mmc: sh_mmcif: Support MMC_SLEEP_AWAKE command
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63
64 #define DRIVER_NAME     "sh_mmcif"
65 #define DRIVER_VERSION  "2010-04-28"
66
67 /* CE_CMD_SET */
68 #define CMD_MASK                0x3f000000
69 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY            (1 << 21) /* R1b */
73 #define CMD_SET_CCSEN           (1 << 20)
74 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH            (1 << 5)
89 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
92
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK          (1 << 0)
95
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK         0x0000ffff
98
99 /* CE_INT */
100 #define INT_CCSDE               (1 << 29)
101 #define INT_CMD12DRE            (1 << 26)
102 #define INT_CMD12RBE            (1 << 25)
103 #define INT_CMD12CRE            (1 << 24)
104 #define INT_DTRANE              (1 << 23)
105 #define INT_BUFRE               (1 << 22)
106 #define INT_BUFWEN              (1 << 21)
107 #define INT_BUFREN              (1 << 20)
108 #define INT_CCSRCV              (1 << 19)
109 #define INT_RBSYE               (1 << 17)
110 #define INT_CRSPE               (1 << 16)
111 #define INT_CMDVIO              (1 << 15)
112 #define INT_BUFVIO              (1 << 14)
113 #define INT_WDATERR             (1 << 11)
114 #define INT_RDATERR             (1 << 10)
115 #define INT_RIDXERR             (1 << 9)
116 #define INT_RSPERR              (1 << 8)
117 #define INT_CCSTO               (1 << 5)
118 #define INT_CRCSTO              (1 << 4)
119 #define INT_WDATTO              (1 << 3)
120 #define INT_RDATTO              (1 << 2)
121 #define INT_RBSYTO              (1 << 1)
122 #define INT_RSPTO               (1 << 0)
123 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
124                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
126                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ             (1 << 31)
161
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE             (1 << 31)
164 #define STS2_CRC16E             (1 << 30)
165 #define STS2_AC12CRCE           (1 << 29)
166 #define STS2_RSPCRC7E           (1 << 28)
167 #define STS2_CRCSTEBE           (1 << 27)
168 #define STS2_RDATEBE            (1 << 26)
169 #define STS2_AC12REBE           (1 << 25)
170 #define STS2_RSPEBE             (1 << 24)
171 #define STS2_AC12IDXE           (1 << 23)
172 #define STS2_RSPIDXE            (1 << 22)
173 #define STS2_CCSTO              (1 << 15)
174 #define STS2_RDATTO             (1 << 14)
175 #define STS2_DATBSYTO           (1 << 13)
176 #define STS2_CRCSTTO            (1 << 12)
177 #define STS2_AC12BSYTO          (1 << 11)
178 #define STS2_RSPBSYTO           (1 << 10)
179 #define STS2_AC12RSPTO          (1 << 9)
180 #define STS2_RSPTO              (1 << 8)
181 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
182                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
184                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
185                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
186                                  STS2_AC12RSPTO | STS2_RSPTO)
187
188 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
190 #define CLKDEV_INIT             400000   /* 400 KHz */
191
192 enum mmcif_state {
193         STATE_IDLE,
194         STATE_REQUEST,
195         STATE_IOS,
196 };
197
198 enum mmcif_wait_for {
199         MMCIF_WAIT_FOR_REQUEST,
200         MMCIF_WAIT_FOR_CMD,
201         MMCIF_WAIT_FOR_MREAD,
202         MMCIF_WAIT_FOR_MWRITE,
203         MMCIF_WAIT_FOR_READ,
204         MMCIF_WAIT_FOR_WRITE,
205         MMCIF_WAIT_FOR_READ_END,
206         MMCIF_WAIT_FOR_WRITE_END,
207         MMCIF_WAIT_FOR_STOP,
208 };
209
210 struct sh_mmcif_host {
211         struct mmc_host *mmc;
212         struct mmc_request *mrq;
213         struct platform_device *pd;
214         struct sh_dmae_slave dma_slave_tx;
215         struct sh_dmae_slave dma_slave_rx;
216         struct clk *hclk;
217         unsigned int clk;
218         int bus_width;
219         bool sd_error;
220         bool dying;
221         long timeout;
222         void __iomem *addr;
223         u32 *pio_ptr;
224         spinlock_t lock;                /* protect sh_mmcif_host::state */
225         enum mmcif_state state;
226         enum mmcif_wait_for wait_for;
227         struct delayed_work timeout_work;
228         size_t blocksize;
229         int sg_idx;
230         int sg_blkidx;
231         bool power;
232         bool card_present;
233
234         /* DMA support */
235         struct dma_chan         *chan_rx;
236         struct dma_chan         *chan_tx;
237         struct completion       dma_complete;
238         bool                    dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242                                         unsigned int reg, u32 val)
243 {
244         writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248                                         unsigned int reg, u32 val)
249 {
250         writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255         struct sh_mmcif_host *host = arg;
256         struct mmc_data *data = host->mrq->data;
257
258         dev_dbg(&host->pd->dev, "Command completed\n");
259
260         if (WARN(!data, "%s: NULL data in DMA completion!\n",
261                  dev_name(&host->pd->dev)))
262                 return;
263
264         if (data->flags & MMC_DATA_READ)
265                 dma_unmap_sg(host->chan_rx->device->dev,
266                              data->sg, data->sg_len,
267                              DMA_FROM_DEVICE);
268         else
269                 dma_unmap_sg(host->chan_tx->device->dev,
270                              data->sg, data->sg_len,
271                              DMA_TO_DEVICE);
272
273         complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278         struct mmc_data *data = host->mrq->data;
279         struct scatterlist *sg = data->sg;
280         struct dma_async_tx_descriptor *desc = NULL;
281         struct dma_chan *chan = host->chan_rx;
282         dma_cookie_t cookie = -EINVAL;
283         int ret;
284
