Merge tag 'v3.14.25' into backport/v3.14.24-ltsi-rc1+v3.14.25/snapshot-merge.wip
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67
68 #define DRIVER_NAME     "sh_mmcif"
69 #define DRIVER_VERSION  "2010-04-28"
70
71 /* CE_CMD_SET */
72 #define CMD_MASK                0x3f000000
73 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY            (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN           (1 << 20)
78 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH            (1 << 5)
93 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
97
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK          (1 << 0)
100
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK         0x0000ffff
103
104 /* CE_INT */
105 #define INT_CCSDE               (1 << 29)
106 #define INT_CMD12DRE            (1 << 26)
107 #define INT_CMD12RBE            (1 << 25)
108 #define INT_CMD12CRE            (1 << 24)
109 #define INT_DTRANE              (1 << 23)
110 #define INT_BUFRE               (1 << 22)
111 #define INT_BUFWEN              (1 << 21)
112 #define INT_BUFREN              (1 << 20)
113 #define INT_CCSRCV              (1 << 19)
114 #define INT_RBSYE               (1 << 17)
115 #define INT_CRSPE               (1 << 16)
116 #define INT_CMDVIO              (1 << 15)
117 #define INT_BUFVIO              (1 << 14)
118 #define INT_WDATERR             (1 << 11)
119 #define INT_RDATERR             (1 << 10)
120 #define INT_RIDXERR             (1 << 9)
121 #define INT_RSPERR              (1 << 8)
122 #define INT_CCSTO               (1 << 5)
123 #define INT_CRCSTO              (1 << 4)
124 #define INT_WDATTO              (1 << 3)
125 #define INT_RDATTO              (1 << 2)
126 #define INT_RBSYTO              (1 << 1)
127 #define INT_RSPTO               (1 << 0)
128 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
131                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
134                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138
139 /* CE_INT_MASK */
140 #define MASK_ALL                0x00000000
141 #define MASK_MCCSDE             (1 << 29)
142 #define MASK_MCMD12DRE          (1 << 26)
143 #define MASK_MCMD12RBE          (1 << 25)
144 #define MASK_MCMD12CRE          (1 << 24)
145 #define MASK_MDTRANE            (1 << 23)
146 #define MASK_MBUFRE             (1 << 22)
147 #define MASK_MBUFWEN            (1 << 21)
148 #define MASK_MBUFREN            (1 << 20)
149 #define MASK_MCCSRCV            (1 << 19)
150 #define MASK_MRBSYE             (1 << 17)
151 #define MASK_MCRSPE             (1 << 16)
152 #define MASK_MCMDVIO            (1 << 15)
153 #define MASK_MBUFVIO            (1 << 14)
154 #define MASK_MWDATERR           (1 << 11)
155 #define MASK_MRDATERR           (1 << 10)
156 #define MASK_MRIDXERR           (1 << 9)
157 #define MASK_MRSPERR            (1 << 8)
158 #define MASK_MCCSTO             (1 << 5)
159 #define MASK_MCRCSTO            (1 << 4)
160 #define MASK_MWDATTO            (1 << 3)
161 #define MASK_MRDATTO            (1 << 2)
162 #define MASK_MRBSYTO            (1 << 1)
163 #define MASK_MRSPTO             (1 << 0)
164
165 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167                                  MASK_MCRCSTO | MASK_MWDATTO | \
168                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169
170 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
171                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
172                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
173                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
174
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ             (1 << 31)
177
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE             (1 << 31)
180 #define STS2_CRC16E             (1 << 30)
181 #define STS2_AC12CRCE           (1 << 29)
182 #define STS2_RSPCRC7E           (1 << 28)
183 #define STS2_CRCSTEBE           (1 << 27)
184 #define STS2_RDATEBE            (1 << 26)
185 #define STS2_AC12REBE           (1 << 25)
186 #define STS2_RSPEBE             (1 << 24)
187 #define STS2_AC12IDXE           (1 << 23)
188 #define STS2_RSPIDXE            (1 << 22)
189 #define STS2_CCSTO              (1 << 15)
190 #define STS2_RDATTO             (1 << 14)
191 #define STS2_DATBSYTO           (1 << 13)
192 #define STS2_CRCSTTO            (1 << 12)
193 #define STS2_AC12BSYTO          (1 << 11)
194 #define STS2_RSPBSYTO           (1 << 10)
195 #define STS2_AC12RSPTO          (1 << 9)
196 #define STS2_RSPTO              (1 << 8)
197 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
198                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
200                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
201                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
202                                  STS2_AC12RSPTO | STS2_RSPTO)
203
204 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
206 #define CLKDEV_INIT             400000   /* 400 KHz */
207
208 enum mmcif_state {
209         STATE_IDLE,
210         STATE_REQUEST,
211         STATE_IOS,
212         STATE_TIMEOUT,
213 };
214
215 enum mmcif_wait_for {
216         MMCIF_WAIT_FOR_REQUEST,
217         MMCIF_WAIT_FOR_CMD,
218         MMCIF_WAIT_FOR_MREAD,
219         MMCIF_WAIT_FOR_MWRITE,
220         MMCIF_WAIT_FOR_READ,
221         MMCIF_WAIT_FOR_WRITE,
222         MMCIF_WAIT_FOR_READ_END,
223         MMCIF_WAIT_FOR_WRITE_END,
224         MMCIF_WAIT_FOR_STOP,
225 };
226
227 struct sh_mmcif_host {
228         struct mmc_host *mmc;
229         struct mmc_request *mrq;
230         struct platform_device *pd;
231         struct clk *hclk;
232         unsigned int clk;
233         int bus_width;
234         unsigned char timing;
235         bool sd_error;
236         bool dying;
237         long timeout;
238         void __iomem *addr;
239         u32 *pio_ptr;
240         spinlock_t lock;                /* protect sh_mmcif_host::state */
241         enum mmcif_state state;
242         enum mmcif_wait_for wait_for;
243         struct delayed_work timeout_work;
244         size_t blocksize;
245         int sg_idx;
246         int sg_blkidx;
247         bool power;
248         bool card_present;
249         bool ccs_enable;                /* Command Completion Signal support */
250         bool clk_ctrl2_enable;
251         struct mutex thread_lock;
252
253         /* DMA support */
254         struct dma_chan         *chan_rx;
255         struct dma_chan         *chan_tx;
256         struct completion       dma_complete;
257         bool                    dma_active;
