Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/pagemap.h>
60 #include <linux/platform_device.h>
61 #include <linux/pm_qos.h>
62 #include <linux/pm_runtime.h>
63 #include <linux/spinlock.h>
64 #include <linux/module.h>
65
66 #define DRIVER_NAME     "sh_mmcif"
67 #define DRIVER_VERSION  "2010-04-28"
68
69 /* CE_CMD_SET */
70 #define CMD_MASK                0x3f000000
71 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
72 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
73 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
74 #define CMD_SET_RBSY            (1 << 21) /* R1b */
75 #define CMD_SET_CCSEN           (1 << 20)
76 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
77 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
78 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
79 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
80 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
81 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
82 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
83 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
84 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
85 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
86 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
87 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
88 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
89 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
90 #define CMD_SET_CCSH            (1 << 5)
91 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
92 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
93 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
94
95 /* CE_CMD_CTRL */
96 #define CMD_CTRL_BREAK          (1 << 0)
97
98 /* CE_BLOCK_SET */
99 #define BLOCK_SIZE_MASK         0x0000ffff
100
101 /* CE_INT */
102 #define INT_CCSDE               (1 << 29)
103 #define INT_CMD12DRE            (1 << 26)
104 #define INT_CMD12RBE            (1 << 25)
105 #define INT_CMD12CRE            (1 << 24)
106 #define INT_DTRANE              (1 << 23)
107 #define INT_BUFRE               (1 << 22)
108 #define INT_BUFWEN              (1 << 21)
109 #define INT_BUFREN              (1 << 20)
110 #define INT_CCSRCV              (1 << 19)
111 #define INT_RBSYE               (1 << 17)
112 #define INT_CRSPE               (1 << 16)
113 #define INT_CMDVIO              (1 << 15)
114 #define INT_BUFVIO              (1 << 14)
115 #define INT_WDATERR             (1 << 11)
116 #define INT_RDATERR             (1 << 10)
117 #define INT_RIDXERR             (1 << 9)
118 #define INT_RSPERR              (1 << 8)
119 #define INT_CCSTO               (1 << 5)
120 #define INT_CRCSTO              (1 << 4)
121 #define INT_WDATTO              (1 << 3)
122 #define INT_RDATTO              (1 << 2)
123 #define INT_RBSYTO              (1 << 1)
124 #define INT_RSPTO               (1 << 0)
125 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
126                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
127                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
128                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
129
130 /* CE_INT_MASK */
131 #define MASK_ALL                0x00000000
132 #define MASK_MCCSDE             (1 << 29)
133 #define MASK_MCMD12DRE          (1 << 26)
134 #define MASK_MCMD12RBE          (1 << 25)
135 #define MASK_MCMD12CRE          (1 << 24)
136 #define MASK_MDTRANE            (1 << 23)
137 #define MASK_MBUFRE             (1 << 22)
138 #define MASK_MBUFWEN            (1 << 21)
139 #define MASK_MBUFREN            (1 << 20)
140 #define MASK_MCCSRCV            (1 << 19)
141 #define MASK_MRBSYE             (1 << 17)
142 #define MASK_MCRSPE             (1 << 16)
143 #define MASK_MCMDVIO            (1 << 15)
144 #define MASK_MBUFVIO            (1 << 14)
145 #define MASK_MWDATERR           (1 << 11)
146 #define MASK_MRDATERR           (1 << 10)
147 #define MASK_MRIDXERR           (1 << 9)
148 #define MASK_MRSPERR            (1 << 8)
149 #define MASK_MCCSTO             (1 << 5)
150 #define MASK_MCRCSTO            (1 << 4)
151 #define MASK_MWDATTO            (1 << 3)
152 #define MASK_MRDATTO            (1 << 2)
153 #define MASK_MRBSYTO            (1 << 1)
154 #define MASK_MRSPTO             (1 << 0)
155
156 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
157                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
158                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
159                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160
161 /* CE_HOST_STS1 */
162 #define STS1_CMDSEQ             (1 << 31)
163
164 /* CE_HOST_STS2 */
165 #define STS2_CRCSTE             (1 << 31)
166 #define STS2_CRC16E             (1 << 30)
167 #define STS2_AC12CRCE           (1 << 29)
168 #define STS2_RSPCRC7E           (1 << 28)
169 #define STS2_CRCSTEBE           (1 << 27)
170 #define STS2_RDATEBE            (1 << 26)
171 #define STS2_AC12REBE           (1 << 25)
172 #define STS2_RSPEBE             (1 << 24)
173 #define STS2_AC12IDXE           (1 << 23)
174 #define STS2_RSPIDXE            (1 << 22)
175 #define STS2_CCSTO              (1 << 15)
176 #define STS2_RDATTO             (1 << 14)
177 #define STS2_DATBSYTO           (1 << 13)
178 #define STS2_CRCSTTO            (1 << 12)
179 #define STS2_AC12BSYTO          (1 << 11)
180 #define STS2_RSPBSYTO           (1 << 10)
181 #define STS2_AC12RSPTO          (1 << 9)
182 #define STS2_RSPTO              (1 << 8)
183 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
184                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
185 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
186                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
187                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
188                                  STS2_AC12RSPTO | STS2_RSPTO)
189
190 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
191 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
192 #define CLKDEV_INIT             400000   /* 400 KHz */
193
194 enum mmcif_state {
195         STATE_IDLE,
196         STATE_REQUEST,
197         STATE_IOS,
198 };
199
200 enum mmcif_wait_for {
201         MMCIF_WAIT_FOR_REQUEST,
202         MMCIF_WAIT_FOR_CMD,
203         MMCIF_WAIT_FOR_MREAD,
204         MMCIF_WAIT_FOR_MWRITE,
205         MMCIF_WAIT_FOR_READ,
206         MMCIF_WAIT_FOR_WRITE,
207         MMCIF_WAIT_FOR_READ_END,
208         MMCIF_WAIT_FOR_WRITE_END,
209         MMCIF_WAIT_FOR_STOP,
210 };
211
212 struct sh_mmcif_host {
213         struct mmc_host *mmc;
214         struct mmc_request *mrq;
215         struct platform_device *pd;
216         struct clk *hclk;
217         unsigned int clk;
218         int bus_width;
219         bool sd_error;
220         bool dying;
221         long timeout;
222         void __iomem *addr;
