Merge tag 'mtd/fixes-for-6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41
42 #include <asm/div64.h>
43 #include <asm/io.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52
53 static unsigned int fmax = 515633;
54
55 static struct variant_data variant_arm = {
56         .fifosize               = 16 * 4,
57         .fifohalfsize           = 8 * 4,
58         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
59         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
61         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
62         .datalength_bits        = 16,
63         .datactrl_blocksz       = 11,
64         .pwrreg_powerup         = MCI_PWR_UP,
65         .f_max                  = 100000000,
66         .reversed_irq_handling  = true,
67         .mmcimask1              = true,
68         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
69         .start_err              = MCI_STARTBITERR,
70         .opendrain              = MCI_ROD,
71         .init                   = mmci_variant_init,
72 };
73
74 static struct variant_data variant_arm_extended_fifo = {
75         .fifosize               = 128 * 4,
76         .fifohalfsize           = 64 * 4,
77         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
78         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
80         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
81         .datalength_bits        = 16,
82         .datactrl_blocksz       = 11,
83         .pwrreg_powerup         = MCI_PWR_UP,
84         .f_max                  = 100000000,
85         .mmcimask1              = true,
86         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
87         .start_err              = MCI_STARTBITERR,
88         .opendrain              = MCI_ROD,
89         .init                   = mmci_variant_init,
90 };
91
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93         .fifosize               = 128 * 4,
94         .fifohalfsize           = 64 * 4,
95         .clkreg_enable          = MCI_ARM_HWFCEN,
96         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
97         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
99         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
100         .datalength_bits        = 16,
101         .datactrl_blocksz       = 11,
102         .pwrreg_powerup         = MCI_PWR_UP,
103         .f_max                  = 100000000,
104         .mmcimask1              = true,
105         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
106         .start_err              = MCI_STARTBITERR,
107         .opendrain              = MCI_ROD,
108         .init                   = mmci_variant_init,
109 };
110
111 static struct variant_data variant_u300 = {
112         .fifosize               = 16 * 4,
113         .fifohalfsize           = 8 * 4,
114         .clkreg_enable          = MCI_ST_U300_HWFCEN,
115         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
117         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
119         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
120         .datalength_bits        = 16,
121         .datactrl_blocksz       = 11,
122         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
123         .st_sdio                        = true,
124         .pwrreg_powerup         = MCI_PWR_ON,
125         .f_max                  = 100000000,
126         .signal_direction       = true,
127         .pwrreg_clkgate         = true,
128         .pwrreg_nopower         = true,
129         .mmcimask1              = true,
130         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
131         .start_err              = MCI_STARTBITERR,
132         .opendrain              = MCI_OD,
133         .init                   = mmci_variant_init,
134 };
135
136 static struct variant_data variant_nomadik = {
137         .fifosize               = 16 * 4,
138         .fifohalfsize           = 8 * 4,
139         .clkreg                 = MCI_CLK_ENABLE,
140         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
142         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
144         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
145         .datalength_bits        = 24,
146         .datactrl_blocksz       = 11,
147         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
148         .st_sdio                = true,
149         .st_clkdiv              = true,
150         .pwrreg_powerup         = MCI_PWR_ON,
151         .f_max                  = 100000000,
152         .signal_direction       = true,
153         .pwrreg_clkgate         = true,
154         .pwrreg_nopower         = true,
155         .mmcimask1              = true,
156         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
157         .start_err              = MCI_STARTBITERR,
158         .opendrain              = MCI_OD,
159         .init                   = mmci_variant_init,
160 };
161
162 static struct variant_data variant_ux500 = {
163         .fifosize               = 30 * 4,
164         .fifohalfsize           = 8 * 4,
165         .clkreg                 = MCI_CLK_ENABLE,
166         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
167         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
169         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
170         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
172         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
173         .datalength_bits        = 24,
174         .datactrl_blocksz       = 11,
175         .datactrl_any_blocksz   = true,
176         .dma_power_of_2         = true,
177         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
178         .st_sdio                = true,
179         .st_clkdiv              = true,
180         .pwrreg_powerup         = MCI_PWR_ON,
181         .f_max                  = 100000000,
182         .signal_direction       = true,
183         .pwrreg_clkgate         = true,
184         .busy_detect            = true,
185         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
186         .busy_detect_flag       = MCI_ST_CARDBUSY,
187         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
188         .pwrreg_nopower         = true,
189         .mmcimask1              = true,
190         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
191         .start_err              = MCI_STARTBITERR,
192         .opendrain              = MCI_OD,
193         .init                   = ux500_variant_init,
194 };
195
196 static struct variant_data variant_ux500v2 = {
197         .fifosize               = 30 * 4,
198         .fifohalfsize           = 8 * 4,
199         .clkreg                 = MCI_CLK_ENABLE,
200         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
201         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
203         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
204         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
206         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
207         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
208         .datalength_bits        = 24,
209         .datactrl_blocksz       = 11,
210         .datactrl_any_blocksz   = true,
211         .dma_power_of_2         = true,
212         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
213         .st_sdio                = true,
214         .st_clkdiv              = true,
215         .pwrreg_powerup         = MCI_PWR_ON,
216         .f_max                  = 100000000,
217         .signal_direction       = true,
218         .pwrreg_clkgate         = true,
219         .busy_detect            = true,
220         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
221         .busy_detect_flag       = MCI_ST_CARDBUSY,
222         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
