2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
39 #include <asm/div64.h>
41 #include <asm/sizes.h>
45 #define DRIVER_NAME "mmci-pl18x"
47 static unsigned int fmax = 515633;
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
67 unsigned int clkreg_enable;
68 unsigned int datalength_bits;
69 unsigned int fifosize;
70 unsigned int fifohalfsize;
73 bool blksz_datactrl16;
75 bool signal_direction;
79 static struct variant_data variant_arm = {
81 .fifohalfsize = 8 * 4,
82 .datalength_bits = 16,
83 .pwrreg_powerup = MCI_PWR_UP,
86 static struct variant_data variant_arm_extended_fifo = {
88 .fifohalfsize = 64 * 4,
89 .datalength_bits = 16,
90 .pwrreg_powerup = MCI_PWR_UP,
93 static struct variant_data variant_arm_extended_fifo_hwfc = {
95 .fifohalfsize = 64 * 4,
96 .clkreg_enable = MCI_ARM_HWFCEN,
97 .datalength_bits = 16,
98 .pwrreg_powerup = MCI_PWR_UP,
101 static struct variant_data variant_u300 = {
103 .fifohalfsize = 8 * 4,
104 .clkreg_enable = MCI_ST_U300_HWFCEN,
105 .datalength_bits = 16,
107 .pwrreg_powerup = MCI_PWR_ON,
108 .signal_direction = true,
109 .pwrreg_clkgate = true,
112 static struct variant_data variant_nomadik = {
114 .fifohalfsize = 8 * 4,
115 .clkreg = MCI_CLK_ENABLE,
116 .datalength_bits = 24,
119 .pwrreg_powerup = MCI_PWR_ON,
120 .signal_direction = true,
121 .pwrreg_clkgate = true,
124 static struct variant_data variant_ux500 = {
126 .fifohalfsize = 8 * 4,
127 .clkreg = MCI_CLK_ENABLE,
128 .clkreg_enable = MCI_ST_UX500_HWFCEN,
129 .datalength_bits = 24,
132 .pwrreg_powerup = MCI_PWR_ON,
133 .signal_direction = true,
134 .pwrreg_clkgate = true,
137 static struct variant_data variant_ux500v2 = {
139 .fifohalfsize = 8 * 4,
140 .clkreg = MCI_CLK_ENABLE,
141 .clkreg_enable = MCI_ST_UX500_HWFCEN,
142 .datalength_bits = 24,
145 .blksz_datactrl16 = true,
146 .pwrreg_powerup = MCI_PWR_ON,
147 .signal_direction = true,
148 .pwrreg_clkgate = true,
152 * Validate mmc prerequisites
154 static int mmci_validate_data(struct mmci_host *host,
155 struct mmc_data *data)
160 if (!is_power_of_2(data->blksz)) {
161 dev_err(mmc_dev(host->mmc),
162 "unsupported block size (%d bytes)\n", data->blksz);
170 * This must be called with host->lock held
172 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
174 if (host->clk_reg != clk) {
176 writel(clk, host->base + MMCICLOCK);
181 * This must be called with host->lock held
183 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
185 if (host->pwr_reg != pwr) {
187 writel(pwr, host->base + MMCIPOWER);
192 * This must be called with host->lock held
194 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
196 struct variant_data *variant = host->variant;
197 u32 clk = variant->clkreg;
200 if (desired >= host->mclk) {
201 clk = MCI_CLK_BYPASS;
202 if (variant->st_clkdiv)
203 clk |= MCI_ST_UX500_NEG_EDGE;
204 host->cclk = host->mclk;
205 } else if (variant->st_clkdiv) {
207 * DB8500 TRM says f = mclk / (clkdiv + 2)
208 * => clkdiv = (mclk / f) - 2
209 * Round the divider up so we don't exceed the max
212 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
215 host->cclk = host->mclk / (clk + 2);
218 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
219 * => clkdiv = mclk / (2 * f) - 1
221 clk = host->mclk / (2 * desired) - 1;
224 host->cclk = host->mclk / (2 * (clk + 1));
227 clk |= variant->clkreg_enable;
228 clk |= MCI_CLK_ENABLE;
229 /* This hasn't proven to be worthwhile */
230 /* clk |= MCI_CLK_PWRSAVE; */
233 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
235 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
236 clk |= MCI_ST_8BIT_BUS;
238 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
239 clk |= MCI_ST_UX500_NEG_EDGE;
241 mmci_write_clkreg(host, clk);
245 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
247 writel(0, host->base + MMCICOMMAND);
254 mmc_request_done(host->mmc, mrq);
256 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
257 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
260 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
262 void __iomem *base = host->base;
264 if (host->singleirq) {
265 unsigned int mask0 = readl(base + MMCIMASK0);
267 mask0 &= ~MCI_IRQ1MASK;
270 writel(mask0, base + MMCIMASK0);
273 writel(mask, base + MMCIMASK1);
276 static void mmci_stop_data(struct mmci_host *host)
278 writel(0, host->base + MMCIDATACTRL);
279 mmci_set_mask1(host, 0);
283 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
285 unsigned int flags = SG_MITER_ATOMIC;
287 if (data->flags & MMC_DATA_READ)
288 flags |= SG_MITER_TO_SG;
290 flags |= SG_MITER_FROM_SG;
292 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
296 * All the DMA operation mode stuff goes inside this ifdef.