223         u32 *pio_ptr;
224         spinlock_t lock;                /* protect sh_mmcif_host::state */
225         enum mmcif_state state;
226         enum mmcif_wait_for wait_for;
227         struct delayed_work timeout_work;
228         size_t blocksize;
229         int sg_idx;
230         int sg_blkidx;
231         bool power;
232         bool card_present;
233
234         /* DMA support */
235         struct dma_chan         *chan_rx;
236         struct dma_chan         *chan_tx;
237         struct completion       dma_complete;
238         bool                    dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242                                         unsigned int reg, u32 val)
243 {
244         writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248                                         unsigned int reg, u32 val)
249 {
250         writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255         struct sh_mmcif_host *host = arg;
256         struct mmc_data *data = host->mrq->data;
257
258         dev_dbg(&host->pd->dev, "Command completed\n");
259
260         if (WARN(!data, "%s: NULL data in DMA completion!\n",
261                  dev_name(&host->pd->dev)))
262                 return;
263
264         if (data->flags & MMC_DATA_READ)
265                 dma_unmap_sg(host->chan_rx->device->dev,
266                              data->sg, data->sg_len,
267                              DMA_FROM_DEVICE);
268         else
269                 dma_unmap_sg(host->chan_tx->device->dev,
270                              data->sg, data->sg_len,
271                              DMA_TO_DEVICE);
272
273         complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278         struct mmc_data *data = host->mrq->data;
279         struct scatterlist *sg = data->sg;
280         struct dma_async_tx_descriptor *desc = NULL;
281         struct dma_chan *chan = host->chan_rx;
282         dma_cookie_t cookie = -EINVAL;
283         int ret;
284
285         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286                          DMA_FROM_DEVICE);
287         if (ret > 0) {
288                 host->dma_active = true;
289                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291         }
292
293         if (desc) {
294                 desc->callback = mmcif_dma_complete;
295                 desc->callback_param = host;
296                 cookie = dmaengine_submit(desc);
297                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298                 dma_async_issue_pending(chan);
299         }
300         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301                 __func__, data->sg_len, ret, cookie);
302
303         if (!desc) {
304                 /* DMA failed, fall back to PIO */
305                 if (ret >= 0)
306                         ret = -EIO;
307                 host->chan_rx = NULL;
308                 host->dma_active = false;
309                 dma_release_channel(chan);
310                 /* Free the Tx channel too */
311                 chan = host->chan_tx;
312                 if (chan) {
313                         host->chan_tx = NULL;
314                         dma_release_channel(chan);
315                 }
316                 dev_warn(&host->pd->dev,
317                          "DMA failed: %d, falling back to PIO\n", ret);
318                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319         }
320
321         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322                 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327         struct mmc_data *data = host->mrq->data;
328         struct scatterlist *sg = data->sg;
329         struct dma_async_tx_descriptor *desc = NULL;
330         struct dma_chan *chan = host->chan_tx;
331         dma_cookie_t cookie = -EINVAL;
332         int ret;
333
334         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335                          DMA_TO_DEVICE);
336         if (ret > 0) {
337                 host->dma_active = true;
338                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340         }
341
342         if (desc) {
343                 desc->callback = mmcif_dma_complete;
344                 desc->callback_param = host;
345                 cookie = dmaengine_submit(desc);
346                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347                 dma_async_issue_pending(chan);
348         }
349         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350                 __func__, data->sg_len, ret, cookie);
351
352         if (!desc) {
353                 /* DMA failed, fall back to PIO */
354                 if (ret >= 0)
355                         ret = -EIO;
356                 host->chan_tx = NULL;
357                 host->dma_active = false;
358                 dma_release_channel(chan);
359                 /* Free the Rx channel too */
360                 chan = host->chan_rx;
361                 if (chan) {
362                         host->chan_rx = NULL;
363                         dma_release_channel(chan);
364                 }
365                 dev_warn(&host->pd->dev,
366                          "DMA failed: %d, falling back to PIO\n", ret);
367                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368         }
369
370         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371                 desc, cookie);
372 }
373
374 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
375                                  struct sh_mmcif_plat_data *pdata)
376 {
377         struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
378         struct dma_slave_config cfg;
379         dma_cap_mask_t mask;
380         int ret;
381
382         host->dma_active = false;
383
384         if (!pdata)
385                 return;
386
387         if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
388                 return;
389
390         /* We can only either use DMA for both Tx and Rx or not use it at all */
391         dma_cap_zero(mask);
392         dma_cap_set(DMA_SLAVE, mask);
393
394         host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
395                                             (void *)pdata->slave_id_tx);
396         dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
397                 host->chan_tx);
398
399         if (!host->chan_tx)
400                 return;
401
402         cfg.slave_id = pdata->slave_id_tx;
403         cfg.direction = DMA_MEM_TO_DEV;
404         cfg.dst_addr = res->start + MMCIF_CE_DATA;
405         cfg.src_addr = 0;
406         ret = dmaengine_slave_config(host->chan_tx, &cfg);
407         if (ret < 0)
408                 goto ecfgtx;
409
410         host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