223         .pwrreg_nopower         = true,
224         .mmcimask1              = true,
225         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
226         .start_err              = MCI_STARTBITERR,
227         .opendrain              = MCI_OD,
228         .init                   = ux500v2_variant_init,
229 };
230
231 static struct variant_data variant_stm32 = {
232         .fifosize               = 32 * 4,
233         .fifohalfsize           = 8 * 4,
234         .clkreg                 = MCI_CLK_ENABLE,
235         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
236         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
238         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
239         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
241         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
242         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
243         .datalength_bits        = 24,
244         .datactrl_blocksz       = 11,
245         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
246         .st_sdio                = true,
247         .st_clkdiv              = true,
248         .pwrreg_powerup         = MCI_PWR_ON,
249         .f_max                  = 48000000,
250         .pwrreg_clkgate         = true,
251         .pwrreg_nopower         = true,
252         .init                   = mmci_variant_init,
253 };
254
255 static struct variant_data variant_stm32_sdmmc = {
256         .fifosize               = 16 * 4,
257         .fifohalfsize           = 8 * 4,
258         .f_max                  = 208000000,
259         .stm32_clkdiv           = true,
260         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
261         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
262         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
263         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
264         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
265         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
266         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
267         .datactrl_first         = true,
268         .datacnt_useless        = true,
269         .datalength_bits        = 25,
270         .datactrl_blocksz       = 14,
271         .datactrl_any_blocksz   = true,
272         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
273         .stm32_idmabsize_mask   = GENMASK(12, 5),
274         .stm32_idmabsize_align  = BIT(5),
275         .busy_timeout           = true,
276         .busy_detect            = true,
277         .busy_detect_flag       = MCI_STM32_BUSYD0,
278         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
279         .init                   = sdmmc_variant_init,
280 };
281
282 static struct variant_data variant_stm32_sdmmcv2 = {
283         .fifosize               = 16 * 4,
284         .fifohalfsize           = 8 * 4,
285         .f_max                  = 267000000,
286         .stm32_clkdiv           = true,
287         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
288         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
289         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
290         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
291         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
292         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
293         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
294         .datactrl_first         = true,
295         .datacnt_useless        = true,
296         .datalength_bits        = 25,
297         .datactrl_blocksz       = 14,
298         .datactrl_any_blocksz   = true,
299         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
300         .stm32_idmabsize_mask   = GENMASK(16, 5),
301         .stm32_idmabsize_align  = BIT(5),
302         .dma_lli                = true,
303         .busy_timeout           = true,
304         .busy_detect            = true,
305         .busy_detect_flag       = MCI_STM32_BUSYD0,
306         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
307         .init                   = sdmmc_variant_init,
308 };
309
310 static struct variant_data variant_stm32_sdmmcv3 = {
311         .fifosize               = 256 * 4,
312         .fifohalfsize           = 128 * 4,
313         .f_max                  = 267000000,
314         .stm32_clkdiv           = true,
315         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
316         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
317         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
318         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
319         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
320         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
321         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
322         .datactrl_first         = true,
323         .datacnt_useless        = true,
324         .datalength_bits        = 25,
325         .datactrl_blocksz       = 14,
326         .datactrl_any_blocksz   = true,
327         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
328         .stm32_idmabsize_mask   = GENMASK(16, 6),
329         .stm32_idmabsize_align  = BIT(6),
330         .dma_lli                = true,
331         .busy_timeout           = true,
332         .busy_detect            = true,
333         .busy_detect_flag       = MCI_STM32_BUSYD0,
334         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
335         .init                   = sdmmc_variant_init,
336 };
337
338 static struct variant_data variant_qcom = {
339         .fifosize               = 16 * 4,
340         .fifohalfsize           = 8 * 4,
341         .clkreg                 = MCI_CLK_ENABLE,
342         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
343                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
344         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
345         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
346         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
347         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
348         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
349         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
350         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
351         .datalength_bits        = 24,
352         .datactrl_blocksz       = 11,
353         .datactrl_any_blocksz   = true,
354         .pwrreg_powerup         = MCI_PWR_UP,
355         .f_max                  = 208000000,
356         .explicit_mclk_control  = true,
357         .qcom_fifo              = true,
358         .qcom_dml               = true,
359         .mmcimask1              = true,
360         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
361         .start_err              = MCI_STARTBITERR,
362         .opendrain              = MCI_ROD,
363         .init                   = qcom_variant_init,
364 };
365
366 /* Busy detection for the ST Micro variant */
367 static int mmci_card_busy(struct mmc_host *mmc)
368 {
369         struct mmci_host *host = mmc_priv(mmc);
370         unsigned long flags;
371         int busy = 0;
372
373         spin_lock_irqsave(&host->lock, flags);
374         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
375                 busy = 1;
376         spin_unlock_irqrestore(&host->lock, flags);
377
378         return busy;
379 }
380
381 static void mmci_reg_delay(struct mmci_host *host)
382 {
383         /*
384          * According to the spec, at least three feedback clock cycles
385          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
386          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
387          * Worst delay time during card init is at 100 kHz => 30 us.
388          * Worst delay time when up and running is at 25 MHz => 120 ns.