297 * This assumes that you have a generic DMA device interface,
298 * no custom DMA interfaces are supported.
300 #ifdef CONFIG_DMA_ENGINE
301 static void mmci_dma_setup(struct mmci_host *host)
303 struct mmci_platform_data *plat = host->plat;
304 const char *rxname, *txname;
307 if (!plat || !plat->dma_filter) {
308 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
312 /* initialize pre request cookie */
313 host->next_data.cookie = 1;
315 /* Try to acquire a generic DMA engine slave channel */
317 dma_cap_set(DMA_SLAVE, mask);
320 * If only an RX channel is specified, the driver will
321 * attempt to use it bidirectionally, however if it is
322 * is specified but cannot be located, DMA will be disabled.
324 if (plat->dma_rx_param) {
325 host->dma_rx_channel = dma_request_channel(mask,
328 /* E.g if no DMA hardware is present */
329 if (!host->dma_rx_channel)
330 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
333 if (plat->dma_tx_param) {
334 host->dma_tx_channel = dma_request_channel(mask,
337 if (!host->dma_tx_channel)
338 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
340 host->dma_tx_channel = host->dma_rx_channel;
343 if (host->dma_rx_channel)
344 rxname = dma_chan_name(host->dma_rx_channel);
348 if (host->dma_tx_channel)
349 txname = dma_chan_name(host->dma_tx_channel);
353 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
357 * Limit the maximum segment size in any SG entry according to
358 * the parameters of the DMA engine device.
360 if (host->dma_tx_channel) {
361 struct device *dev = host->dma_tx_channel->device->dev;
362 unsigned int max_seg_size = dma_get_max_seg_size(dev);
364 if (max_seg_size < host->mmc->max_seg_size)
365 host->mmc->max_seg_size = max_seg_size;
367 if (host->dma_rx_channel) {
368 struct device *dev = host->dma_rx_channel->device->dev;
369 unsigned int max_seg_size = dma_get_max_seg_size(dev);
371 if (max_seg_size < host->mmc->max_seg_size)
372 host->mmc->max_seg_size = max_seg_size;
377 * This is used in or so inline it
378 * so it can be discarded.
380 static inline void mmci_dma_release(struct mmci_host *host)
382 struct mmci_platform_data *plat = host->plat;
384 if (host->dma_rx_channel)
385 dma_release_channel(host->dma_rx_channel);
386 if (host->dma_tx_channel && plat->dma_tx_param)
387 dma_release_channel(host->dma_tx_channel);
388 host->dma_rx_channel = host->dma_tx_channel = NULL;
391 static void mmci_dma_data_error(struct mmci_host *host)
393 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
394 dmaengine_terminate_all(host->dma_current);
395 host->dma_current = NULL;
396 host->dma_desc_current = NULL;
397 host->data->host_cookie = 0;
400 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
402 struct dma_chan *chan;
403 enum dma_data_direction dir;
405 if (data->flags & MMC_DATA_READ) {
406 dir = DMA_FROM_DEVICE;
407 chan = host->dma_rx_channel;
410 chan = host->dma_tx_channel;
413 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
416 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
421 /* Wait up to 1ms for the DMA to complete */
423 status = readl(host->base + MMCISTATUS);
424 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
430 * Check to see whether we still have some data left in the FIFO -
431 * this catches DMA controllers which are unable to monitor the
432 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
433 * contiguous buffers. On TX, we'll get a FIFO underrun error.
435 if (status & MCI_RXDATAAVLBLMASK) {
436 mmci_dma_data_error(host);
441 if (!data->host_cookie)
442 mmci_dma_unmap(host, data);
445 * Use of DMA with scatter-gather is impossible.
446 * Give up with DMA and switch back to PIO mode.