258 };
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276
277         dev_dbg(&host->pd->dev, "Command completed\n");
278
279         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280                  dev_name(&host->pd->dev)))
281                 return;
282
283         complete(&host->dma_complete);
284 }
285
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288         struct mmc_data *data = host->mrq->data;
289         struct scatterlist *sg = data->sg;
290         struct dma_async_tx_descriptor *desc = NULL;
291         struct dma_chan *chan = host->chan_rx;
292         dma_cookie_t cookie = -EINVAL;
293         int ret;
294
295         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296                          DMA_FROM_DEVICE);
297         if (ret > 0) {
298                 host->dma_active = true;
299                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301         }
302
303         if (desc) {
304                 desc->callback = mmcif_dma_complete;
305                 desc->callback_param = host;
306                 cookie = dmaengine_submit(desc);
307                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308                 dma_async_issue_pending(chan);
309         }
310         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311                 __func__, data->sg_len, ret, cookie);
312
313         if (!desc) {
314                 /* DMA failed, fall back to PIO */
315                 if (ret >= 0)
316                         ret = -EIO;
317                 host->chan_rx = NULL;
318                 host->dma_active = false;
319                 dma_release_channel(chan);
320                 /* Free the Tx channel too */
321                 chan = host->chan_tx;
322                 if (chan) {
323                         host->chan_tx = NULL;
324                         dma_release_channel(chan);
325                 }
326                 dev_warn(&host->pd->dev,
327                          "DMA failed: %d, falling back to PIO\n", ret);
328                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329         }
330
331         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332                 desc, cookie, data->sg_len);
333 }
334
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337         struct mmc_data *data = host->mrq->data;
338         struct scatterlist *sg = data->sg;
339         struct dma_async_tx_descriptor *desc = NULL;
340         struct dma_chan *chan = host->chan_tx;
341         dma_cookie_t cookie = -EINVAL;
342         int ret;
343
344         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345                          DMA_TO_DEVICE);
346         if (ret > 0) {
347                 host->dma_active = true;
348                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350         }
351
352         if (desc) {
353                 desc->callback = mmcif_dma_complete;
354                 desc->callback_param = host;
355                 cookie = dmaengine_submit(desc);
356                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357                 dma_async_issue_pending(chan);
358         }
359         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360                 __func__, data->sg_len, ret, cookie);
361
362         if (!desc) {
363                 /* DMA failed, fall back to PIO */
364                 if (ret >= 0)
365                         ret = -EIO;
366                 host->chan_tx = NULL;
367                 host->dma_active = false;
368                 dma_release_channel(chan);
369                 /* Free the Rx channel too */
370                 chan = host->chan_rx;
371                 if (chan) {
372                         host->chan_rx = NULL;
373                         dma_release_channel(chan);
374                 }
375                 dev_warn(&host->pd->dev,
376                          "DMA failed: %d, falling back to PIO\n", ret);
377                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378         }
379
380         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381                 desc, cookie);
382 }
383
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386                          struct sh_mmcif_plat_data *pdata,
387                          enum dma_transfer_direction direction)
388 {
389         struct dma_slave_config cfg = { 0, };
390         struct dma_chan *chan;
391         unsigned int slave_id;
392         struct resource *res;
393         dma_cap_mask_t mask;
394         int ret;
395
396         dma_cap_zero(mask);
397         dma_cap_set(DMA_SLAVE, mask);
398
399         if (pdata)
400                 slave_id = direction == DMA_MEM_TO_DEV
401                          ? pdata->slave_id_tx : pdata->slave_id_rx;
402         else
403                 slave_id = 0;
404
405         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406                                 (void *)(unsigned long)slave_id, &host->pd->dev,
407                                 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
408
409         dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410                 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
411
412         if (!chan)
413                 return NULL;
414
415         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
416
417         /* In the OF case the driver will get the slave ID from the DT */
418         cfg.slave_id = slave_id;
419         cfg.direction = direction;
420
421         if (direction == DMA_DEV_TO_MEM) {
422                 cfg.src_addr = res->start + MMCIF_CE_DATA;
423                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424         } else {
425                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427         }
428
429         ret = dmaengine_slave_config(chan, &cfg);
430         if (ret < 0) {
431                 dma_release_channel(chan);
432                 return NULL;
433         }
434
435         return chan;
436 }
437
438 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
439                                  struct sh_mmcif_plat_data *pdata)
440 {
441         host->dma_active = false;
442
443         if (pdata) {
444                 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
445                         return;
446         } else if (!host->pd->dev.of_node) {
447                 return;
448         }
449
450         /* We can only either use DMA for both Tx and Rx or not use it at all */
451         host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