389          */
390         if (host->cclk < 25000000)
391                 udelay(30);
392         else
393                 ndelay(120);
394 }
395
396 /*
397  * This must be called with host->lock held
398  */
399 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
400 {
401         if (host->clk_reg != clk) {
402                 host->clk_reg = clk;
403                 writel(clk, host->base + MMCICLOCK);
404         }
405 }
406
407 /*
408  * This must be called with host->lock held
409  */
410 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
411 {
412         if (host->pwr_reg != pwr) {
413                 host->pwr_reg = pwr;
414                 writel(pwr, host->base + MMCIPOWER);
415         }
416 }
417
418 /*
419  * This must be called with host->lock held
420  */
421 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
422 {
423         /* Keep busy mode in DPSM if enabled */
424         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
425
426         if (host->datactrl_reg != datactrl) {
427                 host->datactrl_reg = datactrl;
428                 writel(datactrl, host->base + MMCIDATACTRL);
429         }
430 }
431
432 /*
433  * This must be called with host->lock held
434  */
435 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
436 {
437         struct variant_data *variant = host->variant;
438         u32 clk = variant->clkreg;
439
440         /* Make sure cclk reflects the current calculated clock */
441         host->cclk = 0;
442
443         if (desired) {
444                 if (variant->explicit_mclk_control) {
445                         host->cclk = host->mclk;
446                 } else if (desired >= host->mclk) {
447                         clk = MCI_CLK_BYPASS;
448                         if (variant->st_clkdiv)
449                                 clk |= MCI_ST_UX500_NEG_EDGE;
450                         host->cclk = host->mclk;
451                 } else if (variant->st_clkdiv) {
452                         /*
453                          * DB8500 TRM says f = mclk / (clkdiv + 2)
454                          * => clkdiv = (mclk / f) - 2
455                          * Round the divider up so we don't exceed the max
456                          * frequency
457                          */
458                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
459                         if (clk >= 256)
460                                 clk = 255;
461                         host->cclk = host->mclk / (clk + 2);
462                 } else {
463                         /*
464                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
465                          * => clkdiv = mclk / (2 * f) - 1
466                          */
467                         clk = host->mclk / (2 * desired) - 1;
468                         if (clk >= 256)
469                                 clk = 255;
470                         host->cclk = host->mclk / (2 * (clk + 1));
471                 }
472
473                 clk |= variant->clkreg_enable;
474                 clk |= MCI_CLK_ENABLE;
475                 /* This hasn't proven to be worthwhile */
476                 /* clk |= MCI_CLK_PWRSAVE; */
477         }
478
479         /* Set actual clock for debug */
480         host->mmc->actual_clock = host->cclk;
481
482         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
483                 clk |= MCI_4BIT_BUS;
484         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
485                 clk |= variant->clkreg_8bit_bus_enable;
486
487         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
488             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
489                 clk |= variant->clkreg_neg_edge_enable;
490
491         mmci_write_clkreg(host, clk);
492 }
493
494 static void mmci_dma_release(struct mmci_host *host)
495 {
496         if (host->ops && host->ops->dma_release)
497                 host->ops->dma_release(host);
498
499         host->use_dma = false;
500 }
501
502 static void mmci_dma_setup(struct mmci_host *host)
503 {
504         if (!host->ops || !host->ops->dma_setup)
505                 return;
506
507         if (host->ops->dma_setup(host))
508                 return;
509
510         /* initialize pre request cookie */
511         host->next_cookie = 1;
512
513         host->use_dma = true;
514 }
515
516 /*
517  * Validate mmc prerequisites
518  */
519 static int mmci_validate_data(struct mmci_host *host,
520                               struct mmc_data *data)
521 {
522         struct variant_data *variant = host->variant;
523
524         if (!data)
525                 return 0;
526         if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
527                 dev_err(mmc_dev(host->mmc),
528                         "unsupported block size (%d bytes)\n", data->blksz);
529                 return -EINVAL;
530         }
531
532         if (host->ops && host->ops->validate_data)
533                 return host->ops->validate_data(host, data);
534
535         return 0;
536 }
537
538 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
539 {
540         int err;
541
542         if (!host->ops || !host->ops->prep_data)
543                 return 0;
544
545         err = host->ops->prep_data(host, data, next);
546
547         if (next && !err)
548                 data->host_cookie = ++host->next_cookie < 0 ?