448 if (status & MCI_RXDATAAVLBLMASK) {
449 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
450 mmci_dma_release(host);
453 host->dma_current = NULL;
454 host->dma_desc_current = NULL;
457 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
458 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
459 struct dma_chan **dma_chan,
460 struct dma_async_tx_descriptor **dma_desc)
462 struct variant_data *variant = host->variant;
463 struct dma_slave_config conf = {
464 .src_addr = host->phybase + MMCIFIFO,
465 .dst_addr = host->phybase + MMCIFIFO,
466 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
467 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
468 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
469 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
472 struct dma_chan *chan;
473 struct dma_device *device;
474 struct dma_async_tx_descriptor *desc;
475 enum dma_data_direction buffer_dirn;
478 if (data->flags & MMC_DATA_READ) {
479 conf.direction = DMA_DEV_TO_MEM;
480 buffer_dirn = DMA_FROM_DEVICE;
481 chan = host->dma_rx_channel;
483 conf.direction = DMA_MEM_TO_DEV;
484 buffer_dirn = DMA_TO_DEVICE;
485 chan = host->dma_tx_channel;
488 /* If there's no DMA channel, fall back to PIO */
492 /* If less than or equal to the fifo size, don't bother with DMA */
493 if (data->blksz * data->blocks <= variant->fifosize)
496 device = chan->device;
497 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
501 dmaengine_slave_config(chan, &conf);
502 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
503 conf.direction, DMA_CTRL_ACK);
513 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
517 static inline int mmci_dma_prep_data(struct mmci_host *host,
518 struct mmc_data *data)
520 /* Check if next job is already prepared. */
521 if (host->dma_current && host->dma_desc_current)
524 /* No job were prepared thus do it now. */
525 return __mmci_dma_prep_data(host, data, &host->dma_current,
526 &host->dma_desc_current);
529 static inline int mmci_dma_prep_next(struct mmci_host *host,
530 struct mmc_data *data)
532 struct mmci_host_next *nd = &host->next_data;
533 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
536 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
539 struct mmc_data *data = host->data;
541 ret = mmci_dma_prep_data(host, host->data);
545 /* Okay, go for it. */
546 dev_vdbg(mmc_dev(host->mmc),
547 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
548 data->sg_len, data->blksz, data->blocks, data->flags);
549 dmaengine_submit(host->dma_desc_current);
550 dma_async_issue_pending(host->dma_current);
552 datactrl |= MCI_DPSM_DMAENABLE;
554 /* Trigger the DMA transfer */
555 writel(datactrl, host->base + MMCIDATACTRL);
558 * Let the MMCI say when the data is ended and it's time
559 * to fire next DMA request. When that happens, MMCI will
560 * call mmci_data_end()
562 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
563 host->base + MMCIMASK0);
567 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
569 struct mmci_host_next *next = &host->next_data;
571 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
572 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
574 host->dma_desc_current = next->dma_desc;
575 host->dma_current = next->dma_chan;
576 next->dma_desc = NULL;
577 next->dma_chan = NULL;
580 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
583 struct mmci_host *host = mmc_priv(mmc);
584 struct mmc_data *data = mrq->data;
585 struct mmci_host_next *nd = &host->next_data;
590 BUG_ON(data->host_cookie);
592 if (mmci_validate_data(host, data))
595 if (!mmci_dma_prep_next(host, data))
596 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
599 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
602 struct mmci_host *host = mmc_priv(mmc);
603 struct mmc_data *data = mrq->data;
605 if (!data || !data->host_cookie)
608 mmci_dma_unmap(host, data);
611 struct mmci_host_next *next = &host->next_data;
612 struct dma_chan *chan;
613 if (data->flags & MMC_DATA_READ)
614 chan = host->dma_rx_channel;
616 chan = host->dma_tx_channel;
617 dmaengine_terminate_all(chan);
619 next->dma_desc = NULL;
620 next->dma_chan = NULL;
625 /* Blank functions if the DMA engine is not available */
626 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
629 static inline void mmci_dma_setup(struct mmci_host *host)
633 static inline void mmci_dma_release(struct mmci_host *host)
637 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
641 static inline void mmci_dma_finalize(struct mmci_host *host,
642 struct mmc_data *data)
646 static inline void mmci_dma_data_error(struct mmci_host *host)
650 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
655 #define mmci_pre_request NULL
656 #define mmci_post_request NULL
660 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
662 struct variant_data *variant = host->variant;
663 unsigned int datactrl, timeout, irqmask;
664 unsigned long long clks;
668 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
669 data->blksz, data->blocks, data->flags);
672 host->size = data->blksz * data->blocks;
673 data->bytes_xfered = 0;
675 clks = (unsigned long long)data->timeout_ns * host->cclk;
676 do_div(clks, 1000000000UL);
678 timeout = data->timeout_clks + (unsigned int)clks;
681 writel(timeout, base + MMCIDATATIMER);
682 writel(host->size, base + MMCIDATALENGTH);
684 blksz_bits = ffs(data->blksz) - 1;
685 BUG_ON(1 << blksz_bits != data->blksz);
687 if (variant->blksz_datactrl16)
688 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
690 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
692 if (data->flags & MMC_DATA_READ)
693 datactrl |= MCI_DPSM_DIRECTION;
695 /* The ST Micro variants has a special bit to enable SDIO */
696 if (variant->sdio && host->mmc->card)
697 if (mmc_card_sdio(host->mmc->card)) {
699 * The ST Micro variants has a special bit
704 datactrl |= MCI_ST_DPSM_SDIOEN;
707 * The ST Micro variant for SDIO small write transfers
708 * needs to have clock H/W flow control disabled,
709 * otherwise the transfer will not start. The threshold
710 * depends on the rate of MCLK.