411                                             (void *)pdata->slave_id_rx);
412         dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
413                 host->chan_rx);
414
415         if (!host->chan_rx)
416                 goto erqrx;
417
418         cfg.slave_id = pdata->slave_id_rx;
419         cfg.direction = DMA_DEV_TO_MEM;
420         cfg.dst_addr = 0;
421         cfg.src_addr = res->start + MMCIF_CE_DATA;
422         ret = dmaengine_slave_config(host->chan_rx, &cfg);
423         if (ret < 0)
424                 goto ecfgrx;
425
426         init_completion(&host->dma_complete);
427
428         return;
429
430 ecfgrx:
431         dma_release_channel(host->chan_rx);
432         host->chan_rx = NULL;
433 erqrx:
434 ecfgtx:
435         dma_release_channel(host->chan_tx);
436         host->chan_tx = NULL;
437 }
438
439 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
440 {
441         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
442         /* Descriptors are freed automatically */
443         if (host->chan_tx) {
444                 struct dma_chan *chan = host->chan_tx;
445                 host->chan_tx = NULL;
446                 dma_release_channel(chan);
447         }
448         if (host->chan_rx) {
449                 struct dma_chan *chan = host->chan_rx;
450                 host->chan_rx = NULL;
451                 dma_release_channel(chan);
452         }
453
454         host->dma_active = false;
455 }
456
457 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
458 {
459         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
460         bool sup_pclk = p ? p->sup_pclk : false;
461
462         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
463         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
464
465         if (!clk)
466                 return;
467         if (sup_pclk && clk == host->clk)
468                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
469         else
470                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
471                                 ((fls(DIV_ROUND_UP(host->clk,
472                                                    clk) - 1) - 1) << 16));
473
474         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
475 }
476
477 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
478 {
479         u32 tmp;
480
481         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
482
483         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
484         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
485         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
486                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
487         /* byte swap on */
488         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
489 }
490
491 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
492 {
493         u32 state1, state2;
494         int ret, timeout;
495
496         host->sd_error = false;
497
498         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
499         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
500         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
501         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
502
503         if (state1 & STS1_CMDSEQ) {
504                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
505                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
506                 for (timeout = 10000000; timeout; timeout--) {
507                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
508                               & STS1_CMDSEQ))
509                                 break;
510                         mdelay(1);
511                 }
512                 if (!timeout) {
513                         dev_err(&host->pd->dev,
514                                 "Forced end of command sequence timeout err\n");
515                         return -EIO;
516                 }
517                 sh_mmcif_sync_reset(host);
518                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
519                 return -EIO;
520         }
521
522         if (state2 & STS2_CRC_ERR) {
523                 dev_dbg(&host->pd->dev, ": CRC error\n");
524                 ret = -EIO;
525         } else if (state2 & STS2_TIMEOUT_ERR) {
526                 dev_dbg(&host->pd->dev, ": Timeout\n");
527                 ret = -ETIMEDOUT;
528         } else {
529                 dev_dbg(&host->pd->dev, ": End/Index error\n");
530                 ret = -EIO;
531         }
532         return ret;
533 }
534
535 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
536 {
537         struct mmc_data *data = host->mrq->data;
538
539         host->sg_blkidx += host->blocksize;
540
541         /* data->sg->length must be a multiple of host->blocksize? */
542         BUG_ON(host->sg_blkidx > data->sg->length);
543
544         if (host->sg_blkidx == data->sg->length) {
545                 host->sg_blkidx = 0;
546                 if (++host->sg_idx < data->sg_len)
547                         host->pio_ptr = sg_virt(++data->sg);
548         } else {
549                 host->pio_ptr = p;
550         }
551
552         if (host->sg_idx == data->sg_len)
553                 return false;
554
555         return true;
556 }
557
558 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
559                                  struct mmc_request *mrq)
560 {
561         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
562                            BLOCK_SIZE_MASK) + 3;
563
564         host->wait_for = MMCIF_WAIT_FOR_READ;
565         schedule_delayed_work(&host->timeout_work, host->timeout);
566
567         /* buf read enable */
568         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
569 }
570
571 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
572 {
573         struct mmc_data *data = host->mrq->data;
574         u32 *p = sg_virt(data->sg);
575         int i;
576
577         if (host->sd_error) {
578                 data->error = sh_mmcif_error_manage(host);
579                 return false;
580         }
581
582         for (i = 0; i < host->blocksize / 4; i++)
583                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
584
585         /* buffer read end */
586         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
587         host->wait_for = MMCIF_WAIT_FOR_READ_END;
588
589         return true;
590 }
591
592 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
593                                 struct mmc_request *mrq)
594 {
595         struct mmc_data *data = mrq->data;
596
597         if (!data->sg_len || !data->sg->length)
598                 return;
599
600         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
601                 BLOCK_SIZE_MASK;
602
603         host->wait_for = MMCIF_WAIT_FOR_MREAD;