549                         1 : host->next_cookie;
550
551         return err;
552 }
553
554 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
555                       int err)
556 {
557         if (host->ops && host->ops->unprep_data)
558                 host->ops->unprep_data(host, data, err);
559
560         data->host_cookie = 0;
561 }
562
563 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
564 {
565         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
566
567         if (host->ops && host->ops->get_next_data)
568                 host->ops->get_next_data(host, data);
569 }
570
571 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
572 {
573         struct mmc_data *data = host->data;
574         int ret;
575
576         if (!host->use_dma)
577                 return -EINVAL;
578
579         ret = mmci_prep_data(host, data, false);
580         if (ret)
581                 return ret;
582
583         if (!host->ops || !host->ops->dma_start)
584                 return -EINVAL;
585
586         /* Okay, go for it. */
587         dev_vdbg(mmc_dev(host->mmc),
588                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
589                  data->sg_len, data->blksz, data->blocks, data->flags);
590
591         ret = host->ops->dma_start(host, &datactrl);
592         if (ret)
593                 return ret;
594
595         /* Trigger the DMA transfer */
596         mmci_write_datactrlreg(host, datactrl);
597
598         /*
599          * Let the MMCI say when the data is ended and it's time
600          * to fire next DMA request. When that happens, MMCI will
601          * call mmci_data_end()
602          */
603         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
604                host->base + MMCIMASK0);
605         return 0;
606 }
607
608 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
609 {
610         if (!host->use_dma)
611                 return;
612
613         if (host->ops && host->ops->dma_finalize)
614                 host->ops->dma_finalize(host, data);
615 }
616
617 static void mmci_dma_error(struct mmci_host *host)
618 {
619         if (!host->use_dma)
620                 return;
621
622         if (host->ops && host->ops->dma_error)
623                 host->ops->dma_error(host);
624 }
625
626 static void
627 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
628 {
629         writel(0, host->base + MMCICOMMAND);
630
631         BUG_ON(host->data);
632
633         host->mrq = NULL;
634         host->cmd = NULL;
635
636         mmc_request_done(host->mmc, mrq);
637 }
638
639 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
640 {
641         void __iomem *base = host->base;
642         struct variant_data *variant = host->variant;
643
644         if (host->singleirq) {
645                 unsigned int mask0 = readl(base + MMCIMASK0);
646
647                 mask0 &= ~variant->irq_pio_mask;
648                 mask0 |= mask;
649
650                 writel(mask0, base + MMCIMASK0);
651         }
652
653         if (variant->mmcimask1)
654                 writel(mask, base + MMCIMASK1);
655
656         host->mask1_reg = mask;
657 }
658
659 static void mmci_stop_data(struct mmci_host *host)
660 {
661         mmci_write_datactrlreg(host, 0);
662         mmci_set_mask1(host, 0);
663         host->data = NULL;
664 }
665
666 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
667 {
668         unsigned int flags = SG_MITER_ATOMIC;
669
670         if (data->flags & MMC_DATA_READ)
671                 flags |= SG_MITER_TO_SG;
672         else
673                 flags |= SG_MITER_FROM_SG;
674
675         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
676 }
677
678 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
679 {
680         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
681 }
682
683 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
684 {
685         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
686 }
687
688 static void ux500_busy_clear_mask_done(struct mmci_host *host)
689 {
690         void __iomem *base = host->base;
691
692         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
693         writel(readl(base + MMCIMASK0) &
694                ~host->variant->busy_detect_mask, base + MMCIMASK0);
695         host->busy_state = MMCI_BUSY_DONE;
696         host->busy_status = 0;
697 }
698
699 /*
700  * ux500_busy_complete() - this will wait until the busy status
701  * goes off, saving any status that occur in the meantime into
702  * host->busy_status until we know the card is not busy any more.
703  * The function returns true when the busy detection is ended
704  * and we should continue processing the command.
705  *
706  * The Ux500 typically fires two IRQs over a busy cycle like this:
707  *
708  *  DAT0 busy          +-----------------+
709  *                     |                 |
710  *  DAT0 not busy  ----+                 +--------
711  *
712  *                     ^                 ^
713  *                     |                 |
714  *                    IRQ1              IRQ2
715  */
716 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
717                                 u32 status, u32 err_msk)
718 {
719         void __iomem *base = host->base;
720         int retries = 10;
721
722         if (status & err_msk) {
723                 /* Stop any ongoing busy detection if an error occurs */
724                 ux500_busy_clear_mask_done(host);
725                 goto out_ret_state;
726         }
727
728         /*
729          * The state transitions are encoded in a state machine crossing
730          * the edges in this switch statement.
731          */
732         switch (host->busy_state) {
733
734         /*
735          * Before unmasking for the busy end IRQ, confirm that the
736          * command was sent successfully. To keep track of having a
737          * command in-progress, waiting for busy signaling to end,
738          * store the status in host->busy_status.
739          *
740          * Note that, the card may need a couple of clock cycles before
741          * it starts signaling busy on DAT0, hence re-read the
742          * MMCISTATUS register here, to allow the busy bit to be set.
743          */
744         case MMCI_BUSY_DONE:
745                 /*
746                  * Save the first status register read to be sure to catch
747                  * all bits that may be lost will retrying. If the command
748                  * is still busy this will result in assigning 0 to
749                  * host->busy_status, which is what it should be in IDLE.
750                  */
751                 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
752                 while (retries) {
753                         status = readl(base + MMCISTATUS);
754                         /* Keep accumulating status bits */
755                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
756                         if (status & host->variant->busy_detect_flag) {
757                                 writel(readl(base + MMCIMASK0) |
758                                        host->variant->busy_detect_mask,
759                                        base + MMCIMASK0);
760                                 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
761                                 schedule_delayed_work(&host->ux500_busy_timeout_work,
762                                       msecs_to_jiffies(cmd->busy_timeout));
763                                 goto out_ret_state;
764                         }
765                         retries--;
766                 }
767                 dev_dbg(mmc_dev(host->mmc),
768                         "no busy signalling in time CMD%02x\n", cmd->opcode);
769                 ux500_busy_clear_mask_done(host);
770                 break;
771
772         /*
773          * If there is a command in-progress that has been successfully
774          * sent, then bail out if busy status is set and wait for the
775          * busy end IRQ.
776          *
777          * Note that, the HW triggers an IRQ on both edges while
778          * monitoring DAT0 for busy completion, but there is only one
779          * status bit in MMCISTATUS for the busy state. Therefore
780          * both the start and the end interrupts needs to be cleared,
781          * one after the other. So, clear the busy start IRQ here.