452         if (!host->chan_tx)
453                 return;
454
455         host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
456         if (!host->chan_rx) {
457                 dma_release_channel(host->chan_tx);
458                 host->chan_tx = NULL;
459         }
460 }
461
462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 {
464         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465         /* Descriptors are freed automatically */
466         if (host->chan_tx) {
467                 struct dma_chan *chan = host->chan_tx;
468                 host->chan_tx = NULL;
469                 dma_release_channel(chan);
470         }
471         if (host->chan_rx) {
472                 struct dma_chan *chan = host->chan_rx;
473                 host->chan_rx = NULL;
474                 dma_release_channel(chan);
475         }
476
477         host->dma_active = false;
478 }
479
480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 {
482         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
483         bool sup_pclk = p ? p->sup_pclk : false;
484
485         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
487
488         if (!clk)
489                 return;
490         if (sup_pclk && clk == host->clk)
491                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
492         else
493                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
494                                 ((fls(DIV_ROUND_UP(host->clk,
495                                                    clk) - 1) - 1) << 16));
496
497         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
498 }
499
500 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
501 {
502         u32 tmp;
503
504         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
505
506         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
507         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
508         if (host->ccs_enable)
509                 tmp |= SCCSTO_29;
510         if (host->clk_ctrl2_enable)
511                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
512         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
513                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
514         /* byte swap on */
515         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
516 }
517
518 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
519 {
520         u32 state1, state2;
521         int ret, timeout;
522
523         host->sd_error = false;
524
525         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
526         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
527         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
528         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
529
530         if (state1 & STS1_CMDSEQ) {
531                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
532                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
533                 for (timeout = 10000000; timeout; timeout--) {
534                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
535                               & STS1_CMDSEQ))
536                                 break;
537                         mdelay(1);
538                 }
539                 if (!timeout) {
540                         dev_err(&host->pd->dev,
541                                 "Forced end of command sequence timeout err\n");
542                         return -EIO;
543                 }
544                 sh_mmcif_sync_reset(host);
545                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
546                 return -EIO;
547         }
548
549         if (state2 & STS2_CRC_ERR) {
550                 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
551                         host->state, host->wait_for);
552                 ret = -EIO;
553         } else if (state2 & STS2_TIMEOUT_ERR) {
554                 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
555                         host->state, host->wait_for);
556                 ret = -ETIMEDOUT;
557         } else {
558                 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
559                         host->state, host->wait_for);
560                 ret = -EIO;
561         }
562         return ret;
563 }
564
565 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
566 {
567         struct mmc_data *data = host->mrq->data;
568
569         host->sg_blkidx += host->blocksize;
570
571         /* data->sg->length must be a multiple of host->blocksize? */
572         BUG_ON(host->sg_blkidx > data->sg->length);
573
574         if (host->sg_blkidx == data->sg->length) {
575                 host->sg_blkidx = 0;
576                 if (++host->sg_idx < data->sg_len)
577                         host->pio_ptr = sg_virt(++data->sg);
578         } else {
579                 host->pio_ptr = p;
580         }
581
582         return host->sg_idx != data->sg_len;
583 }
584
585 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
586                                  struct mmc_request *mrq)
587 {
588         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
589                            BLOCK_SIZE_MASK) + 3;
590
591         host->wait_for = MMCIF_WAIT_FOR_READ;
592
593         /* buf read enable */
594         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
595 }
596
597 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
598 {
599         struct mmc_data *data = host->mrq->data;
600         u32 *p = sg_virt(data->sg);
601         int i;
602
603         if (host->sd_error) {
604                 data->error = sh_mmcif_error_manage(host);
605                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
606                 return false;
607         }
608
609         for (i = 0; i < host->blocksize / 4; i++)
610                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
611
612         /* buffer read end */
613         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
614         host->wait_for = MMCIF_WAIT_FOR_READ_END;
615
616         return true;
617 }
618
619 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
620                                 struct mmc_request *mrq)
621 {
622         struct mmc_data *data = mrq->data;
623
624         if (!data->sg_len || !data->sg->length)
625                 return;
626
627         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
628                 BLOCK_SIZE_MASK;
629
630         host->wait_for = MMCIF_WAIT_FOR_MREAD;
631         host->sg_idx = 0;
632         host->sg_blkidx = 0;