712 if (data->flags & MMC_DATA_WRITE &&
714 (host->size <= 8 && host->mclk > 50000000)))
715 clk = host->clk_reg & ~variant->clkreg_enable;
717 clk = host->clk_reg | variant->clkreg_enable;
719 mmci_write_clkreg(host, clk);
722 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
723 datactrl |= MCI_ST_DPSM_DDRMODE;
726 * Attempt to use DMA operation mode, if this
727 * should fail, fall back to PIO mode
729 if (!mmci_dma_start_data(host, datactrl))
732 /* IRQ mode, map the SG list for CPU reading/writing */
733 mmci_init_sg(host, data);
735 if (data->flags & MMC_DATA_READ) {
736 irqmask = MCI_RXFIFOHALFFULLMASK;
739 * If we have less than the fifo 'half-full' threshold to
740 * transfer, trigger a PIO interrupt as soon as any data
743 if (host->size < variant->fifohalfsize)
744 irqmask |= MCI_RXDATAAVLBLMASK;
747 * We don't actually need to include "FIFO empty" here
748 * since its implicit in "FIFO half empty".
750 irqmask = MCI_TXFIFOHALFEMPTYMASK;
753 writel(datactrl, base + MMCIDATACTRL);
754 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
755 mmci_set_mask1(host, irqmask);
759 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
761 void __iomem *base = host->base;
763 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
764 cmd->opcode, cmd->arg, cmd->flags);
766 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
767 writel(0, base + MMCICOMMAND);
771 c |= cmd->opcode | MCI_CPSM_ENABLE;
772 if (cmd->flags & MMC_RSP_PRESENT) {
773 if (cmd->flags & MMC_RSP_136)
774 c |= MCI_CPSM_LONGRSP;
775 c |= MCI_CPSM_RESPONSE;
778 c |= MCI_CPSM_INTERRUPT;
782 writel(cmd->arg, base + MMCIARGUMENT);
783 writel(c, base + MMCICOMMAND);
787 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
790 /* First check for errors */
791 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
792 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
795 /* Terminate the DMA transfer */
796 if (dma_inprogress(host)) {
797 mmci_dma_data_error(host);
798 mmci_dma_unmap(host, data);
802 * Calculate how far we are into the transfer. Note that
803 * the data counter gives the number of bytes transferred
804 * on the MMC bus, not on the host side. On reads, this
805 * can be as much as a FIFO-worth of data ahead. This
806 * matters for FIFO overruns only.
808 remain = readl(host->base + MMCIDATACNT);
809 success = data->blksz * data->blocks - remain;
811 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
813 if (status & MCI_DATACRCFAIL) {
814 /* Last block was not successful */
816 data->error = -EILSEQ;
817 } else if (status & MCI_DATATIMEOUT) {
818 data->error = -ETIMEDOUT;
819 } else if (status & MCI_STARTBITERR) {
820 data->error = -ECOMM;
821 } else if (status & MCI_TXUNDERRUN) {
823 } else if (status & MCI_RXOVERRUN) {
824 if (success > host->variant->fifosize)
825 success -= host->variant->fifosize;
830 data->bytes_xfered = round_down(success, data->blksz);
833 if (status & MCI_DATABLOCKEND)
834 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
836 if (status & MCI_DATAEND || data->error) {
837 if (dma_inprogress(host))
838 mmci_dma_finalize(host, data);
839 mmci_stop_data(host);
842 /* The error clause is handled above, success! */
843 data->bytes_xfered = data->blksz * data->blocks;
846 mmci_request_end(host, data->mrq);
848 mmci_start_command(host, data->stop, 0);
854 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
857 void __iomem *base = host->base;
861 if (status & MCI_CMDTIMEOUT) {
862 cmd->error = -ETIMEDOUT;
863 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
864 cmd->error = -EILSEQ;
866 cmd->resp[0] = readl(base + MMCIRESPONSE0);
867 cmd->resp[1] = readl(base + MMCIRESPONSE1);
868 cmd->resp[2] = readl(base + MMCIRESPONSE2);
869 cmd->resp[3] = readl(base + MMCIRESPONSE3);
872 if (!cmd->data || cmd->error) {
874 /* Terminate the DMA transfer */
875 if (dma_inprogress(host)) {
876 mmci_dma_data_error(host);
877 mmci_dma_unmap(host, host->data);
879 mmci_stop_data(host);
881 mmci_request_end(host, cmd->mrq);
882 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
883 mmci_start_data(host, cmd->data);
887 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
889 void __iomem *base = host->base;
892 int host_remain = host->size;
895 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
904 * SDIO especially may want to send something that is
905 * not divisible by 4 (as opposed to card sectors
906 * etc). Therefore make sure to always read the last bytes
907 * while only doing full 32-bit reads towards the FIFO.