604         host->sg_idx = 0;
605         host->sg_blkidx = 0;
606         host->pio_ptr = sg_virt(data->sg);
607         schedule_delayed_work(&host->timeout_work, host->timeout);
608         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
609 }
610
611 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
612 {
613         struct mmc_data *data = host->mrq->data;
614         u32 *p = host->pio_ptr;
615         int i;
616
617         if (host->sd_error) {
618                 data->error = sh_mmcif_error_manage(host);
619                 return false;
620         }
621
622         BUG_ON(!data->sg->length);
623
624         for (i = 0; i < host->blocksize / 4; i++)
625                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
626
627         if (!sh_mmcif_next_block(host, p))
628                 return false;
629
630         schedule_delayed_work(&host->timeout_work, host->timeout);
631         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632
633         return true;
634 }
635
636 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
637                                         struct mmc_request *mrq)
638 {
639         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
640                            BLOCK_SIZE_MASK) + 3;
641
642         host->wait_for = MMCIF_WAIT_FOR_WRITE;
643         schedule_delayed_work(&host->timeout_work, host->timeout);
644
645         /* buf write enable */
646         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
647 }
648
649 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
650 {
651         struct mmc_data *data = host->mrq->data;
652         u32 *p = sg_virt(data->sg);
653         int i;
654
655         if (host->sd_error) {
656                 data->error = sh_mmcif_error_manage(host);
657                 return false;
658         }
659
660         for (i = 0; i < host->blocksize / 4; i++)
661                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
662
663         /* buffer write end */
664         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
665         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
666
667         return true;
668 }
669
670 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
671                                 struct mmc_request *mrq)
672 {
673         struct mmc_data *data = mrq->data;
674
675         if (!data->sg_len || !data->sg->length)
676                 return;
677
678         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
679                 BLOCK_SIZE_MASK;
680
681         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
682         host->sg_idx = 0;
683         host->sg_blkidx = 0;
684         host->pio_ptr = sg_virt(data->sg);
685         schedule_delayed_work(&host->timeout_work, host->timeout);
686         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
687 }
688
689 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
690 {
691         struct mmc_data *data = host->mrq->data;
692         u32 *p = host->pio_ptr;
693         int i;
694
695         if (host->sd_error) {
696                 data->error = sh_mmcif_error_manage(host);
697                 return false;
698         }
699
700         BUG_ON(!data->sg->length);
701
702         for (i = 0; i < host->blocksize / 4; i++)
703                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
704
705         if (!sh_mmcif_next_block(host, p))
706                 return false;
707
708         schedule_delayed_work(&host->timeout_work, host->timeout);
709         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
710
711         return true;
712 }
713
714 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
715                                                 struct mmc_command *cmd)
716 {
717         if (cmd->flags & MMC_RSP_136) {
718                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
719                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
720                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
721                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
722         } else
723                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
724 }
725
726 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
727                                                 struct mmc_command *cmd)
728 {
729         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
730 }
731
732 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
733                             struct mmc_request *mrq)
734 {
735         struct mmc_data *data = mrq->data;
736         struct mmc_command *cmd = mrq->cmd;
737         u32 opc = cmd->opcode;
738         u32 tmp = 0;
739
740         /* Response Type check */
741         switch (mmc_resp_type(cmd)) {
742         case MMC_RSP_NONE:
743                 tmp |= CMD_SET_RTYP_NO;
744                 break;
745         case MMC_RSP_R1:
746         case MMC_RSP_R1B:
747         case MMC_RSP_R3:
748                 tmp |= CMD_SET_RTYP_6B;
749                 break;
750         case MMC_RSP_R2:
751                 tmp |= CMD_SET_RTYP_17B;
752                 break;
753         default:
754                 dev_err(&host->pd->dev, "Unsupported response type.\n");
755                 break;
756         }
757         switch (opc) {
758         /* RBSY */
759         case MMC_SWITCH:
760         case MMC_STOP_TRANSMISSION:
761         case MMC_SET_WRITE_PROT:
762         case MMC_CLR_WRITE_PROT:
763         case MMC_ERASE:
764                 tmp |= CMD_SET_RBSY;
765                 break;
766         }
767         /* WDAT / DATW */
768         if (data) {
769                 tmp |= CMD_SET_WDAT;
770                 switch (host->bus_width) {
771                 case MMC_BUS_WIDTH_1:
772                         tmp |= CMD_SET_DATW_1;
773                         break;
774                 case MMC_BUS_WIDTH_4:
775                         tmp |= CMD_SET_DATW_4;
776                         break;
777                 case MMC_BUS_WIDTH_8:
778                         tmp |= CMD_SET_DATW_8;
779                         break;
780                 default:
781                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
782                         break;
783                 }
784         }
785         /* DWEN */
786         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
787                 tmp |= CMD_SET_DWEN;
788         /* CMLTE/CMD12EN */
789         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
790                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
791                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
792                                 data->blocks << 16);
793         }
794         /* RIDXC[1:0] check bits */
795         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