633         host->pio_ptr = sg_virt(data->sg);
634
635         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
636 }
637
638 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
639 {
640         struct mmc_data *data = host->mrq->data;
641         u32 *p = host->pio_ptr;
642         int i;
643
644         if (host->sd_error) {
645                 data->error = sh_mmcif_error_manage(host);
646                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
647                 return false;
648         }
649
650         BUG_ON(!data->sg->length);
651
652         for (i = 0; i < host->blocksize / 4; i++)
653                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
654
655         if (!sh_mmcif_next_block(host, p))
656                 return false;
657
658         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
659
660         return true;
661 }
662
663 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
664                                         struct mmc_request *mrq)
665 {
666         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667                            BLOCK_SIZE_MASK) + 3;
668
669         host->wait_for = MMCIF_WAIT_FOR_WRITE;
670
671         /* buf write enable */
672         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
673 }
674
675 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
676 {
677         struct mmc_data *data = host->mrq->data;
678         u32 *p = sg_virt(data->sg);
679         int i;
680
681         if (host->sd_error) {
682                 data->error = sh_mmcif_error_manage(host);
683                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
684                 return false;
685         }
686
687         for (i = 0; i < host->blocksize / 4; i++)
688                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
689
690         /* buffer write end */
691         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
692         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
693
694         return true;
695 }
696
697 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
698                                 struct mmc_request *mrq)
699 {
700         struct mmc_data *data = mrq->data;
701
702         if (!data->sg_len || !data->sg->length)
703                 return;
704
705         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706                 BLOCK_SIZE_MASK;
707
708         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
709         host->sg_idx = 0;
710         host->sg_blkidx = 0;
711         host->pio_ptr = sg_virt(data->sg);
712
713         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
714 }
715
716 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
717 {
718         struct mmc_data *data = host->mrq->data;
719         u32 *p = host->pio_ptr;
720         int i;
721
722         if (host->sd_error) {
723                 data->error = sh_mmcif_error_manage(host);
724                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
725                 return false;
726         }
727
728         BUG_ON(!data->sg->length);
729
730         for (i = 0; i < host->blocksize / 4; i++)
731                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
732
733         if (!sh_mmcif_next_block(host, p))
734                 return false;
735
736         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
737
738         return true;
739 }
740
741 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
742                                                 struct mmc_command *cmd)
743 {
744         if (cmd->flags & MMC_RSP_136) {
745                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
746                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
747                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
748                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
749         } else
750                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
751 }
752
753 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
754                                                 struct mmc_command *cmd)
755 {
756         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
757 }
758
759 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
760                             struct mmc_request *mrq)
761 {
762         struct mmc_data *data = mrq->data;
763         struct mmc_command *cmd = mrq->cmd;
764         u32 opc = cmd->opcode;
765         u32 tmp = 0;
766
767         /* Response Type check */
768         switch (mmc_resp_type(cmd)) {
769         case MMC_RSP_NONE:
770                 tmp |= CMD_SET_RTYP_NO;
771                 break;
772         case MMC_RSP_R1:
773         case MMC_RSP_R1B:
774         case MMC_RSP_R3:
775                 tmp |= CMD_SET_RTYP_6B;
776                 break;
777         case MMC_RSP_R2:
778                 tmp |= CMD_SET_RTYP_17B;
779                 break;
780         default:
781                 dev_err(&host->pd->dev, "Unsupported response type.\n");
782                 break;
783         }
784         switch (opc) {
785         /* RBSY */
786         case MMC_SLEEP_AWAKE:
787         case MMC_SWITCH:
788         case MMC_STOP_TRANSMISSION:
789         case MMC_SET_WRITE_PROT:
790         case MMC_CLR_WRITE_PROT:
791         case MMC_ERASE:
792                 tmp |= CMD_SET_RBSY;
793                 break;
794         }
795         /* WDAT / DATW */
796         if (data) {
797                 tmp |= CMD_SET_WDAT;
798                 switch (host->bus_width) {
799                 case MMC_BUS_WIDTH_1:
800                         tmp |= CMD_SET_DATW_1;
801                         break;
802                 case MMC_BUS_WIDTH_4:
803                         tmp |= CMD_SET_DATW_4;
804                         break;
805                 case MMC_BUS_WIDTH_8:
806                         tmp |= CMD_SET_DATW_8;
807                         break;
808                 default:
809                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
810                         break;
811                 }
812                 switch (host->timing) {
813                 case MMC_TIMING_MMC_DDR52:
814                         /*
815                          * MMC core will only set this timing, if the host
816                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
817                          * capability. MMCIF implementations with this
818                          * capability, e.g. sh73a0, will have to set it
819                          * in their platform data.