782          */
783         case MMCI_BUSY_WAITING_FOR_START_IRQ:
784                 if (status & host->variant->busy_detect_flag) {
785                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
786                         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
787                         host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
788                 } else {
789                         dev_dbg(mmc_dev(host->mmc),
790                                 "lost busy status when waiting for busy start IRQ CMD%02x\n",
791                                 cmd->opcode);
792                         cancel_delayed_work(&host->ux500_busy_timeout_work);
793                         ux500_busy_clear_mask_done(host);
794                 }
795                 break;
796
797         case MMCI_BUSY_WAITING_FOR_END_IRQ:
798                 if (!(status & host->variant->busy_detect_flag)) {
799                         host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
800                         writel(host->variant->busy_detect_mask, base + MMCICLEAR);
801                         cancel_delayed_work(&host->ux500_busy_timeout_work);
802                         ux500_busy_clear_mask_done(host);
803                 } else {
804                         dev_dbg(mmc_dev(host->mmc),
805                                 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
806                                 cmd->opcode);
807                 }
808                 break;
809
810         default:
811                 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
812                         host->busy_state, cmd->opcode);
813                 break;
814         }
815
816 out_ret_state:
817         return (host->busy_state == MMCI_BUSY_DONE);
818 }
819
820 /*
821  * All the DMA operation mode stuff goes inside this ifdef.
822  * This assumes that you have a generic DMA device interface,
823  * no custom DMA interfaces are supported.
824  */
825 #ifdef CONFIG_DMA_ENGINE
826 struct mmci_dmae_next {
827         struct dma_async_tx_descriptor *desc;
828         struct dma_chan *chan;
829 };
830
831 struct mmci_dmae_priv {
832         struct dma_chan *cur;
833         struct dma_chan *rx_channel;
834         struct dma_chan *tx_channel;
835         struct dma_async_tx_descriptor  *desc_current;
836         struct mmci_dmae_next next_data;
837 };
838
839 int mmci_dmae_setup(struct mmci_host *host)
840 {
841         const char *rxname, *txname;
842         struct mmci_dmae_priv *dmae;
843
844         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
845         if (!dmae)
846                 return -ENOMEM;
847
848         host->dma_priv = dmae;
849
850         dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
851         if (IS_ERR(dmae->rx_channel)) {
852                 int ret = PTR_ERR(dmae->rx_channel);
853                 dmae->rx_channel = NULL;
854                 return ret;
855         }
856
857         dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
858         if (IS_ERR(dmae->tx_channel)) {
859                 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
860                         dev_warn(mmc_dev(host->mmc),
861                                  "Deferred probe for TX channel ignored\n");
862                 dmae->tx_channel = NULL;
863         }
864
865         /*
866          * If only an RX channel is specified, the driver will
867          * attempt to use it bidirectionally, however if it
868          * is specified but cannot be located, DMA will be disabled.
869          */
870         if (dmae->rx_channel && !dmae->tx_channel)
871                 dmae->tx_channel = dmae->rx_channel;
872
873         if (dmae->rx_channel)
874                 rxname = dma_chan_name(dmae->rx_channel);
875         else
876                 rxname = "none";
877
878         if (dmae->tx_channel)
879                 txname = dma_chan_name(dmae->tx_channel);
880         else
881                 txname = "none";
882
883         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
884                  rxname, txname);
885
886         /*
887          * Limit the maximum segment size in any SG entry according to
888          * the parameters of the DMA engine device.
889          */
890         if (dmae->tx_channel) {
891                 struct device *dev = dmae->tx_channel->device->dev;
892                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
893
894                 if (max_seg_size < host->mmc->max_seg_size)
895                         host->mmc->max_seg_size = max_seg_size;
896         }
897         if (dmae->rx_channel) {
898                 struct device *dev = dmae->rx_channel->device->dev;
899                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
900
901                 if (max_seg_size < host->mmc->max_seg_size)
902                         host->mmc->max_seg_size = max_seg_size;
903         }
904
905         if (!dmae->tx_channel || !dmae->rx_channel) {
906                 mmci_dmae_release(host);
907                 return -EINVAL;
908         }
909
910         return 0;
911 }
912
913 /*
914  * This is used in or so inline it
915  * so it can be discarded.
916  */
917 void mmci_dmae_release(struct mmci_host *host)
918 {
919         struct mmci_dmae_priv *dmae = host->dma_priv;
920
921         if (dmae->rx_channel)
922                 dma_release_channel(dmae->rx_channel);
923         if (dmae->tx_channel)
924                 dma_release_channel(dmae->tx_channel);
925         dmae->rx_channel = dmae->tx_channel = NULL;
926 }
927
928 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
929 {
930         struct mmci_dmae_priv *dmae = host->dma_priv;
931         struct dma_chan *chan;
932
933         if (data->flags & MMC_DATA_READ)
934                 chan = dmae->rx_channel;
935         else
936                 chan = dmae->tx_channel;
937
938         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
939                      mmc_get_dma_dir(data));
940 }
941
942 void mmci_dmae_error(struct mmci_host *host)
943 {
944         struct mmci_dmae_priv *dmae = host->dma_priv;
945
946         if (!dma_inprogress(host))
947                 return;
948
949         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
950         dmaengine_terminate_all(dmae->cur);
951         host->dma_in_progress = false;
952         dmae->cur = NULL;
953         dmae->desc_current = NULL;
954         host->data->host_cookie = 0;
955
956         mmci_dma_unmap(host, host->data);
957 }
958
959 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
960 {
961         struct mmci_dmae_priv *dmae = host->dma_priv;
962         u32 status;
963         int i;
964
965         if (!dma_inprogress(host))
966                 return;
967
968         /* Wait up to 1ms for the DMA to complete */
969         for (i = 0; ; i++) {
970                 status = readl(host->base + MMCISTATUS);
971                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
972                         break;
973                 udelay(10);
974         }
975
976         /*
977          * Check to see whether we still have some data left in the FIFO -
978          * this catches DMA controllers which are unable to monitor the
979          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
980          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
981          */
982         if (status & MCI_RXDATAAVLBLMASK) {
983                 mmci_dma_error(host);
984                 if (!data->error)
985                         data->error = -EIO;
986         } else if (!data->host_cookie) {
987                 mmci_dma_unmap(host, data);
988         }
989
990         /*
991          * Use of DMA with scatter-gather is impossible.