909 if (unlikely(count & 0x3)) {
911 unsigned char buf[4];
912 ioread32_rep(base + MMCIFIFO, buf, 1);
913 memcpy(ptr, buf, count);
915 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
919 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
924 host_remain -= count;
929 status = readl(base + MMCISTATUS);
930 } while (status & MCI_RXDATAAVLBL);
935 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
937 struct variant_data *variant = host->variant;
938 void __iomem *base = host->base;
942 unsigned int count, maxcnt;
944 maxcnt = status & MCI_TXFIFOEMPTY ?
945 variant->fifosize : variant->fifohalfsize;
946 count = min(remain, maxcnt);
949 * SDIO especially may want to send something that is
950 * not divisible by 4 (as opposed to card sectors
951 * etc), and the FIFO only accept full 32-bit writes.
952 * So compensate by adding +3 on the count, a single
953 * byte become a 32bit write, 7 bytes will be two
956 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
964 status = readl(base + MMCISTATUS);
965 } while (status & MCI_TXFIFOHALFEMPTY);
971 * PIO data transfer IRQ handler.
973 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
975 struct mmci_host *host = dev_id;
976 struct sg_mapping_iter *sg_miter = &host->sg_miter;
977 struct variant_data *variant = host->variant;
978 void __iomem *base = host->base;
982 status = readl(base + MMCISTATUS);
984 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
986 local_irq_save(flags);
989 unsigned int remain, len;
993 * For write, we only need to test the half-empty flag
994 * here - if the FIFO is completely empty, then by
995 * definition it is more than half empty.
997 * For read, check for data available.
999 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1002 if (!sg_miter_next(sg_miter))
1005 buffer = sg_miter->addr;
1006 remain = sg_miter->length;
1009 if (status & MCI_RXACTIVE)
1010 len = mmci_pio_read(host, buffer, remain);
1011 if (status & MCI_TXACTIVE)
1012 len = mmci_pio_write(host, buffer, remain, status);
1014 sg_miter->consumed = len;
1022 status = readl(base + MMCISTATUS);
1025 sg_miter_stop(sg_miter);
1027 local_irq_restore(flags);
1030 * If we have less than the fifo 'half-full' threshold to transfer,
1031 * trigger a PIO interrupt as soon as any data is available.
1033 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1034 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1037 * If we run out of data, disable the data IRQs; this
1038 * prevents a race where the FIFO becomes empty before
1039 * the chip itself has disabled the data path, and
1040 * stops us racing with our data end IRQ.
1042 if (host->size == 0) {
1043 mmci_set_mask1(host, 0);
1044 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1051 * Handle completion of command and data transfers.
1053 static irqreturn_t mmci_irq(int irq, void *dev_id)
1055 struct mmci_host *host = dev_id;
1059 spin_lock(&host->lock);
1062 struct mmc_command *cmd;
1063 struct mmc_data *data;
1065 status = readl(host->base + MMCISTATUS);
1067 if (host->singleirq) {
1068 if (status & readl(host->base + MMCIMASK1))
1069 mmci_pio_irq(irq, dev_id);
1071 status &= ~MCI_IRQ1MASK;
1074 status &= readl(host->base + MMCIMASK0);
1075 writel(status, host->base + MMCICLEAR);
1077 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1080 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1081 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1082 MCI_DATABLOCKEND) && data)
1083 mmci_data_irq(host, data, status);
1086 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1087 mmci_cmd_irq(host, cmd, status);
1092 spin_unlock(&host->lock);
1094 return IRQ_RETVAL(ret);
1097 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1099 struct mmci_host *host = mmc_priv(mmc);
1100 unsigned long flags;
1102 WARN_ON(host->mrq != NULL);
1104 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1105 if (mrq->cmd->error) {
1106 mmc_request_done(mmc, mrq);
1110 pm_runtime_get_sync(mmc_dev(mmc));
1112 spin_lock_irqsave(&host->lock, flags);
1117 mmci_get_next_data(host, mrq->data);
1119 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1120 mmci_start_data(host, mrq->data);
1122 mmci_start_command(host, mrq->cmd, 0);
1124 spin_unlock_irqrestore(&host->lock, flags);
1127 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1129 struct mmci_host *host = mmc_priv(mmc);
1130 struct variant_data *variant = host->variant;
1132 unsigned long flags;
1135 pm_runtime_get_sync(mmc_dev(mmc));
1137 if (host->plat->ios_handler &&
1138 host->plat->ios_handler(mmc_dev(mmc), ios))
1139 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1141 switch (ios->power_mode) {
1143 if (!IS_ERR(mmc->supply.vmmc))
1144 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1146 if (!IS_ERR(mmc->supply.vqmmc) &&
1147 regulator_is_enabled(mmc->supply.vqmmc))
1148 regulator_disable(mmc->supply.vqmmc);
1152 if (!IS_ERR(mmc->supply.vmmc))
1153 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1156 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1157 * and instead uses MCI_PWR_ON so apply whatever value is
1158 * configured in the variant data.