820                          */
821                         tmp |= CMD_SET_DARS;
822                         break;
823                 }
824         }
825         /* DWEN */
826         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
827                 tmp |= CMD_SET_DWEN;
828         /* CMLTE/CMD12EN */
829         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
830                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
831                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
832                                 data->blocks << 16);
833         }
834         /* RIDXC[1:0] check bits */
835         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
836             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
837                 tmp |= CMD_SET_RIDXC_BITS;
838         /* RCRC7C[1:0] check bits */
839         if (opc == MMC_SEND_OP_COND)
840                 tmp |= CMD_SET_CRC7C_BITS;
841         /* RCRC7C[1:0] internal CRC7 */
842         if (opc == MMC_ALL_SEND_CID ||
843                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
844                 tmp |= CMD_SET_CRC7C_INTERNAL;
845
846         return (opc << 24) | tmp;
847 }
848
849 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
850                                struct mmc_request *mrq, u32 opc)
851 {
852         switch (opc) {
853         case MMC_READ_MULTIPLE_BLOCK:
854                 sh_mmcif_multi_read(host, mrq);
855                 return 0;
856         case MMC_WRITE_MULTIPLE_BLOCK:
857                 sh_mmcif_multi_write(host, mrq);
858                 return 0;
859         case MMC_WRITE_BLOCK:
860                 sh_mmcif_single_write(host, mrq);
861                 return 0;
862         case MMC_READ_SINGLE_BLOCK:
863         case MMC_SEND_EXT_CSD:
864                 sh_mmcif_single_read(host, mrq);
865                 return 0;
866         default:
867                 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
868                 return -EINVAL;
869         }
870 }
871
872 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
873                                struct mmc_request *mrq)
874 {
875         struct mmc_command *cmd = mrq->cmd;
876         u32 opc = cmd->opcode;
877         u32 mask;
878
879         switch (opc) {
880         /* response busy check */
881         case MMC_SLEEP_AWAKE:
882         case MMC_SWITCH:
883         case MMC_STOP_TRANSMISSION:
884         case MMC_SET_WRITE_PROT:
885         case MMC_CLR_WRITE_PROT:
886         case MMC_ERASE:
887                 mask = MASK_START_CMD | MASK_MRBSYE;
888                 break;
889         default:
890                 mask = MASK_START_CMD | MASK_MCRSPE;
891                 break;
892         }
893
894         if (host->ccs_enable)
895                 mask |= MASK_MCCSTO;
896
897         if (mrq->data) {
898                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
899                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
900                                 mrq->data->blksz);
901         }
902         opc = sh_mmcif_set_cmd(host, mrq);
903
904         if (host->ccs_enable)
905                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
906         else
907                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
908         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
909         /* set arg */
910         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
911         /* set cmd */
912         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
913
914         host->wait_for = MMCIF_WAIT_FOR_CMD;
915         schedule_delayed_work(&host->timeout_work, host->timeout);
916 }
917
918 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
919                               struct mmc_request *mrq)
920 {
921         switch (mrq->cmd->opcode) {
922         case MMC_READ_MULTIPLE_BLOCK:
923                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
924                 break;
925         case MMC_WRITE_MULTIPLE_BLOCK:
926                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
927                 break;
928         default:
929                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
930                 mrq->stop->error = sh_mmcif_error_manage(host);
931                 return;
932         }
933
934         host->wait_for = MMCIF_WAIT_FOR_STOP;
935 }
936
937 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
938 {
939         struct sh_mmcif_host *host = mmc_priv(mmc);
940         unsigned long flags;
941
942         spin_lock_irqsave(&host->lock, flags);
943         if (host->state != STATE_IDLE) {
944                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
945                 spin_unlock_irqrestore(&host->lock, flags);
946                 mrq->cmd->error = -EAGAIN;
947                 mmc_request_done(mmc, mrq);
948                 return;
949         }
950
951         host->state = STATE_REQUEST;
952         spin_unlock_irqrestore(&host->lock, flags);
953
954         switch (mrq->cmd->opcode) {
955         /* MMCIF does not support SD/SDIO command */
956         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
957         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
958                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
959                         break;
960         case MMC_APP_CMD:
961         case SD_IO_RW_DIRECT:
962                 host->state = STATE_IDLE;
963                 mrq->cmd->error = -ETIMEDOUT;
964                 mmc_request_done(mmc, mrq);
965                 return;
966         default:
967                 break;
968         }
969
970         host->mrq = mrq;
971
972         sh_mmcif_start_cmd(host, mrq);
973 }
974
975 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
976 {
977         int ret = clk_prepare_enable(host->hclk);
978
979         if (!ret) {
980                 host->clk = clk_get_rate(host->hclk);
981                 host->mmc->f_max = host->clk / 2;
982                 host->mmc->f_min = host->clk / 512;
983         }
984
985         return ret;
986 }
987
988 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
989 {
990         struct mmc_host *mmc = host->mmc;
991
992         if (!IS_ERR(mmc->supply.vmmc))
993                 /* Errors ignored... */
994                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
995                                       ios->power_mode ? ios->vdd : 0);
996 }
997
998 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
999 {
1000         struct sh_mmcif_host *host = mmc_priv(mmc);
1001         unsigned long flags;
1002
1003         spin_lock_irqsave(&host->lock, flags);
1004         if (host->state != STATE_IDLE) {
1005                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1006                 spin_unlock_irqrestore(&host->lock, flags);
1007                 return;
1008         }
1009
1010         host->state = STATE_IOS;