285         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286                          DMA_FROM_DEVICE);
287         if (ret > 0) {
288                 host->dma_active = true;
289                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291         }
292
293         if (desc) {
294                 desc->callback = mmcif_dma_complete;
295                 desc->callback_param = host;
296                 cookie = dmaengine_submit(desc);
297                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298                 dma_async_issue_pending(chan);
299         }
300         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301                 __func__, data->sg_len, ret, cookie);
302
303         if (!desc) {
304                 /* DMA failed, fall back to PIO */
305                 if (ret >= 0)
306                         ret = -EIO;
307                 host->chan_rx = NULL;
308                 host->dma_active = false;
309                 dma_release_channel(chan);
310                 /* Free the Tx channel too */
311                 chan = host->chan_tx;
312                 if (chan) {
313                         host->chan_tx = NULL;
314                         dma_release_channel(chan);
315                 }
316                 dev_warn(&host->pd->dev,
317                          "DMA failed: %d, falling back to PIO\n", ret);
318                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319         }
320
321         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322                 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327         struct mmc_data *data = host->mrq->data;
328         struct scatterlist *sg = data->sg;
329         struct dma_async_tx_descriptor *desc = NULL;
330         struct dma_chan *chan = host->chan_tx;
331         dma_cookie_t cookie = -EINVAL;
332         int ret;
333
334         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335                          DMA_TO_DEVICE);
336         if (ret > 0) {
337                 host->dma_active = true;
338                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340         }
341
342         if (desc) {
343                 desc->callback = mmcif_dma_complete;
344                 desc->callback_param = host;
345                 cookie = dmaengine_submit(desc);
346                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347                 dma_async_issue_pending(chan);
348         }
349         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350                 __func__, data->sg_len, ret, cookie);
351
352         if (!desc) {
353                 /* DMA failed, fall back to PIO */
354                 if (ret >= 0)
355                         ret = -EIO;
356                 host->chan_tx = NULL;
357                 host->dma_active = false;
358                 dma_release_channel(chan);
359                 /* Free the Rx channel too */
360                 chan = host->chan_rx;
361                 if (chan) {
362                         host->chan_rx = NULL;
363                         dma_release_channel(chan);
364                 }
365                 dev_warn(&host->pd->dev,
366                          "DMA failed: %d, falling back to PIO\n", ret);
367                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368         }
369
370         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371                 desc, cookie);
372 }
373
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377         chan->private = arg;
378         return true;
379 }
380
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382                                  struct sh_mmcif_plat_data *pdata)
383 {
384         struct sh_dmae_slave *tx, *rx;
385         host->dma_active = false;
386
387         /* We can only either use DMA for both Tx and Rx or not use it at all */
388         if (pdata->dma) {
389                 dev_warn(&host->pd->dev,
390                          "Update your platform to use embedded DMA slave IDs\n");
391                 tx = &pdata->dma->chan_priv_tx;
392                 rx = &pdata->dma->chan_priv_rx;
393         } else {
394                 tx = &host->dma_slave_tx;
395                 tx->slave_id = pdata->slave_id_tx;
396                 rx = &host->dma_slave_rx;
397                 rx->slave_id = pdata->slave_id_rx;
398         }
399         if (tx->slave_id > 0 && rx->slave_id > 0) {
400                 dma_cap_mask_t mask;
401
402                 dma_cap_zero(mask);
403                 dma_cap_set(DMA_SLAVE, mask);
404
405                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407                         host->chan_tx);
408
409                 if (!host->chan_tx)
410                         return;
411
412                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414                         host->chan_rx);
415
416                 if (!host->chan_rx) {
417                         dma_release_channel(host->chan_tx);
418                         host->chan_tx = NULL;
419                         return;
420                 }
421
422                 init_completion(&host->dma_complete);
423         }
424 }
425
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429         /* Descriptors are freed automatically */
430         if (host->chan_tx) {
431                 struct dma_chan *chan = host->chan_tx;
432                 host->chan_tx = NULL;
433                 dma_release_channel(chan);
434         }
435         if (host->chan_rx) {
436                 struct dma_chan *chan = host->chan_rx;
437                 host->chan_rx = NULL;
438                 dma_release_channel(chan);
439         }
440
441         host->dma_active = false;
442 }
443
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447
448         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450
451         if (!clk)
452                 return;
453         if (p->sup_pclk && clk == host->clk)
454                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455         else
456                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457                                 ((fls(DIV_ROUND_UP(host->clk,