992          * Give up with DMA and switch back to PIO mode.
993          */
994         if (status & MCI_RXDATAAVLBLMASK) {
995                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
996                 mmci_dma_release(host);
997         }
998
999         host->dma_in_progress = false;
1000         dmae->cur = NULL;
1001         dmae->desc_current = NULL;
1002 }
1003
1004 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1005 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1006                                 struct dma_chan **dma_chan,
1007                                 struct dma_async_tx_descriptor **dma_desc)
1008 {
1009         struct mmci_dmae_priv *dmae = host->dma_priv;
1010         struct variant_data *variant = host->variant;
1011         struct dma_slave_config conf = {
1012                 .src_addr = host->phybase + MMCIFIFO,
1013                 .dst_addr = host->phybase + MMCIFIFO,
1014                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1015                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1016                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1017                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1018                 .device_fc = false,
1019         };
1020         struct dma_chan *chan;
1021         struct dma_device *device;
1022         struct dma_async_tx_descriptor *desc;
1023         int nr_sg;
1024         unsigned long flags = DMA_CTRL_ACK;
1025
1026         if (data->flags & MMC_DATA_READ) {
1027                 conf.direction = DMA_DEV_TO_MEM;
1028                 chan = dmae->rx_channel;
1029         } else {
1030                 conf.direction = DMA_MEM_TO_DEV;
1031                 chan = dmae->tx_channel;
1032         }
1033
1034         /* If there's no DMA channel, fall back to PIO */
1035         if (!chan)
1036                 return -EINVAL;
1037
1038         /* If less than or equal to the fifo size, don't bother with DMA */
1039         if (data->blksz * data->blocks <= variant->fifosize)
1040                 return -EINVAL;
1041
1042         /*
1043          * This is necessary to get SDIO working on the Ux500. We do not yet
1044          * know if this is a bug in:
1045          * - The Ux500 DMA controller (DMA40)
1046          * - The MMCI DMA interface on the Ux500
1047          * some power of two blocks (such as 64 bytes) are sent regularly
1048          * during SDIO traffic and those work fine so for these we enable DMA
1049          * transfers.
1050          */
1051         if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1052                 return -EINVAL;
1053
1054         device = chan->device;
1055         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1056                            mmc_get_dma_dir(data));
1057         if (nr_sg == 0)
1058                 return -EINVAL;
1059
1060         if (host->variant->qcom_dml)
1061                 flags |= DMA_PREP_INTERRUPT;
1062
1063         dmaengine_slave_config(chan, &conf);
1064         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1065                                             conf.direction, flags);
1066         if (!desc)
1067                 goto unmap_exit;
1068
1069         *dma_chan = chan;
1070         *dma_desc = desc;
1071
1072         return 0;
1073
1074  unmap_exit:
1075         dma_unmap_sg(device->dev, data->sg, data->sg_len,
1076                      mmc_get_dma_dir(data));
1077         return -ENOMEM;
1078 }
1079
1080 int mmci_dmae_prep_data(struct mmci_host *host,
1081                         struct mmc_data *data,
1082                         bool next)
1083 {
1084         struct mmci_dmae_priv *dmae = host->dma_priv;
1085         struct mmci_dmae_next *nd = &dmae->next_data;
1086
1087         if (!host->use_dma)
1088                 return -EINVAL;
1089
1090         if (next)
1091                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1092         /* Check if next job is already prepared. */
1093         if (dmae->cur && dmae->desc_current)
1094                 return 0;
1095
1096         /* No job were prepared thus do it now. */
1097         return _mmci_dmae_prep_data(host, data, &dmae->cur,
1098                                     &dmae->desc_current);
1099 }
1100
1101 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1102 {
1103         struct mmci_dmae_priv *dmae = host->dma_priv;
1104         int ret;
1105
1106         host->dma_in_progress = true;
1107         ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1108         if (ret < 0) {
1109                 host->dma_in_progress = false;
1110                 return ret;
1111         }
1112         dma_async_issue_pending(dmae->cur);
1113
1114         *datactrl |= MCI_DPSM_DMAENABLE;
1115
1116         return 0;
1117 }
1118
1119 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1120 {
1121         struct mmci_dmae_priv *dmae = host->dma_priv;
1122         struct mmci_dmae_next *next = &dmae->next_data;
1123
1124         if (!host->use_dma)
1125                 return;
1126
1127         WARN_ON(!data->host_cookie && (next->desc || next->chan));
1128
1129         dmae->desc_current = next->desc;
1130         dmae->cur = next->chan;
1131         next->desc = NULL;
1132         next->chan = NULL;
1133 }
1134
1135 void mmci_dmae_unprep_data(struct mmci_host *host,
1136                            struct mmc_data *data, int err)
1137
1138 {
1139         struct mmci_dmae_priv *dmae = host->dma_priv;
1140
1141         if (!host->use_dma)
1142                 return;
1143
1144         mmci_dma_unmap(host, data);
1145
1146         if (err) {
1147                 struct mmci_dmae_next *next = &dmae->next_data;
1148                 struct dma_chan *chan;