796             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
797                 tmp |= CMD_SET_RIDXC_BITS;
798         /* RCRC7C[1:0] check bits */
799         if (opc == MMC_SEND_OP_COND)
800                 tmp |= CMD_SET_CRC7C_BITS;
801         /* RCRC7C[1:0] internal CRC7 */
802         if (opc == MMC_ALL_SEND_CID ||
803                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
804                 tmp |= CMD_SET_CRC7C_INTERNAL;
805
806         return (opc << 24) | tmp;
807 }
808
809 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
810                                struct mmc_request *mrq, u32 opc)
811 {
812         switch (opc) {
813         case MMC_READ_MULTIPLE_BLOCK:
814                 sh_mmcif_multi_read(host, mrq);
815                 return 0;
816         case MMC_WRITE_MULTIPLE_BLOCK:
817                 sh_mmcif_multi_write(host, mrq);
818                 return 0;
819         case MMC_WRITE_BLOCK:
820                 sh_mmcif_single_write(host, mrq);
821                 return 0;
822         case MMC_READ_SINGLE_BLOCK:
823         case MMC_SEND_EXT_CSD:
824                 sh_mmcif_single_read(host, mrq);
825                 return 0;
826         default:
827                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
828                 return -EINVAL;
829         }
830 }
831
832 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
833                                struct mmc_request *mrq)
834 {
835         struct mmc_command *cmd = mrq->cmd;
836         u32 opc = cmd->opcode;
837         u32 mask;
838
839         switch (opc) {
840         /* response busy check */
841         case MMC_SWITCH:
842         case MMC_STOP_TRANSMISSION:
843         case MMC_SET_WRITE_PROT:
844         case MMC_CLR_WRITE_PROT:
845         case MMC_ERASE:
846                 mask = MASK_START_CMD | MASK_MRBSYE;
847                 break;
848         default:
849                 mask = MASK_START_CMD | MASK_MCRSPE;
850                 break;
851         }
852
853         if (mrq->data) {
854                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
855                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
856                                 mrq->data->blksz);
857         }
858         opc = sh_mmcif_set_cmd(host, mrq);
859
860         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
861         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
862         /* set arg */
863         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
864         /* set cmd */
865         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
866
867         host->wait_for = MMCIF_WAIT_FOR_CMD;
868         schedule_delayed_work(&host->timeout_work, host->timeout);
869 }
870
871 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
872                               struct mmc_request *mrq)
873 {
874         switch (mrq->cmd->opcode) {
875         case MMC_READ_MULTIPLE_BLOCK:
876                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
877                 break;
878         case MMC_WRITE_MULTIPLE_BLOCK:
879                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
880                 break;
881         default:
882                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
883                 mrq->stop->error = sh_mmcif_error_manage(host);
884                 return;
885         }
886
887         host->wait_for = MMCIF_WAIT_FOR_STOP;
888         schedule_delayed_work(&host->timeout_work, host->timeout);
889 }
890
891 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
892 {
893         struct sh_mmcif_host *host = mmc_priv(mmc);
894         unsigned long flags;
895
896         spin_lock_irqsave(&host->lock, flags);
897         if (host->state != STATE_IDLE) {
898                 spin_unlock_irqrestore(&host->lock, flags);
899                 mrq->cmd->error = -EAGAIN;
900                 mmc_request_done(mmc, mrq);
901                 return;
902         }
903
904         host->state = STATE_REQUEST;
905         spin_unlock_irqrestore(&host->lock, flags);
906
907         switch (mrq->cmd->opcode) {
908         /* MMCIF does not support SD/SDIO command */
909         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
910         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
911                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
912                         break;
913         case MMC_APP_CMD:
914                 host->state = STATE_IDLE;
915                 mrq->cmd->error = -ETIMEDOUT;
916                 mmc_request_done(mmc, mrq);
917                 return;
918         default:
919                 break;
920         }
921
922         host->mrq = mrq;
923
924         sh_mmcif_start_cmd(host, mrq);
925 }
926
927 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
928 {
929         int ret = clk_enable(host->hclk);
930
931         if (!ret) {
932                 host->clk = clk_get_rate(host->hclk);
933                 host->mmc->f_max = host->clk / 2;
934                 host->mmc->f_min = host->clk / 512;
935         }
936
937         return ret;
938 }
939
940 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
941 {
942         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
943         struct mmc_host *mmc = host->mmc;
944
945         if (pd && pd->set_pwr)
946                 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
947         if (!IS_ERR(mmc->supply.vmmc))
948                 /* Errors ignored... */
949                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
950                                       ios->power_mode ? ios->vdd : 0);
951 }
952
953 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
954 {
955         struct sh_mmcif_host *host = mmc_priv(mmc);
956         unsigned long flags;
957
958         spin_lock_irqsave(&host->lock, flags);
959         if (host->state != STATE_IDLE) {
960                 spin_unlock_irqrestore(&host->lock, flags);
961                 return;
962         }
963
964         host->state = STATE_IOS;
965         spin_unlock_irqrestore(&host->lock, flags);
966
967         if (ios->power_mode == MMC_POWER_UP) {
968                 if (!host->card_present) {
969                         /* See if we also get DMA */
970                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
971                         host->card_present = true;
972                 }
973                 sh_mmcif_set_power(host, ios);
974         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
975                 /* clock stop */
976                 sh_mmcif_clock_control(host, 0);
977                 if (ios->power_mode == MMC_POWER_OFF) {
978                         if (host->card_present) {
979                                 sh_mmcif_release_dma(host);