1011         spin_unlock_irqrestore(&host->lock, flags);
1012
1013         if (ios->power_mode == MMC_POWER_UP) {
1014                 if (!host->card_present) {
1015                         /* See if we also get DMA */
1016                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1017                         host->card_present = true;
1018                 }
1019                 sh_mmcif_set_power(host, ios);
1020         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1021                 /* clock stop */
1022                 sh_mmcif_clock_control(host, 0);
1023                 if (ios->power_mode == MMC_POWER_OFF) {
1024                         if (host->card_present) {
1025                                 sh_mmcif_release_dma(host);
1026                                 host->card_present = false;
1027                         }
1028                 }
1029                 if (host->power) {
1030                         pm_runtime_put_sync(&host->pd->dev);
1031                         clk_disable_unprepare(host->hclk);
1032                         host->power = false;
1033                         if (ios->power_mode == MMC_POWER_OFF)
1034                                 sh_mmcif_set_power(host, ios);
1035                 }
1036                 host->state = STATE_IDLE;
1037                 return;
1038         }
1039
1040         if (ios->clock) {
1041                 if (!host->power) {
1042                         sh_mmcif_clk_update(host);
1043                         pm_runtime_get_sync(&host->pd->dev);
1044                         host->power = true;
1045                         sh_mmcif_sync_reset(host);
1046                 }
1047                 sh_mmcif_clock_control(host, ios->clock);
1048         }
1049
1050         host->timing = ios->timing;
1051         host->bus_width = ios->bus_width;
1052         host->state = STATE_IDLE;
1053 }
1054
1055 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1056 {
1057         struct sh_mmcif_host *host = mmc_priv(mmc);
1058         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1059         int ret = mmc_gpio_get_cd(mmc);
1060
1061         if (ret >= 0)
1062                 return ret;
1063
1064         if (!p || !p->get_cd)
1065                 return -ENOSYS;
1066         else
1067                 return p->get_cd(host->pd);
1068 }
1069
1070 static struct mmc_host_ops sh_mmcif_ops = {
1071         .request        = sh_mmcif_request,
1072         .set_ios        = sh_mmcif_set_ios,
1073         .get_cd         = sh_mmcif_get_cd,
1074 };
1075
1076 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1077 {
1078         struct mmc_command *cmd = host->mrq->cmd;
1079         struct mmc_data *data = host->mrq->data;
1080         long time;
1081
1082         if (host->sd_error) {
1083                 switch (cmd->opcode) {
1084                 case MMC_ALL_SEND_CID:
1085                 case MMC_SELECT_CARD:
1086                 case MMC_APP_CMD:
1087                         cmd->error = -ETIMEDOUT;
1088                         break;
1089                 default:
1090                         cmd->error = sh_mmcif_error_manage(host);
1091                         break;
1092                 }
1093                 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1094                         cmd->opcode, cmd->error);
1095                 host->sd_error = false;
1096                 return false;
1097         }
1098         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1099                 cmd->error = 0;
1100                 return false;
1101         }
1102
1103         sh_mmcif_get_response(host, cmd);
1104
1105         if (!data)
1106                 return false;
1107
1108         /*
1109          * Completion can be signalled from DMA callback and error, so, have to
1110          * reset here, before setting .dma_active
1111          */
1112         init_completion(&host->dma_complete);
1113
1114         if (data->flags & MMC_DATA_READ) {
1115                 if (host->chan_rx)
1116                         sh_mmcif_start_dma_rx(host);
1117         } else {
1118                 if (host->chan_tx)
1119                         sh_mmcif_start_dma_tx(host);
1120         }
1121
1122         if (!host->dma_active) {
1123                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1124                 return !data->error;
1125         }
1126
1127         /* Running in the IRQ thread, can sleep */
1128         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1129                                                          host->timeout);
1130
1131         if (data->flags & MMC_DATA_READ)
1132                 dma_unmap_sg(host->chan_rx->device->dev,
1133                              data->sg, data->sg_len,
1134                              DMA_FROM_DEVICE);
1135         else
1136                 dma_unmap_sg(host->chan_tx->device->dev,
1137                              data->sg, data->sg_len,
1138                              DMA_TO_DEVICE);
1139
1140         if (host->sd_error) {
1141                 dev_err(host->mmc->parent,
1142                         "Error IRQ while waiting for DMA completion!\n");
1143                 /* Woken up by an error IRQ: abort DMA */
1144                 data->error = sh_mmcif_error_manage(host);
1145         } else if (!time) {
1146                 dev_err(host->mmc->parent, "DMA timeout!\n");
1147                 data->error = -ETIMEDOUT;
1148         } else if (time < 0) {
1149                 dev_err(host->mmc->parent,
1150                         "wait_for_completion_...() error %ld!\n", time);
1151                 data->error = time;
1152         }
1153         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1154                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1155         host->dma_active = false;
1156
1157         if (data->error) {
1158                 data->bytes_xfered = 0;
1159                 /* Abort DMA */
1160                 if (data->flags & MMC_DATA_READ)
1161                         dmaengine_terminate_all(host->chan_rx);
1162                 else
1163                         dmaengine_terminate_all(host->chan_tx);
1164         }
1165
1166         return false;
1167 }
1168
1169 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1170 {
1171         struct sh_mmcif_host *host = dev_id;
1172         struct mmc_request *mrq;
1173         bool wait = false;
1174
1175         cancel_delayed_work_sync(&host->timeout_work);
1176
1177         mutex_lock(&host->thread_lock);
1178
1179         mrq = host->mrq;
1180         if (!mrq) {
1181                 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1182                         host->state, host->wait_for);
1183                 mutex_unlock(&host->thread_lock);
1184                 return IRQ_HANDLED;
1185         }
1186
1187         /*
1188          * All handlers return true, if processing continues, and false, if the