1160 pwr |= variant->pwrreg_powerup;
1164 if (!IS_ERR(mmc->supply.vqmmc) &&
1165 !regulator_is_enabled(mmc->supply.vqmmc)) {
1166 ret = regulator_enable(mmc->supply.vqmmc);
1168 dev_err(mmc_dev(mmc),
1169 "failed to enable vqmmc regulator\n");
1176 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1178 * The ST Micro variant has some additional bits
1179 * indicating signal direction for the signals in
1180 * the SD/MMC bus and feedback-clock usage.
1182 pwr |= host->plat->sigdir;
1184 if (ios->bus_width == MMC_BUS_WIDTH_4)
1185 pwr &= ~MCI_ST_DATA74DIREN;
1186 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1187 pwr &= (~MCI_ST_DATA74DIREN &
1188 ~MCI_ST_DATA31DIREN &
1189 ~MCI_ST_DATA2DIREN);
1192 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1193 if (host->hw_designer != AMBA_VENDOR_ST)
1197 * The ST Micro variant use the ROD bit for something
1198 * else and only has OD (Open Drain).
1205 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1206 * gating the clock, the MCI_PWR_ON bit is cleared.
1208 if (!ios->clock && variant->pwrreg_clkgate)
1211 spin_lock_irqsave(&host->lock, flags);
1213 mmci_set_clkreg(host, ios->clock);
1214 mmci_write_pwrreg(host, pwr);
1216 spin_unlock_irqrestore(&host->lock, flags);
1218 pm_runtime_mark_last_busy(mmc_dev(mmc));
1219 pm_runtime_put_autosuspend(mmc_dev(mmc));
1222 static int mmci_get_ro(struct mmc_host *mmc)
1224 struct mmci_host *host = mmc_priv(mmc);
1226 if (host->gpio_wp == -ENOSYS)
1229 return gpio_get_value_cansleep(host->gpio_wp);
1232 static int mmci_get_cd(struct mmc_host *mmc)
1234 struct mmci_host *host = mmc_priv(mmc);
1235 struct mmci_platform_data *plat = host->plat;
1236 unsigned int status;
1238 if (host->gpio_cd == -ENOSYS) {
1240 return 1; /* Assume always present */
1242 status = plat->status(mmc_dev(host->mmc));
1244 status = !!gpio_get_value_cansleep(host->gpio_cd)
1248 * Use positive logic throughout - status is zero for no card,
1249 * non-zero for card inserted.
1254 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1256 struct mmci_host *host = dev_id;
1258 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1263 static const struct mmc_host_ops mmci_ops = {
1264 .request = mmci_request,
1265 .pre_req = mmci_pre_request,
1266 .post_req = mmci_post_request,
1267 .set_ios = mmci_set_ios,
1268 .get_ro = mmci_get_ro,
1269 .get_cd = mmci_get_cd,
1273 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1274 struct mmci_platform_data *pdata)
1278 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1279 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1281 if (of_get_property(np, "cd-inverted", NULL))
1282 pdata->cd_invert = true;
1284 pdata->cd_invert = false;
1286 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1288 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1290 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1291 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1292 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1293 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1295 of_property_read_u32(np, "bus-width", &bus_width);
1296 switch (bus_width) {
1298 /* No bus-width supplied. */
1301 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1304 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1307 pr_warn("%s: Unsupported bus width\n", np->full_name);
1311 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1312 struct mmci_platform_data *pdata)
1318 static int mmci_probe(struct amba_device *dev,
1319 const struct amba_id *id)
1321 struct mmci_platform_data *plat = dev->dev.platform_data;
1322 struct device_node *np = dev->dev.of_node;
1323 struct variant_data *variant = id->data;
1324 struct mmci_host *host;
1325 struct mmc_host *mmc;
1328 /* Must have platform data or Device Tree. */
1330 dev_err(&dev->dev, "No plat data or DT found\n");
1335 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1341 mmci_dt_populate_generic_pdata(np, plat);
1343 ret = amba_request_regions(dev, DRIVER_NAME);
1347 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1353 host = mmc_priv(mmc);
1356 host->gpio_wp = -ENOSYS;
1357 host->gpio_cd = -ENOSYS;
1358 host->gpio_cd_irq = -1;
1360 host->hw_designer = amba_manf(dev);
1361 host->hw_revision = amba_rev(dev);
1362 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1363 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1365 host->clk = clk_get(&dev->dev, NULL);
1366 if (IS_ERR(host->clk)) {
1367 ret = PTR_ERR(host->clk);
1372 ret = clk_prepare_enable(host->clk);
1377 host->variant = variant;
1378 host->mclk = clk_get_rate(host->clk);
1380 * According to the spec, mclk is max 100 MHz,
1381 * so we try to adjust the clock down to this,
1384 if (host->mclk > 100000000) {
1385 ret = clk_set_rate(host->clk, 100000000);
1388 host->mclk = clk_get_rate(host->clk);
1389 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1392 host->phybase = dev->res.start;