458                                                    clk) - 1) - 1) << 16));
459
460         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
461 }
462
463 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
464 {
465         u32 tmp;
466
467         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
468
469         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
470         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
471         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
472                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
473         /* byte swap on */
474         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
475 }
476
477 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
478 {
479         u32 state1, state2;
480         int ret, timeout;
481
482         host->sd_error = false;
483
484         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
485         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
486         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
487         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
488
489         if (state1 & STS1_CMDSEQ) {
490                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
491                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
492                 for (timeout = 10000000; timeout; timeout--) {
493                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
494                               & STS1_CMDSEQ))
495                                 break;
496                         mdelay(1);
497                 }
498                 if (!timeout) {
499                         dev_err(&host->pd->dev,
500                                 "Forced end of command sequence timeout err\n");
501                         return -EIO;
502                 }
503                 sh_mmcif_sync_reset(host);
504                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
505                 return -EIO;
506         }
507
508         if (state2 & STS2_CRC_ERR) {
509                 dev_dbg(&host->pd->dev, ": CRC error\n");
510                 ret = -EIO;
511         } else if (state2 & STS2_TIMEOUT_ERR) {
512                 dev_dbg(&host->pd->dev, ": Timeout\n");
513                 ret = -ETIMEDOUT;
514         } else {
515                 dev_dbg(&host->pd->dev, ": End/Index error\n");
516                 ret = -EIO;
517         }
518         return ret;
519 }
520
521 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
522 {
523         struct mmc_data *data = host->mrq->data;
524
525         host->sg_blkidx += host->blocksize;
526
527         /* data->sg->length must be a multiple of host->blocksize? */
528         BUG_ON(host->sg_blkidx > data->sg->length);
529
530         if (host->sg_blkidx == data->sg->length) {
531                 host->sg_blkidx = 0;
532                 if (++host->sg_idx < data->sg_len)
533                         host->pio_ptr = sg_virt(++data->sg);
534         } else {
535                 host->pio_ptr = p;
536         }
537
538         if (host->sg_idx == data->sg_len)
539                 return false;
540
541         return true;
542 }
543
544 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
545                                  struct mmc_request *mrq)
546 {
547         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
548                            BLOCK_SIZE_MASK) + 3;
549
550         host->wait_for = MMCIF_WAIT_FOR_READ;
551         schedule_delayed_work(&host->timeout_work, host->timeout);
552
553         /* buf read enable */
554         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
555 }
556
557 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
558 {
559         struct mmc_data *data = host->mrq->data;
560         u32 *p = sg_virt(data->sg);
561         int i;
562
563         if (host->sd_error) {
564                 data->error = sh_mmcif_error_manage(host);
565                 return false;
566         }
567
568         for (i = 0; i < host->blocksize / 4; i++)
569                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
570
571         /* buffer read end */
572         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
573         host->wait_for = MMCIF_WAIT_FOR_READ_END;
574
575         return true;
576 }
577
578 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
579                                 struct mmc_request *mrq)
580 {
581         struct mmc_data *data = mrq->data;
582
583         if (!data->sg_len || !data->sg->length)
584                 return;
585
586         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
587                 BLOCK_SIZE_MASK;
588
589         host->wait_for = MMCIF_WAIT_FOR_MREAD;
590         host->sg_idx = 0;
591         host->sg_blkidx = 0;
592         host->pio_ptr = sg_virt(data->sg);
593         schedule_delayed_work(&host->timeout_work, host->timeout);
594         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
595 }
596
597 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
598 {
599         struct mmc_data *data = host->mrq->data;
600         u32 *p = host->pio_ptr;
601         int i;
602
603         if (host->sd_error) {
604                 data->error = sh_mmcif_error_manage(host);
605                 return false;
606         }
607
608         BUG_ON(!data->sg->length);
609
610         for (i = 0; i < host->blocksize / 4; i++)
611                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
612
613         if (!sh_mmcif_next_block(host, p))
614                 return false;
615
616         schedule_delayed_work(&host->timeout_work, host->timeout);
617         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
618
619         return true;
620 }
621
622 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
623                                         struct mmc_request *mrq)
624 {
625         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626                            BLOCK_SIZE_MASK) + 3;
627
628         host->wait_for = MMCIF_WAIT_FOR_WRITE;
629         schedule_delayed_work(&host->timeout_work, host->timeout);
630