1149                 if (data->flags & MMC_DATA_READ)
1150                         chan = dmae->rx_channel;
1151                 else
1152                         chan = dmae->tx_channel;
1153                 dmaengine_terminate_all(chan);
1154
1155                 if (dmae->desc_current == next->desc)
1156                         dmae->desc_current = NULL;
1157
1158                 if (dmae->cur == next->chan) {
1159                         host->dma_in_progress = false;
1160                         dmae->cur = NULL;
1161                 }
1162
1163                 next->desc = NULL;
1164                 next->chan = NULL;
1165         }
1166 }
1167
1168 static struct mmci_host_ops mmci_variant_ops = {
1169         .prep_data = mmci_dmae_prep_data,
1170         .unprep_data = mmci_dmae_unprep_data,
1171         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1172         .get_next_data = mmci_dmae_get_next_data,
1173         .dma_setup = mmci_dmae_setup,
1174         .dma_release = mmci_dmae_release,
1175         .dma_start = mmci_dmae_start,
1176         .dma_finalize = mmci_dmae_finalize,
1177         .dma_error = mmci_dmae_error,
1178 };
1179 #else
1180 static struct mmci_host_ops mmci_variant_ops = {
1181         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1182 };
1183 #endif
1184
1185 static void mmci_variant_init(struct mmci_host *host)
1186 {
1187         host->ops = &mmci_variant_ops;
1188 }
1189
1190 static void ux500_variant_init(struct mmci_host *host)
1191 {
1192         host->ops = &mmci_variant_ops;
1193         host->ops->busy_complete = ux500_busy_complete;
1194 }
1195
1196 static void ux500v2_variant_init(struct mmci_host *host)
1197 {
1198         host->ops = &mmci_variant_ops;
1199         host->ops->busy_complete = ux500_busy_complete;
1200         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1201 }
1202
1203 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1204 {
1205         struct mmci_host *host = mmc_priv(mmc);
1206         struct mmc_data *data = mrq->data;
1207
1208         if (!data)
1209                 return;
1210
1211         WARN_ON(data->host_cookie);
1212
1213         if (mmci_validate_data(host, data))
1214                 return;
1215
1216         mmci_prep_data(host, data, true);
1217 }
1218
1219 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1220                               int err)
1221 {
1222         struct mmci_host *host = mmc_priv(mmc);
1223         struct mmc_data *data = mrq->data;
1224
1225         if (!data || !data->host_cookie)
1226                 return;
1227
1228         mmci_unprep_data(host, data, err);
1229 }
1230
1231 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1232 {
1233         struct variant_data *variant = host->variant;
1234         unsigned int datactrl, timeout, irqmask;
1235         unsigned long long clks;
1236         void __iomem *base;
1237
1238         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1239                 data->blksz, data->blocks, data->flags);
1240
1241         host->data = data;
1242         host->size = data->blksz * data->blocks;
1243         data->bytes_xfered = 0;
1244
1245         clks = (unsigned long long)data->timeout_ns * host->cclk;
1246         do_div(clks, NSEC_PER_SEC);
1247
1248         timeout = data->timeout_clks + (unsigned int)clks;
1249
1250         base = host->base;
1251         writel(timeout, base + MMCIDATATIMER);
1252         writel(host->size, base + MMCIDATALENGTH);
1253
1254         datactrl = host->ops->get_datactrl_cfg(host);
1255         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1256
1257         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1258                 u32 clk;
1259
1260                 datactrl |= variant->datactrl_mask_sdio;
1261
1262                 /*
1263                  * The ST Micro variant for SDIO small write transfers
1264                  * needs to have clock H/W flow control disabled,
1265                  * otherwise the transfer will not start. The threshold
1266                  * depends on the rate of MCLK.
1267                  */
1268                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1269                     (host->size < 8 ||
1270                      (host->size <= 8 && host->mclk > 50000000)))
1271                         clk = host->clk_reg & ~variant->clkreg_enable;
1272                 else
1273                         clk = host->clk_reg | variant->clkreg_enable;
1274
1275                 mmci_write_clkreg(host, clk);
1276         }
1277
1278         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1279             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1280                 datactrl |= variant->datactrl_mask_ddrmode;
1281
1282         /*
1283          * Attempt to use DMA operation mode, if this
1284          * should fail, fall back to PIO mode
1285          */
1286         if (!mmci_dma_start(host, datactrl))
1287                 return;
1288
1289         /* IRQ mode, map the SG list for CPU reading/writing */
1290         mmci_init_sg(host, data);
1291
1292         if (data->flags & MMC_DATA_READ) {
1293                 irqmask = MCI_RXFIFOHALFFULLMASK;
1294
1295                 /*
1296                  * If we have less than the fifo 'half-full' threshold to
1297                  * transfer, trigger a PIO interrupt as soon as any data
1298                  * is available.
1299                  */
1300                 if (host->size < variant->fifohalfsize)
1301                         irqmask |= MCI_RXDATAAVLBLMASK;
1302         } else {
1303                 /*
1304                  * We don't actually need to include "FIFO empty" here
1305                  * since its implicit in "FIFO half empty".