1393 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1399 mmc->ops = &mmci_ops;
1401 * The ARM and ST versions of the block have slightly different
1402 * clock divider equations which means that the minimum divider
1405 if (variant->st_clkdiv)
1406 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1408 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1410 * If the platform data supplies a maximum operating
1411 * frequency, this takes precedence. Else, we fall back
1412 * to using the module parameter, which has a (low)
1413 * default value in case it is not specified. Either
1414 * value must not exceed the clock rate into the block,
1418 mmc->f_max = min(host->mclk, plat->f_max);
1420 mmc->f_max = min(host->mclk, fmax);
1421 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1423 host->pinctrl = devm_pinctrl_get(&dev->dev);
1424 if (IS_ERR(host->pinctrl)) {
1425 ret = PTR_ERR(host->pinctrl);
1429 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1430 PINCTRL_STATE_DEFAULT);
1432 /* enable pins to be muxed in and configured */
1433 if (!IS_ERR(host->pins_default)) {
1434 ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1436 dev_warn(&dev->dev, "could not set default pins\n");
1438 dev_warn(&dev->dev, "could not get default pinstate\n");
1440 /* Get regulators and the supported OCR mask */
1441 mmc_regulator_get_supply(mmc);
1442 if (!mmc->ocr_avail)
1443 mmc->ocr_avail = plat->ocr_mask;
1444 else if (plat->ocr_mask)
1445 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1447 mmc->caps = plat->capabilities;
1448 mmc->caps2 = plat->capabilities2;
1450 /* We support these PM capabilities. */
1451 mmc->pm_caps = MMC_PM_KEEP_POWER;
1456 mmc->max_segs = NR_SG;
1459 * Since only a certain number of bits are valid in the data length
1460 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1463 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1466 * Set the maximum segment size. Since we aren't doing DMA
1467 * (yet) we are only limited by the data length register.
1469 mmc->max_seg_size = mmc->max_req_size;
1472 * Block size can be up to 2048 bytes, but must be a power of two.
1474 mmc->max_blk_size = 1 << 11;
1477 * Limit the number of blocks transferred so that we don't overflow
1478 * the maximum request size.
1480 mmc->max_blk_count = mmc->max_req_size >> 11;
1482 spin_lock_init(&host->lock);
1484 writel(0, host->base + MMCIMASK0);
1485 writel(0, host->base + MMCIMASK1);
1486 writel(0xfff, host->base + MMCICLEAR);
1488 if (plat->gpio_cd == -EPROBE_DEFER) {
1489 ret = -EPROBE_DEFER;
1492 if (gpio_is_valid(plat->gpio_cd)) {
1493 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1495 ret = gpio_direction_input(plat->gpio_cd);
1497 host->gpio_cd = plat->gpio_cd;
1498 else if (ret != -ENOSYS)
1502 * A gpio pin that will detect cards when inserted and removed
1503 * will most likely want to trigger on the edges if it is
1504 * 0 when ejected and 1 when inserted (or mutatis mutandis
1505 * for the inverted case) so we request triggers on both
1508 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1510 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1511 DRIVER_NAME " (cd)", host);
1513 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1515 if (plat->gpio_wp == -EPROBE_DEFER) {
1516 ret = -EPROBE_DEFER;
1519 if (gpio_is_valid(plat->gpio_wp)) {
1520 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1522 ret = gpio_direction_input(plat->gpio_wp);
1524 host->gpio_wp = plat->gpio_wp;
1525 else if (ret != -ENOSYS)
1529 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1530 && host->gpio_cd_irq < 0)
1531 mmc->caps |= MMC_CAP_NEEDS_POLL;
1533 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1538 host->singleirq = true;
1540 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1541 DRIVER_NAME " (pio)", host);
1546 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1548 amba_set_drvdata(dev, mmc);
1550 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1551 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1552 amba_rev(dev), (unsigned long long)dev->res.start,
1553 dev->irq[0], dev->irq[1]);
1555 mmci_dma_setup(host);
1557 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1558 pm_runtime_use_autosuspend(&dev->dev);
1559 pm_runtime_put(&dev->dev);
1566 free_irq(dev->irq[0], host);
1568 if (host->gpio_wp != -ENOSYS)
1569 gpio_free(host->gpio_wp);
1571 if (host->gpio_cd_irq >= 0)
1572 free_irq(host->gpio_cd_irq, host);
1573 if (host->gpio_cd != -ENOSYS)
1574 gpio_free(host->gpio_cd);
1576 iounmap(host->base);
1578 clk_disable_unprepare(host->clk);
1584 amba_release_regions(dev);
1589 static int mmci_remove(struct amba_device *dev)
1591 struct mmc_host *mmc = amba_get_drvdata(dev);
1593 amba_set_drvdata(dev, NULL);
1596 struct mmci_host *host = mmc_priv(mmc);
1599 * Undo pm_runtime_put() in probe. We use the _sync
1600 * version here so that we can access the primecell.