631         /* buf write enable */
632         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
633 }
634
635 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
636 {
637         struct mmc_data *data = host->mrq->data;
638         u32 *p = sg_virt(data->sg);
639         int i;
640
641         if (host->sd_error) {
642                 data->error = sh_mmcif_error_manage(host);
643                 return false;
644         }
645
646         for (i = 0; i < host->blocksize / 4; i++)
647                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
648
649         /* buffer write end */
650         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
651         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
652
653         return true;
654 }
655
656 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
657                                 struct mmc_request *mrq)
658 {
659         struct mmc_data *data = mrq->data;
660
661         if (!data->sg_len || !data->sg->length)
662                 return;
663
664         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665                 BLOCK_SIZE_MASK;
666
667         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
668         host->sg_idx = 0;
669         host->sg_blkidx = 0;
670         host->pio_ptr = sg_virt(data->sg);
671         schedule_delayed_work(&host->timeout_work, host->timeout);
672         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
673 }
674
675 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
676 {
677         struct mmc_data *data = host->mrq->data;
678         u32 *p = host->pio_ptr;
679         int i;
680
681         if (host->sd_error) {
682                 data->error = sh_mmcif_error_manage(host);
683                 return false;
684         }
685
686         BUG_ON(!data->sg->length);
687
688         for (i = 0; i < host->blocksize / 4; i++)
689                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
690
691         if (!sh_mmcif_next_block(host, p))
692                 return false;
693
694         schedule_delayed_work(&host->timeout_work, host->timeout);
695         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
696
697         return true;
698 }
699
700 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
701                                                 struct mmc_command *cmd)
702 {
703         if (cmd->flags & MMC_RSP_136) {
704                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
705                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
706                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
707                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
708         } else
709                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
710 }
711
712 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
713                                                 struct mmc_command *cmd)
714 {
715         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
716 }
717
718 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
719                             struct mmc_request *mrq)
720 {
721         struct mmc_data *data = mrq->data;
722         struct mmc_command *cmd = mrq->cmd;
723         u32 opc = cmd->opcode;
724         u32 tmp = 0;
725
726         /* Response Type check */
727         switch (mmc_resp_type(cmd)) {
728         case MMC_RSP_NONE:
729                 tmp |= CMD_SET_RTYP_NO;
730                 break;
731         case MMC_RSP_R1:
732         case MMC_RSP_R1B:
733         case MMC_RSP_R3:
734                 tmp |= CMD_SET_RTYP_6B;
735                 break;
736         case MMC_RSP_R2:
737                 tmp |= CMD_SET_RTYP_17B;
738                 break;
739         default:
740                 dev_err(&host->pd->dev, "Unsupported response type.\n");
741                 break;
742         }
743         switch (opc) {
744         /* RBSY */
745         case MMC_SWITCH:
746         case MMC_STOP_TRANSMISSION:
747         case MMC_SET_WRITE_PROT:
748         case MMC_CLR_WRITE_PROT:
749         case MMC_ERASE:
750                 tmp |= CMD_SET_RBSY;
751                 break;
752         }
753         /* WDAT / DATW */
754         if (data) {
755                 tmp |= CMD_SET_WDAT;
756                 switch (host->bus_width) {
757                 case MMC_BUS_WIDTH_1:
758                         tmp |= CMD_SET_DATW_1;
759                         break;
760                 case MMC_BUS_WIDTH_4:
761                         tmp |= CMD_SET_DATW_4;
762                         break;
763                 case MMC_BUS_WIDTH_8:
764                         tmp |= CMD_SET_DATW_8;
765                         break;
766                 default:
767                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
768                         break;
769                 }
770         }
771         /* DWEN */
772         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
773                 tmp |= CMD_SET_DWEN;
774         /* CMLTE/CMD12EN */
775         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
776                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
777                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
778                                 data->blocks << 16);
779         }
780         /* RIDXC[1:0] check bits */
781         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
782             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
783                 tmp |= CMD_SET_RIDXC_BITS;
784         /* RCRC7C[1:0] check bits */
785         if (opc == MMC_SEND_OP_COND)
786                 tmp |= CMD_SET_CRC7C_BITS;
787         /* RCRC7C[1:0] internal CRC7 */
788         if (opc == MMC_ALL_SEND_CID ||
789                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
790                 tmp |= CMD_SET_CRC7C_INTERNAL;
791
792         return (opc << 24) | tmp;
793 }
794
795 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
796                                struct mmc_request *mrq, u32 opc)
797 {
798         switch (opc) {
799         case MMC_READ_MULTIPLE_BLOCK:
800                 sh_mmcif_multi_read(host, mrq);