1189          * request has to be completed - successfully or not
1190          */
1191         switch (host->wait_for) {
1192         case MMCIF_WAIT_FOR_REQUEST:
1193                 /* We're too late, the timeout has already kicked in */
1194                 mutex_unlock(&host->thread_lock);
1195                 return IRQ_HANDLED;
1196         case MMCIF_WAIT_FOR_CMD:
1197                 /* Wait for data? */
1198                 wait = sh_mmcif_end_cmd(host);
1199                 break;
1200         case MMCIF_WAIT_FOR_MREAD:
1201                 /* Wait for more data? */
1202                 wait = sh_mmcif_mread_block(host);
1203                 break;
1204         case MMCIF_WAIT_FOR_READ:
1205                 /* Wait for data end? */
1206                 wait = sh_mmcif_read_block(host);
1207                 break;
1208         case MMCIF_WAIT_FOR_MWRITE:
1209                 /* Wait data to write? */
1210                 wait = sh_mmcif_mwrite_block(host);
1211                 break;
1212         case MMCIF_WAIT_FOR_WRITE:
1213                 /* Wait for data end? */
1214                 wait = sh_mmcif_write_block(host);
1215                 break;
1216         case MMCIF_WAIT_FOR_STOP:
1217                 if (host->sd_error) {
1218                         mrq->stop->error = sh_mmcif_error_manage(host);
1219                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1220                         break;
1221                 }
1222                 sh_mmcif_get_cmd12response(host, mrq->stop);
1223                 mrq->stop->error = 0;
1224                 break;
1225         case MMCIF_WAIT_FOR_READ_END:
1226         case MMCIF_WAIT_FOR_WRITE_END:
1227                 if (host->sd_error) {
1228                         mrq->data->error = sh_mmcif_error_manage(host);
1229                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1230                 }
1231                 break;
1232         default:
1233                 BUG();
1234         }
1235
1236         if (wait) {
1237                 schedule_delayed_work(&host->timeout_work, host->timeout);
1238                 /* Wait for more data */
1239                 mutex_unlock(&host->thread_lock);
1240                 return IRQ_HANDLED;
1241         }
1242
1243         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1244                 struct mmc_data *data = mrq->data;
1245                 if (!mrq->cmd->error && data && !data->error)
1246                         data->bytes_xfered =
1247                                 data->blocks * data->blksz;
1248
1249                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1250                         sh_mmcif_stop_cmd(host, mrq);
1251                         if (!mrq->stop->error) {
1252                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1253                                 mutex_unlock(&host->thread_lock);
1254                                 return IRQ_HANDLED;
1255                         }
1256                 }
1257         }
1258
1259         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1260         host->state = STATE_IDLE;
1261         host->mrq = NULL;
1262         mmc_request_done(host->mmc, mrq);
1263
1264         mutex_unlock(&host->thread_lock);
1265
1266         return IRQ_HANDLED;
1267 }
1268
1269 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1270 {
1271         struct sh_mmcif_host *host = dev_id;
1272         u32 state, mask;
1273
1274         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1275         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1276         if (host->ccs_enable)
1277                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1278         else
1279                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1280         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1281
1282         if (state & ~MASK_CLEAN)
1283                 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1284                         state);
1285
1286         if (state & INT_ERR_STS || state & ~INT_ALL) {
1287                 host->sd_error = true;
1288                 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1289         }
1290         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1291                 if (!host->mrq)
1292                         dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1293                 if (!host->dma_active)
1294                         return IRQ_WAKE_THREAD;
1295                 else if (host->sd_error)
1296                         mmcif_dma_complete(host);
1297         } else {
1298                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1299         }
1300
1301         return IRQ_HANDLED;
1302 }
1303
1304 static void mmcif_timeout_work(struct work_struct *work)
1305 {
1306         struct delayed_work *d = container_of(work, struct delayed_work, work);
1307         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1308         struct mmc_request *mrq = host->mrq;
1309         unsigned long flags;
1310
1311         if (host->dying)
1312                 /* Don't run after mmc_remove_host() */
1313                 return;
1314
1315         dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1316                 host->wait_for, mrq->cmd->opcode);
1317
1318         spin_lock_irqsave(&host->lock, flags);
1319         if (host->state == STATE_IDLE) {
1320                 spin_unlock_irqrestore(&host->lock, flags);
1321                 return;
1322         }
1323
1324         host->state = STATE_TIMEOUT;
1325         spin_unlock_irqrestore(&host->lock, flags);
1326
1327         /*
1328          * Handle races with cancel_delayed_work(), unless
1329          * cancel_delayed_work_sync() is used
1330          */
1331         switch (host->wait_for) {
1332         case MMCIF_WAIT_FOR_CMD:
1333                 mrq->cmd->error = sh_mmcif_error_manage(host);
1334                 break;
1335         case MMCIF_WAIT_FOR_STOP:
1336                 mrq->stop->error = sh_mmcif_error_manage(host);
1337                 break;
1338         case MMCIF_WAIT_FOR_MREAD:
1339         case MMCIF_WAIT_FOR_MWRITE:
1340         case MMCIF_WAIT_FOR_READ:
1341         case MMCIF_WAIT_FOR_WRITE:
1342         case MMCIF_WAIT_FOR_READ_END:
1343         case MMCIF_WAIT_FOR_WRITE_END:
1344                 mrq->data->error = sh_mmcif_error_manage(host);
1345                 break;
1346         default:
1347                 BUG();
1348         }
1349
1350         host->state = STATE_IDLE;
1351         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1352         host->mrq = NULL;
1353         mmc_request_done(host->mmc, mrq);
1354 }
1355
1356 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1357 {
1358         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1359         struct mmc_host *mmc = host->mmc;
1360
1361         mmc_regulator_get_supply(mmc);
1362
1363         if (!pd)
1364                 return;