1602 pm_runtime_get_sync(&dev->dev);
1604 mmc_remove_host(mmc);
1606 writel(0, host->base + MMCIMASK0);
1607 writel(0, host->base + MMCIMASK1);
1609 writel(0, host->base + MMCICOMMAND);
1610 writel(0, host->base + MMCIDATACTRL);
1612 mmci_dma_release(host);
1613 free_irq(dev->irq[0], host);
1614 if (!host->singleirq)
1615 free_irq(dev->irq[1], host);
1617 if (host->gpio_wp != -ENOSYS)
1618 gpio_free(host->gpio_wp);
1619 if (host->gpio_cd_irq >= 0)
1620 free_irq(host->gpio_cd_irq, host);
1621 if (host->gpio_cd != -ENOSYS)
1622 gpio_free(host->gpio_cd);
1624 iounmap(host->base);
1625 clk_disable_unprepare(host->clk);
1630 amba_release_regions(dev);
1636 #ifdef CONFIG_SUSPEND
1637 static int mmci_suspend(struct device *dev)
1639 struct amba_device *adev = to_amba_device(dev);
1640 struct mmc_host *mmc = amba_get_drvdata(adev);
1644 struct mmci_host *host = mmc_priv(mmc);
1646 ret = mmc_suspend_host(mmc);
1648 pm_runtime_get_sync(dev);
1649 writel(0, host->base + MMCIMASK0);
1656 static int mmci_resume(struct device *dev)
1658 struct amba_device *adev = to_amba_device(dev);
1659 struct mmc_host *mmc = amba_get_drvdata(adev);
1663 struct mmci_host *host = mmc_priv(mmc);
1665 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1666 pm_runtime_put(dev);
1668 ret = mmc_resume_host(mmc);
1675 #ifdef CONFIG_PM_RUNTIME
1676 static int mmci_runtime_suspend(struct device *dev)
1678 struct amba_device *adev = to_amba_device(dev);
1679 struct mmc_host *mmc = amba_get_drvdata(adev);
1682 struct mmci_host *host = mmc_priv(mmc);
1683 clk_disable_unprepare(host->clk);
1689 static int mmci_runtime_resume(struct device *dev)
1691 struct amba_device *adev = to_amba_device(dev);
1692 struct mmc_host *mmc = amba_get_drvdata(adev);
1695 struct mmci_host *host = mmc_priv(mmc);
1696 clk_prepare_enable(host->clk);
1703 static const struct dev_pm_ops mmci_dev_pm_ops = {
1704 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1705 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1708 static struct amba_id mmci_ids[] = {
1712 .data = &variant_arm,
1717 .data = &variant_arm_extended_fifo,
1722 .data = &variant_arm_extended_fifo_hwfc,
1727 .data = &variant_arm,
1729 /* ST Micro variants */
1733 .data = &variant_u300,
1738 .data = &variant_nomadik,
1743 .data = &variant_u300,
1748 .data = &variant_ux500,
1753 .data = &variant_ux500v2,
1758 MODULE_DEVICE_TABLE(amba, mmci_ids);
1760 static struct amba_driver mmci_driver = {
1762 .name = DRIVER_NAME,
1763 .pm = &mmci_dev_pm_ops,
1765 .probe = mmci_probe,
1766 .remove = mmci_remove,
1767 .id_table = mmci_ids,
1770 module_amba_driver(mmci_driver);
1772 module_param(fmax, uint, 0444);
1774 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1775 MODULE_LICENSE("GPL");