801                 return 0;
802         case MMC_WRITE_MULTIPLE_BLOCK:
803                 sh_mmcif_multi_write(host, mrq);
804                 return 0;
805         case MMC_WRITE_BLOCK:
806                 sh_mmcif_single_write(host, mrq);
807                 return 0;
808         case MMC_READ_SINGLE_BLOCK:
809         case MMC_SEND_EXT_CSD:
810                 sh_mmcif_single_read(host, mrq);
811                 return 0;
812         default:
813                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
814                 return -EINVAL;
815         }
816 }
817
818 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
819                                struct mmc_request *mrq)
820 {
821         struct mmc_command *cmd = mrq->cmd;
822         u32 opc = cmd->opcode;
823         u32 mask;
824
825         switch (opc) {
826         /* response busy check */
827         case MMC_SWITCH:
828         case MMC_STOP_TRANSMISSION:
829         case MMC_SET_WRITE_PROT:
830         case MMC_CLR_WRITE_PROT:
831         case MMC_ERASE:
832                 mask = MASK_START_CMD | MASK_MRBSYE;
833                 break;
834         default:
835                 mask = MASK_START_CMD | MASK_MCRSPE;
836                 break;
837         }
838
839         if (mrq->data) {
840                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
841                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
842                                 mrq->data->blksz);
843         }
844         opc = sh_mmcif_set_cmd(host, mrq);
845
846         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
847         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
848         /* set arg */
849         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
850         /* set cmd */
851         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
852
853         host->wait_for = MMCIF_WAIT_FOR_CMD;
854         schedule_delayed_work(&host->timeout_work, host->timeout);
855 }
856
857 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
858                               struct mmc_request *mrq)
859 {
860         switch (mrq->cmd->opcode) {
861         case MMC_READ_MULTIPLE_BLOCK:
862                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
863                 break;
864         case MMC_WRITE_MULTIPLE_BLOCK:
865                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
866                 break;
867         default:
868                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
869                 mrq->stop->error = sh_mmcif_error_manage(host);
870                 return;
871         }
872
873         host->wait_for = MMCIF_WAIT_FOR_STOP;
874         schedule_delayed_work(&host->timeout_work, host->timeout);
875 }
876
877 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
878 {
879         struct sh_mmcif_host *host = mmc_priv(mmc);
880         unsigned long flags;
881
882         spin_lock_irqsave(&host->lock, flags);
883         if (host->state != STATE_IDLE) {
884                 spin_unlock_irqrestore(&host->lock, flags);
885                 mrq->cmd->error = -EAGAIN;
886                 mmc_request_done(mmc, mrq);
887                 return;
888         }
889
890         host->state = STATE_REQUEST;
891         spin_unlock_irqrestore(&host->lock, flags);
892
893         switch (mrq->cmd->opcode) {
894         /* MMCIF does not support SD/SDIO command */
895         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
896         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
897                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
898                         break;
899         case MMC_APP_CMD:
900                 host->state = STATE_IDLE;
901                 mrq->cmd->error = -ETIMEDOUT;
902                 mmc_request_done(mmc, mrq);
903                 return;
904         default:
905                 break;
906         }
907
908         host->mrq = mrq;
909
910         sh_mmcif_start_cmd(host, mrq);
911 }
912
913 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
914 {
915         struct sh_mmcif_host *host = mmc_priv(mmc);
916         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
917         unsigned long flags;
918
919         spin_lock_irqsave(&host->lock, flags);
920         if (host->state != STATE_IDLE) {
921                 spin_unlock_irqrestore(&host->lock, flags);
922                 return;
923         }
924
925         host->state = STATE_IOS;
926         spin_unlock_irqrestore(&host->lock, flags);
927
928         if (ios->power_mode == MMC_POWER_UP) {
929                 if (!host->card_present) {
930                         /* See if we also get DMA */
931                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
932                         host->card_present = true;
933                 }
934         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
935                 /* clock stop */
936                 sh_mmcif_clock_control(host, 0);
937                 if (ios->power_mode == MMC_POWER_OFF) {
938                         if (host->card_present) {
939                                 sh_mmcif_release_dma(host);
940                                 host->card_present = false;
941                         }
942                 }
943                 if (host->power) {
944                         pm_runtime_put(&host->pd->dev);
945                         host->power = false;
946                         if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
947                                 p->down_pwr(host->pd);
948                 }
949                 host->state = STATE_IDLE;
950                 return;
951         }
952
953         if (ios->clock) {
954                 if (!host->power) {
955                         if (p->set_pwr)
956                                 p->set_pwr(host->pd, ios->power_mode);
957                         pm_runtime_get_sync(&host->pd->dev);
958                         host->power = true;
959                         sh_mmcif_sync_reset(host);
960                 }
961                 sh_mmcif_clock_control(host, ios->clock);