980                                 host->card_present = false;
981                         }
982                 }
983                 if (host->power) {
984                         pm_runtime_put(&host->pd->dev);
985                         clk_disable(host->hclk);
986                         host->power = false;
987                         if (ios->power_mode == MMC_POWER_OFF)
988                                 sh_mmcif_set_power(host, ios);
989                 }
990                 host->state = STATE_IDLE;
991                 return;
992         }
993
994         if (ios->clock) {
995                 if (!host->power) {
996                         sh_mmcif_clk_update(host);
997                         pm_runtime_get_sync(&host->pd->dev);
998                         host->power = true;
999                         sh_mmcif_sync_reset(host);
1000                 }
1001                 sh_mmcif_clock_control(host, ios->clock);
1002         }
1003
1004         host->bus_width = ios->bus_width;
1005         host->state = STATE_IDLE;
1006 }
1007
1008 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1009 {
1010         struct sh_mmcif_host *host = mmc_priv(mmc);
1011         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1012         int ret = mmc_gpio_get_cd(mmc);
1013
1014         if (ret >= 0)
1015                 return ret;
1016
1017         if (!p || !p->get_cd)
1018                 return -ENOSYS;
1019         else
1020                 return p->get_cd(host->pd);
1021 }
1022
1023 static struct mmc_host_ops sh_mmcif_ops = {
1024         .request        = sh_mmcif_request,
1025         .set_ios        = sh_mmcif_set_ios,
1026         .get_cd         = sh_mmcif_get_cd,
1027 };
1028
1029 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1030 {
1031         struct mmc_command *cmd = host->mrq->cmd;
1032         struct mmc_data *data = host->mrq->data;
1033         long time;
1034
1035         if (host->sd_error) {
1036                 switch (cmd->opcode) {
1037                 case MMC_ALL_SEND_CID:
1038                 case MMC_SELECT_CARD:
1039                 case MMC_APP_CMD:
1040                         cmd->error = -ETIMEDOUT;
1041                         host->sd_error = false;
1042                         break;
1043                 default:
1044                         cmd->error = sh_mmcif_error_manage(host);
1045                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1046                                 cmd->opcode, cmd->error);
1047                         break;
1048                 }
1049                 return false;
1050         }
1051         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1052                 cmd->error = 0;
1053                 return false;
1054         }
1055
1056         sh_mmcif_get_response(host, cmd);
1057
1058         if (!data)
1059                 return false;
1060
1061         if (data->flags & MMC_DATA_READ) {
1062                 if (host->chan_rx)
1063                         sh_mmcif_start_dma_rx(host);
1064         } else {
1065                 if (host->chan_tx)
1066                         sh_mmcif_start_dma_tx(host);
1067         }
1068
1069         if (!host->dma_active) {
1070                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1071                 if (!data->error)
1072                         return true;
1073                 return false;
1074         }
1075
1076         /* Running in the IRQ thread, can sleep */
1077         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1078                                                          host->timeout);
1079         if (host->sd_error) {
1080                 dev_err(host->mmc->parent,
1081                         "Error IRQ while waiting for DMA completion!\n");
1082                 /* Woken up by an error IRQ: abort DMA */
1083                 if (data->flags & MMC_DATA_READ)
1084                         dmaengine_terminate_all(host->chan_rx);
1085                 else
1086                         dmaengine_terminate_all(host->chan_tx);
1087                 data->error = sh_mmcif_error_manage(host);
1088         } else if (!time) {
1089                 data->error = -ETIMEDOUT;
1090         } else if (time < 0) {
1091                 data->error = time;
1092         }
1093         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1094                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1095         host->dma_active = false;
1096
1097         if (data->error)
1098                 data->bytes_xfered = 0;
1099
1100         return false;
1101 }
1102
1103 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1104 {
1105         struct sh_mmcif_host *host = dev_id;
1106         struct mmc_request *mrq = host->mrq;
1107         struct mmc_data *data = mrq->data;
1108
1109         cancel_delayed_work_sync(&host->timeout_work);
1110
1111         /*
1112          * All handlers return true, if processing continues, and false, if the
1113          * request has to be completed - successfully or not
1114          */
1115         switch (host->wait_for) {
1116         case MMCIF_WAIT_FOR_REQUEST:
1117                 /* We're too late, the timeout has already kicked in */
1118                 return IRQ_HANDLED;
1119         case MMCIF_WAIT_FOR_CMD:
1120                 if (sh_mmcif_end_cmd(host))
1121                         /* Wait for data */
1122                         return IRQ_HANDLED;
1123                 break;
1124         case MMCIF_WAIT_FOR_MREAD:
1125                 if (sh_mmcif_mread_block(host))
1126                         /* Wait for more data */
1127                         return IRQ_HANDLED;
1128                 break;
1129         case MMCIF_WAIT_FOR_READ:
1130                 if (sh_mmcif_read_block(host))
1131                         /* Wait for data end */
1132                         return IRQ_HANDLED;
1133                 break;
1134         case MMCIF_WAIT_FOR_MWRITE:
1135                 if (sh_mmcif_mwrite_block(host))
1136                         /* Wait data to write */
1137                         return IRQ_HANDLED;
1138                 break;
1139         case MMCIF_WAIT_FOR_WRITE:
1140                 if (sh_mmcif_write_block(host))
1141                         /* Wait for data end */
1142                         return IRQ_HANDLED;
1143                 break;
1144         case MMCIF_WAIT_FOR_STOP:
1145                 if (host->sd_error) {
1146                         mrq->stop->error = sh_mmcif_error_manage(host);
1147                         break;
1148                 }
1149                 sh_mmcif_get_cmd12response(host, mrq->stop);
1150                 mrq->stop->error = 0;
1151                 break;
1152         case MMCIF_WAIT_FOR_READ_END:
1153         case MMCIF_WAIT_FOR_WRITE_END:
1154                 if (host->sd_error)
1155                         data->error = sh_mmcif_error_manage(host);
1156                 break;
1157         default:
1158                 BUG();
1159         }
1160
1161         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1162                 if (!mrq->cmd->error && data && !data->error)
1163                         data->bytes_xfered =
1164                                 data->blocks * data->blksz;
1165
1166                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1167                         sh_mmcif_stop_cmd(host, mrq);
1168                         if (!mrq->stop->error)
1169                                 return IRQ_HANDLED;
1170                 }
1171         }
1172
1173         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1174         host->state = STATE_IDLE;
1175         host->mrq = NULL;
1176         mmc_request_done(host->mmc, mrq);
1177
1178         return IRQ_HANDLED;
1179 }
1180
1181 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1182 {
1183         struct sh_mmcif_host *host = dev_id;
1184         u32 state;
1185         int err = 0;
1186
1187         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1188
1189         if (state & INT_ERR_STS) {
1190                 /* error interrupts - process first */
1191                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1192                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1193                 err = 1;
1194         } else if (state & INT_RBSYE) {
1195                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1196                                 ~(INT_RBSYE | INT_CRSPE));
1197                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1198         } else if (state & INT_CRSPE) {
1199                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1200                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1201         } else if (state & INT_BUFREN) {
1202                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1203                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1204         } else if (state & INT_BUFWEN) {
1205                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1206                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1207         } else if (state & INT_CMD12DRE) {
1208                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1209                         ~(INT_CMD12DRE | INT_CMD12RBE |
1210                           INT_CMD12CRE | INT_BUFRE));
1211                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1212         } else if (state & INT_BUFRE) {
1213                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1214                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1215         } else if (state & INT_DTRANE) {
1216                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1217                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1218         } else if (state & INT_CMD12RBE) {
1219                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1220                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1221                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1222         } else {
1223                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1224                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1225                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1226                 err = 1;
1227         }
1228         if (err) {
1229                 host->sd_error = true;
1230                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1231         }
1232         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1233                 if (!host->dma_active)
1234                         return IRQ_WAKE_THREAD;
1235                 else if (host->sd_error)
1236                         mmcif_dma_complete(host);
1237         } else {
1238                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1239         }
1240
1241         return IRQ_HANDLED;
1242 }
1243
1244 static void mmcif_timeout_work(struct work_struct *work)
1245 {
1246         struct delayed_work *d = container_of(work, struct delayed_work, work);
1247         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1248         struct mmc_request *mrq = host->mrq;
1249
1250         if (host->dying)
1251                 /* Don't run after mmc_remove_host() */
1252                 return;
1253
1254         /*
1255          * Handle races with cancel_delayed_work(), unless
1256          * cancel_delayed_work_sync() is used
1257          */
1258         switch (host->wait_for) {
1259         case MMCIF_WAIT_FOR_CMD:
1260                 mrq->cmd->error = sh_mmcif_error_manage(host);
1261                 break;
1262         case MMCIF_WAIT_FOR_STOP:
1263                 mrq->stop->error = sh_mmcif_error_manage(host);
1264                 break;
1265         case MMCIF_WAIT_FOR_MREAD:
1266         case MMCIF_WAIT_FOR_MWRITE:
1267         case MMCIF_WAIT_FOR_READ:
1268         case MMCIF_WAIT_FOR_WRITE:
1269         case MMCIF_WAIT_FOR_READ_END:
1270         case MMCIF_WAIT_FOR_WRITE_END:
1271                 mrq->data->error = sh_mmcif_error_manage(host);
1272                 break;
1273         default:
1274                 BUG();
1275         }
1276
1277         host->state = STATE_IDLE;
1278         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1279         host->mrq = NULL;
1280         mmc_request_done(host->mmc, mrq);
1281 }
1282
1283 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1284 {
1285         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1286         struct mmc_host *mmc = host->mmc;
1287
1288         mmc_regulator_get_supply(mmc);
1289
1290         if (!pd)
1291                 return;
1292
1293         if (!mmc->ocr_avail)
1294                 mmc->ocr_avail = pd->ocr;
1295         else if (pd->ocr)
1296                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1297 }
1298
1299 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1300 {
1301         int ret = 0, irq[2];
1302         struct mmc_host *mmc;
1303         struct sh_mmcif_host *host;
1304         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1305         struct resource *res;
1306         void __iomem *reg;
1307         char clk_name[8];
1308
1309         irq[0] = platform_get_irq(pdev, 0);
1310         irq[1] = platform_get_irq(pdev, 1);
1311         if (irq[0] < 0 || irq[1] < 0) {
1312                 dev_err(&pdev->dev, "Get irq error\n");
1313                 return -ENXIO;
1314         }
1315         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1316         if (!res) {