1365
1366         if (!mmc->ocr_avail)
1367                 mmc->ocr_avail = pd->ocr;
1368         else if (pd->ocr)
1369                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1370 }
1371
1372 static int sh_mmcif_probe(struct platform_device *pdev)
1373 {
1374         int ret = 0, irq[2];
1375         struct mmc_host *mmc;
1376         struct sh_mmcif_host *host;
1377         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1378         struct resource *res;
1379         void __iomem *reg;
1380         const char *name;
1381
1382         irq[0] = platform_get_irq(pdev, 0);
1383         irq[1] = platform_get_irq(pdev, 1);
1384         if (irq[0] < 0) {
1385                 dev_err(&pdev->dev, "Get irq error\n");
1386                 return -ENXIO;
1387         }
1388
1389         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1390         reg = devm_ioremap_resource(&pdev->dev, res);
1391         if (IS_ERR(reg))
1392                 return PTR_ERR(reg);
1393
1394         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1395         if (!mmc)
1396                 return -ENOMEM;
1397
1398         ret = mmc_of_parse(mmc);
1399         if (ret < 0)
1400                 goto err_host;
1401
1402         host            = mmc_priv(mmc);
1403         host->mmc       = mmc;
1404         host->addr      = reg;
1405         host->timeout   = msecs_to_jiffies(1000);
1406         host->ccs_enable = !pd || !pd->ccs_unsupported;
1407         host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1408
1409         host->pd = pdev;
1410
1411         spin_lock_init(&host->lock);
1412
1413         mmc->ops = &sh_mmcif_ops;
1414         sh_mmcif_init_ocr(host);
1415
1416         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1417         if (pd && pd->caps)
1418                 mmc->caps |= pd->caps;
1419         mmc->max_segs = 32;
1420         mmc->max_blk_size = 512;
1421         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1422         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1423         mmc->max_seg_size = mmc->max_req_size;
1424
1425         platform_set_drvdata(pdev, host);
1426
1427         pm_runtime_enable(&pdev->dev);
1428         host->power = false;
1429
1430         host->hclk = devm_clk_get(&pdev->dev, NULL);
1431         if (IS_ERR(host->hclk)) {
1432                 ret = PTR_ERR(host->hclk);
1433                 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1434                 goto err_pm;
1435         }
1436         ret = sh_mmcif_clk_update(host);
1437         if (ret < 0)
1438                 goto err_pm;
1439
1440         ret = pm_runtime_resume(&pdev->dev);
1441         if (ret < 0)
1442                 goto err_clk;
1443
1444         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1445
1446         sh_mmcif_sync_reset(host);
1447         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1448
1449         name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1450         ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1451                                         sh_mmcif_irqt, 0, name, host);
1452         if (ret) {
1453                 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1454                 goto err_clk;
1455         }
1456         if (irq[1] >= 0) {
1457                 ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1458                                                 sh_mmcif_intr, sh_mmcif_irqt,
1459                                                 0, "sh_mmc:int", host);
1460                 if (ret) {
1461                         dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1462                         goto err_clk;
1463                 }
1464         }
1465
1466         if (pd && pd->use_cd_gpio) {
1467                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1468                 if (ret < 0)
1469                         goto err_clk;
1470         }
1471
1472         mutex_init(&host->thread_lock);
1473
1474         ret = mmc_add_host(mmc);
1475         if (ret < 0)
1476                 goto err_clk;
1477
1478         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1479
1480         dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1481                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1482                  clk_get_rate(host->hclk) / 1000000UL);
1483
1484         clk_disable_unprepare(host->hclk);
1485         return ret;
1486
1487 err_clk:
1488         clk_disable_unprepare(host->hclk);
1489 err_pm:
1490         pm_runtime_disable(&pdev->dev);
1491 err_host:
1492         mmc_free_host(mmc);
1493         return ret;
1494 }
1495
1496 static int sh_mmcif_remove(struct platform_device *pdev)
1497 {
1498         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1499
1500         host->dying = true;
1501         clk_prepare_enable(host->hclk);
1502         pm_runtime_get_sync(&pdev->dev);
1503
1504         dev_pm_qos_hide_latency_limit(&pdev->dev);
1505
1506         mmc_remove_host(host->mmc);
1507         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1508
1509         /*
1510          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1511          * mmc_remove_host() call above. But swapping order doesn't help either
1512          * (a query on the linux-mmc mailing list didn't bring any replies).
1513          */
1514         cancel_delayed_work_sync(&host->timeout_work);
1515
1516         clk_disable_unprepare(host->hclk);
1517         mmc_free_host(host->mmc);
1518         pm_runtime_put_sync(&pdev->dev);
1519         pm_runtime_disable(&pdev->dev);
1520
1521         return 0;
1522 }
1523
1524 #ifdef CONFIG_PM_SLEEP
1525 static int sh_mmcif_suspend(struct device *dev)
1526 {
1527         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1528
1529         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1530
1531         return 0;
1532 }
1533
1534 static int sh_mmcif_resume(struct device *dev)
1535 {
1536         return 0;
1537 }
1538 #endif
1539
1540 static const struct of_device_id mmcif_of_match[] = {
1541         { .compatible = "renesas,sh-mmcif" },
1542         { }
1543 };
1544 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1545
1546 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1547         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1548 };
1549
1550 static struct platform_driver sh_mmcif_driver = {
1551         .probe          = sh_mmcif_probe,
1552         .remove         = sh_mmcif_remove,
1553         .driver         = {
1554                 .name   = DRIVER_NAME,
1555                 .pm     = &sh_mmcif_dev_pm_ops,
1556                 .owner  = THIS_MODULE,
1557                 .of_match_table = mmcif_of_match,
1558         },
1559 };
1560
1561 module_platform_driver(sh_mmcif_driver);
1562
1563 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("platform:" DRIVER_NAME);
1566 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");