962         }
963
964         host->bus_width = ios->bus_width;
965         host->state = STATE_IDLE;
966 }
967
968 static int sh_mmcif_get_cd(struct mmc_host *mmc)
969 {
970         struct sh_mmcif_host *host = mmc_priv(mmc);
971         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
972
973         if (!p->get_cd)
974                 return -ENOSYS;
975         else
976                 return p->get_cd(host->pd);
977 }
978
979 static struct mmc_host_ops sh_mmcif_ops = {
980         .request        = sh_mmcif_request,
981         .set_ios        = sh_mmcif_set_ios,
982         .get_cd         = sh_mmcif_get_cd,
983 };
984
985 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
986 {
987         struct mmc_command *cmd = host->mrq->cmd;
988         struct mmc_data *data = host->mrq->data;
989         long time;
990
991         if (host->sd_error) {
992                 switch (cmd->opcode) {
993                 case MMC_ALL_SEND_CID:
994                 case MMC_SELECT_CARD:
995                 case MMC_APP_CMD:
996                         cmd->error = -ETIMEDOUT;
997                         host->sd_error = false;
998                         break;
999                 default:
1000                         cmd->error = sh_mmcif_error_manage(host);
1001                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1002                                 cmd->opcode, cmd->error);
1003                         break;
1004                 }
1005                 return false;
1006         }
1007         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1008                 cmd->error = 0;
1009                 return false;
1010         }
1011
1012         sh_mmcif_get_response(host, cmd);
1013
1014         if (!data)
1015                 return false;
1016
1017         if (data->flags & MMC_DATA_READ) {
1018                 if (host->chan_rx)
1019                         sh_mmcif_start_dma_rx(host);
1020         } else {
1021                 if (host->chan_tx)
1022                         sh_mmcif_start_dma_tx(host);
1023         }
1024
1025         if (!host->dma_active) {
1026                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1027                 if (!data->error)
1028                         return true;
1029                 return false;
1030         }
1031
1032         /* Running in the IRQ thread, can sleep */
1033         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1034                                                          host->timeout);
1035         if (host->sd_error) {
1036                 dev_err(host->mmc->parent,
1037                         "Error IRQ while waiting for DMA completion!\n");
1038                 /* Woken up by an error IRQ: abort DMA */
1039                 if (data->flags & MMC_DATA_READ)
1040                         dmaengine_terminate_all(host->chan_rx);
1041                 else
1042                         dmaengine_terminate_all(host->chan_tx);
1043                 data->error = sh_mmcif_error_manage(host);
1044         } else if (!time) {
1045                 data->error = -ETIMEDOUT;
1046         } else if (time < 0) {
1047                 data->error = time;
1048         }
1049         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1050                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1051         host->dma_active = false;
1052
1053         if (data->error)
1054                 data->bytes_xfered = 0;
1055
1056         return false;
1057 }
1058
1059 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1060 {
1061         struct sh_mmcif_host *host = dev_id;
1062         struct mmc_request *mrq = host->mrq;
1063         struct mmc_data *data = mrq->data;
1064
1065         cancel_delayed_work_sync(&host->timeout_work);
1066
1067         /*
1068          * All handlers return true, if processing continues, and false, if the
1069          * request has to be completed - successfully or not
1070          */
1071         switch (host->wait_for) {
1072         case MMCIF_WAIT_FOR_REQUEST:
1073                 /* We're too late, the timeout has already kicked in */
1074                 return IRQ_HANDLED;
1075         case MMCIF_WAIT_FOR_CMD:
1076                 if (sh_mmcif_end_cmd(host))
1077                         /* Wait for data */
1078                         return IRQ_HANDLED;
1079                 break;
1080         case MMCIF_WAIT_FOR_MREAD:
1081                 if (sh_mmcif_mread_block(host))
1082                         /* Wait for more data */
1083                         return IRQ_HANDLED;
1084                 break;
1085         case MMCIF_WAIT_FOR_READ:
1086                 if (sh_mmcif_read_block(host))
1087                         /* Wait for data end */
1088                         return IRQ_HANDLED;
1089                 break;
1090         case MMCIF_WAIT_FOR_MWRITE:
1091                 if (sh_mmcif_mwrite_block(host))
1092                         /* Wait data to write */
1093                         return IRQ_HANDLED;
1094                 break;
1095         case MMCIF_WAIT_FOR_WRITE:
1096                 if (sh_mmcif_write_block(host))
1097                         /* Wait for data end */
1098                         return IRQ_HANDLED;
1099                 break;
1100         case MMCIF_WAIT_FOR_STOP:
1101                 if (host->sd_error) {
1102                         mrq->stop->error = sh_mmcif_error_manage(host);
1103                         break;
1104                 }
1105                 sh_mmcif_get_cmd12response(host, mrq->stop);
1106                 mrq->stop->error = 0;
1107                 break;
1108         case MMCIF_WAIT_FOR_READ_END:
1109         case MMCIF_WAIT_FOR_WRITE_END:
1110                 if (host->sd_error)
1111                         data->error = sh_mmcif_error_manage(host);
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116
1117         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1118                 if (!mrq->cmd->error && data && !data->error)
1119                         data->bytes_xfered =
1120                                 data->blocks * data->blksz;
1121