1317                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1318                 return -ENXIO;
1319         }
1320         reg = ioremap(res->start, resource_size(res));
1321         if (!reg) {
1322                 dev_err(&pdev->dev, "ioremap error.\n");
1323                 return -ENOMEM;
1324         }
1325
1326         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1327         if (!mmc) {
1328                 ret = -ENOMEM;
1329                 goto ealloch;
1330         }
1331         host            = mmc_priv(mmc);
1332         host->mmc       = mmc;
1333         host->addr      = reg;
1334         host->timeout   = 1000;
1335
1336         host->pd = pdev;
1337
1338         spin_lock_init(&host->lock);
1339
1340         mmc->ops = &sh_mmcif_ops;
1341         sh_mmcif_init_ocr(host);
1342
1343         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1344         if (pd && pd->caps)
1345                 mmc->caps |= pd->caps;
1346         mmc->max_segs = 32;
1347         mmc->max_blk_size = 512;
1348         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1349         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1350         mmc->max_seg_size = mmc->max_req_size;
1351
1352         platform_set_drvdata(pdev, host);
1353
1354         pm_runtime_enable(&pdev->dev);
1355         host->power = false;
1356
1357         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1358         host->hclk = clk_get(&pdev->dev, clk_name);
1359         if (IS_ERR(host->hclk)) {
1360                 ret = PTR_ERR(host->hclk);
1361                 dev_err(&pdev->dev, "cannot get clock \"%s\": %d\n", clk_name, ret);
1362                 goto eclkget;
1363         }
1364         ret = sh_mmcif_clk_update(host);
1365         if (ret < 0)
1366                 goto eclkupdate;
1367
1368         ret = pm_runtime_resume(&pdev->dev);
1369         if (ret < 0)
1370                 goto eresume;
1371
1372         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1373
1374         sh_mmcif_sync_reset(host);
1375         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1376
1377         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1378         if (ret) {
1379                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1380                 goto ereqirq0;
1381         }
1382         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1383         if (ret) {
1384                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1385                 goto ereqirq1;
1386         }
1387
1388         if (pd && pd->use_cd_gpio) {
1389                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1390                 if (ret < 0)
1391                         goto erqcd;
1392         }
1393
1394         clk_disable(host->hclk);
1395         ret = mmc_add_host(mmc);
1396         if (ret < 0)
1397                 goto emmcaddh;
1398
1399         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1400
1401         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1402         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1403                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1404         return ret;
1405
1406 emmcaddh:
1407         if (pd && pd->use_cd_gpio)
1408                 mmc_gpio_free_cd(mmc);
1409 erqcd:
1410         free_irq(irq[1], host);
1411 ereqirq1:
1412         free_irq(irq[0], host);
1413 ereqirq0:
1414         pm_runtime_suspend(&pdev->dev);
1415 eresume:
1416         clk_disable(host->hclk);
1417 eclkupdate:
1418         clk_put(host->hclk);
1419 eclkget:
1420         pm_runtime_disable(&pdev->dev);
1421         mmc_free_host(mmc);
1422 ealloch:
1423         iounmap(reg);
1424         return ret;
1425 }
1426
1427 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1428 {
1429         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1430         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1431         int irq[2];
1432
1433         host->dying = true;
1434         clk_enable(host->hclk);
1435         pm_runtime_get_sync(&pdev->dev);
1436
1437         dev_pm_qos_hide_latency_limit(&pdev->dev);
1438
1439         if (pd && pd->use_cd_gpio)
1440                 mmc_gpio_free_cd(host->mmc);
1441
1442         mmc_remove_host(host->mmc);
1443         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1444
1445         /*
1446          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1447          * mmc_remove_host() call above. But swapping order doesn't help either
1448          * (a query on the linux-mmc mailing list didn't bring any replies).
1449          */
1450         cancel_delayed_work_sync(&host->timeout_work);
1451
1452         if (host->addr)
1453                 iounmap(host->addr);
1454
1455         irq[0] = platform_get_irq(pdev, 0);
1456         irq[1] = platform_get_irq(pdev, 1);
1457
1458         free_irq(irq[0], host);
1459         free_irq(irq[1], host);
1460
1461         platform_set_drvdata(pdev, NULL);
1462
1463         mmc_free_host(host->mmc);
1464         pm_runtime_put_sync(&pdev->dev);
1465         clk_disable(host->hclk);
1466         pm_runtime_disable(&pdev->dev);
1467
1468         return 0;
1469 }
1470
1471 #ifdef CONFIG_PM
1472 static int sh_mmcif_suspend(struct device *dev)
1473 {
1474         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1475         int ret = mmc_suspend_host(host->mmc);
1476
1477         if (!ret)
1478                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1479
1480         return ret;
1481 }
1482
1483 static int sh_mmcif_resume(struct device *dev)
1484 {
1485         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1486
1487         return mmc_resume_host(host->mmc);
1488 }
1489 #else
1490 #define sh_mmcif_suspend        NULL
1491 #define sh_mmcif_resume         NULL
1492 #endif  /* CONFIG_PM */
1493
1494 static const struct of_device_id mmcif_of_match[] = {
1495         { .compatible = "renesas,sh-mmcif" },
1496         { }
1497 };
1498 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1499
1500 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1501         .suspend = sh_mmcif_suspend,
1502         .resume = sh_mmcif_resume,
1503 };
1504
1505 static struct platform_driver sh_mmcif_driver = {
1506         .probe          = sh_mmcif_probe,
1507         .remove         = sh_mmcif_remove,
1508         .driver         = {
1509                 .name   = DRIVER_NAME,
1510                 .pm     = &sh_mmcif_dev_pm_ops,
1511                 .owner  = THIS_MODULE,
1512                 .of_match_table = mmcif_of_match,
1513         },
1514 };
1515
1516 module_platform_driver(sh_mmcif_driver);
1517
1518 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1519 MODULE_LICENSE("GPL");
1520 MODULE_ALIAS("platform:" DRIVER_NAME);
1521 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");