = {
1437         .probe          = sh_mmcif_probe,
1438         .remove         = sh_mmcif_remove,
1439         .driver         = {
1440                 .name   = DRIVER_NAME,
1441                 .pm     = &sh_mmcif_dev_pm_ops,
1442         },
1443 };
1444
1445 module_platform_driver(sh_mmcif_driver);
1446
1447 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1448 MODULE_LICENSE("GPL");
1449 MODULE_ALIAS("platform:" DRIVER_NAME);
1450 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");