1122                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1123                         sh_mmcif_stop_cmd(host, mrq);
1124                         if (!mrq->stop->error)
1125                                 return IRQ_HANDLED;
1126                 }
1127         }
1128
1129         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1130         host->state = STATE_IDLE;
1131         host->mrq = NULL;
1132         mmc_request_done(host->mmc, mrq);
1133
1134         return IRQ_HANDLED;
1135 }
1136
1137 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1138 {
1139         struct sh_mmcif_host *host = dev_id;
1140         u32 state;
1141         int err = 0;
1142
1143         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1144
1145         if (state & INT_ERR_STS) {
1146                 /* error interrupts - process first */
1147                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1148                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1149                 err = 1;
1150         } else if (state & INT_RBSYE) {
1151                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1152                                 ~(INT_RBSYE | INT_CRSPE));
1153                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1154         } else if (state & INT_CRSPE) {
1155                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1156                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1157         } else if (state & INT_BUFREN) {
1158                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1159                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1160         } else if (state & INT_BUFWEN) {
1161                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1162                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1163         } else if (state & INT_CMD12DRE) {
1164                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1165                         ~(INT_CMD12DRE | INT_CMD12RBE |
1166                           INT_CMD12CRE | INT_BUFRE));
1167                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1168         } else if (state & INT_BUFRE) {
1169                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1170                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1171         } else if (state & INT_DTRANE) {
1172                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1173                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1174         } else if (state & INT_CMD12RBE) {
1175                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1176                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1177                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1178         } else {
1179                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1180                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1181                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1182                 err = 1;
1183         }
1184         if (err) {
1185                 host->sd_error = true;
1186                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1187         }
1188         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1189                 if (!host->dma_active)
1190                         return IRQ_WAKE_THREAD;
1191                 else if (host->sd_error)
1192                         mmcif_dma_complete(host);
1193         } else {
1194                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1195         }
1196
1197         return IRQ_HANDLED;
1198 }
1199
1200 static void mmcif_timeout_work(struct work_struct *work)
1201 {
1202         struct delayed_work *d = container_of(work, struct delayed_work, work);
1203         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1204         struct mmc_request *mrq = host->mrq;
1205
1206         if (host->dying)
1207                 /* Don't run after mmc_remove_host() */
1208                 return;
1209
1210         /*
1211          * Handle races with cancel_delayed_work(), unless
1212          * cancel_delayed_work_sync() is used
1213          */
1214         switch (host->wait_for) {
1215         case MMCIF_WAIT_FOR_CMD:
1216                 mrq->cmd->error = sh_mmcif_error_manage(host);
1217                 break;
1218         case MMCIF_WAIT_FOR_STOP:
1219                 mrq->stop->error = sh_mmcif_error_manage(host);
1220                 break;
1221         case MMCIF_WAIT_FOR_MREAD:
1222         case MMCIF_WAIT_FOR_MWRITE:
1223         case MMCIF_WAIT_FOR_READ:
1224         case MMCIF_WAIT_FOR_WRITE:
1225         case MMCIF_WAIT_FOR_READ_END:
1226         case MMCIF_WAIT_FOR_WRITE_END:
1227                 mrq->data->error = sh_mmcif_error_manage(host);
1228                 break;
1229         default:
1230                 BUG();
1231         }
1232
1233         host->state = STATE_IDLE;
1234         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1235         host->mrq = NULL;
1236         mmc_request_done(host->mmc, mrq);
1237 }
1238
1239 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1240 {
1241         int ret = 0, irq[2];
1242         struct mmc_host *mmc;
1243         struct sh_mmcif_host *host;
1244         struct sh_mmcif_plat_data *pd;
1245         struct resource *res;
1246         void __iomem *reg;
1247         char clk_name[8];
1248
1249         irq[0] = platform_get_irq(pdev, 0);
1250         irq[1] = platform_get_irq(pdev, 1);
1251         if (irq[0] < 0 || irq[1] < 0) {
1252                 dev_err(&pdev->dev, "Get irq error\n");
1253                 return -ENXIO;
1254         }
1255         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1256         if (!res) {
1257                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1258                 return -ENXIO;
1259         }
1260         reg = ioremap(res->start, resource_size(res));
1261         if (!reg) {
1262                 dev_err(&pdev->dev, "ioremap error.\n");
1263                 return -ENOMEM;
1264         }
1265         pd = pdev->dev.platform_data;
1266         if (!pd) {
1267                 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1268                 ret = -ENXIO;
1269                 goto clean_up;
1270         }
1271         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1272         if (!mmc) {
1273                 ret = -ENOMEM;
1274                 goto clean_up;
1275         }
1276         host            = mmc_priv(mmc);
1277         host->mmc       = mmc;
1278         host->addr      = reg;
1279         host->timeout   = 1000;
1280
1281         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1282         host->hclk = clk_get(&pdev->dev, clk_name);
1283         if (IS_ERR(host->hclk)) {
1284                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1285                 ret = PTR_ERR(host->hclk);
1286                 goto clean_up1;
1287         }
1288         clk_enable(host->hclk);
1289         host->clk = clk_get_rate(host->hclk);
1290         host->pd = pdev;
1291
1292         spin_lock_init(&host->lock);
1293
1294         mmc->ops = &sh_mmcif_ops;
1295         mmc->f_max = host->clk / 2;
1296         mmc->f_min = host->clk / 512;
1297         if (pd->ocr)
1298                 mmc->ocr_avail = pd->ocr;
1299         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1300         if (pd->caps)
1301                 mmc->caps |= pd->caps;
1302         mmc->max_segs = 32;
1303         mmc->max_blk_size = 512;
1304         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1305         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1306         mmc->max_seg_size = mmc->max_req_size;
1307
1308         sh_mmcif_sync_reset(host);
1309         platform_set_drvdata(pdev, host);
1310
1311         pm_runtime_enable(&pdev->dev);
1312         host->power = false;
1313
1314         ret = pm_runtime_resume(&pdev->dev);
1315         if (ret < 0)
1316                 goto clean_up2;
1317
1318         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1319
1320         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1321
1322         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1323         if (ret) {
1324                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1325                 goto clean_up3;
1326         }
1327         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1328         if (ret) {
1329                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1330                 goto clean_up4;
1331         }
1332
1333         ret = mmc_add_host(mmc);
1334         if (ret < 0)
1335                 goto clean_up5;
1336
1337         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1338
1339         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1340         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1341                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1342         return ret;
1343
1344 clean_up5:
1345         free_irq(irq[1], host);
1346 clean_up4:
1347         free_irq(irq[0], host);
1348 clean_up3:
1349         pm_runtime_suspend(&pdev->dev);
1350 clean_up2:
1351         pm_runtime_disable(&pdev->dev);
1352         clk_disable(host->hclk);
1353 clean_up1:
1354         mmc_free_host(mmc);
1355 clean_up:
1356         if (reg)
1357                 iounmap(reg);
1358         return ret;
1359 }
1360
1361 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1362 {
1363         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1364         int irq[2];
1365
1366         host->dying = true;
1367         pm_runtime_get_sync(&pdev->dev);
1368
1369         dev_pm_qos_hide_latency_limit(&pdev->dev);
1370
1371         mmc_remove_host(host->mmc);
1372         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1373
1374         /*
1375          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1376          * mmc_remove_host() call above. But swapping order doesn't help either
1377          * (a query on the linux-mmc mailing list didn't bring any replies).
1378          */
1379         cancel_delayed_work_sync(&host->timeout_work);
1380
1381         if (host->addr)
1382                 iounmap(host->addr);
1383
1384         irq[0] = platform_get_irq(pdev, 0);
1385         irq[1] = platform_get_irq(pdev, 1);
1386
1387         free_irq(irq[0], host);
1388         free_irq(irq[1], host);
1389
1390         platform_set_drvdata(pdev, NULL);
1391
1392         clk_disable(host->hclk);
1393         mmc_free_host(host->mmc);
1394         pm_runtime_put_sync(&pdev->dev);
1395         pm_runtime_disable(&pdev->dev);
1396
1397         return 0;
1398 }
1399
1400 #ifdef CONFIG_PM
1401 static int sh_mmcif_suspend(struct device *dev)
1402 {
1403         struct platform_device *pdev = to_platform_device(dev);
1404         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1405         int ret = mmc_suspend_host(host->mmc);
1406
1407         if (!ret) {
1408                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1409                 clk_disable(host->hclk);
1410         }
1411
1412         return ret;
1413 }
1414
1415 static int sh_mmcif_resume(struct device *dev)
1416 {
1417         struct platform_device *pdev = to_platform_device(dev);
1418         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1419
1420         clk_enable(host->hclk);
1421
1422         return mmc_resume_host(host->mmc);
1423 }
1424 #else
1425 #define sh_mmcif_suspend        NULL
1426 #define sh_mmcif_resume         NULL
1427 #endif  /* CONFIG_PM */
1428
1429 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1430         .suspend = sh_mmcif_suspend,
1431         .resume = sh_mmcif_resume,
1432 };
1433
1434 static struct platform_driver sh_mmcif_driver = {
1435         .probe          = sh_mmcif_probe,
1436         .remove         = sh_mmcif_remove,
1437         .driver         = {
1438                 .name   = DRIVER_NAME,
1439                 .pm     = &sh_mmcif_dev_pm_ops,
1440         },
1441 };
1442
1443 module_platform_driver(sh_mmcif_driver);
1444
1445 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1446 MODULE_LICENSE("GPL");
1447 MODULE_ALIAS("platform:" DRIVER_NAME);
1448 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");