1306                  */
1307                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1308         }
1309
1310         mmci_write_datactrlreg(host, datactrl);
1311         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1312         mmci_set_mask1(host, irqmask);
1313 }
1314
1315 static void
1316 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1317 {
1318         void __iomem *base = host->base;
1319         bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1320         unsigned long long clks;
1321
1322         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1323             cmd->opcode, cmd->arg, cmd->flags);
1324
1325         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1326                 writel(0, base + MMCICOMMAND);
1327                 mmci_reg_delay(host);
1328         }
1329
1330         if (host->variant->cmdreg_stop &&
1331             cmd->opcode == MMC_STOP_TRANSMISSION)
1332                 c |= host->variant->cmdreg_stop;
1333
1334         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1335         if (cmd->flags & MMC_RSP_PRESENT) {
1336                 if (cmd->flags & MMC_RSP_136)
1337                         c |= host->variant->cmdreg_lrsp_crc;
1338                 else if (cmd->flags & MMC_RSP_CRC)
1339                         c |= host->variant->cmdreg_srsp_crc;
1340                 else
1341                         c |= host->variant->cmdreg_srsp;
1342         }
1343
1344         host->busy_status = 0;
1345         host->busy_state = MMCI_BUSY_DONE;
1346
1347         /* Assign a default timeout if the core does not provide one */
1348         if (busy_resp && !cmd->busy_timeout)
1349                 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1350
1351         if (busy_resp && host->variant->busy_timeout) {
1352                 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1353                         clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1354                 else
1355                         clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1356
1357                 do_div(clks, MSEC_PER_SEC);
1358                 writel_relaxed(clks, host->base + MMCIDATATIMER);
1359         }
1360
1361         if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1362                 host->ops->pre_sig_volt_switch(host);
1363
1364         if (/*interrupt*/0)
1365                 c |= MCI_CPSM_INTERRUPT;
1366
1367         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1368                 c |= host->variant->data_cmd_enable;
1369
1370         host->cmd = cmd;
1371
1372         writel(cmd->arg, base + MMCIARGUMENT);
1373         writel(c, base + MMCICOMMAND);
1374 }
1375
1376 static void mmci_stop_command(struct mmci_host *host)
1377 {
1378         host->stop_abort.error = 0;
1379         mmci_start_command(host, &host->stop_abort, 0);
1380 }
1381
1382 static void
1383 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1384               unsigned int status)
1385 {
1386         unsigned int status_err;
1387
1388         /* Make sure we have data to handle */
1389         if (!data)
1390                 return;
1391
1392         /* First check for errors */
1393         status_err = status & (host->variant->start_err |
1394                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1395                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1396
1397         if (status_err) {
1398                 u32 remain, success;
1399
1400                 /* Terminate the DMA transfer */
1401                 mmci_dma_error(host);
1402
1403                 /*
1404                  * Calculate how far we are into the transfer.  Note that
1405                  * the data counter gives the number of bytes transferred
1406                  * on the MMC bus, not on the host side.  On reads, this
1407                  * can be as much as a FIFO-worth of data ahead.  This
1408                  * matters for FIFO overruns only.
1409                  */
1410                 if (!host->variant->datacnt_useless) {
1411                         remain = readl(host->base + MMCIDATACNT);
1412                         success = data->blksz * data->blocks - remain;
1413                 } else {
1414                         success = 0;
1415                 }
1416
1417                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1418                         status_err, success);
1419                 if (status_err & MCI_DATACRCFAIL) {
1420                         /* Last block was not successful */
1421                         success -= 1;
1422                         data->error = -EILSEQ;
1423                 } else if (status_err & MCI_DATATIMEOUT) {
1424                         data->error = -ETIMEDOUT;
1425                 } else if (status_err & MCI_STARTBITERR) {
1426                         data->error = -ECOMM;
1427                 } else if (status_err & MCI_TXUNDERRUN) {
1428                         data->error = -EIO;
1429                 } else if (status_err & MCI_RXOVERRUN) {
1430                         if (success > host->variant->fifosize)
1431                                 success -= host->variant->fifosize;
1432                         else
1433                                 success = 0;
1434                         data->error = -EIO;
1435                 }
1436                 data->bytes_xfered = round_down(success, data->blksz);
1437         }
1438
1439         if (status & MCI_DATABLOCKEND)
1440                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1441
1442         if (status & MCI_DATAEND || data->error) {
1443                 mmci_dma_finalize(host, data);
1444
1445                 mmci_stop_data(host);
1446
1447                 if (!data->error)
1448                         /* The error clause is handled above, success! */
1449                         data->bytes_xfered = data->blksz * data->blocks;
1450
1451                 if (!data->stop) {
1452                         if (host->variant->cmdreg_stop && data->error)
1453                                 mmci_stop_command(host);
1454                         else
1455                                 mmci_request_end(host, data->mrq);
1456                 } else if (host->mrq->sbc && !data->error) {
1457                         mmci_request_end(host, data->mrq);
1458                 } else {
1459                         mmci_start_command(host, data->stop, 0);
1460                 }
1461         }
1462 }
1463
1464 static void
1465 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1466              unsigned int status)
1467 {
1468         u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1469         void __iomem *base = host->base;
1470         bool sbc, busy_resp;
1471
1472         if (!cmd)
1473                 return;
1474
1475         sbc = (cmd == host->mrq->sbc);
1476         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1477
1478         /*
1479          * We need to be one of these interrupts to be considered worth
1480          * handling. Note that we tag on any latent IRQs postponed
1481          * due to waiting for busy status.
1482          */
1483         if (host->variant->busy_timeout && busy_resp)
1484                 err_msk |= MCI_DATATIMEOUT;
1485
1486         if (!((status | host->busy_status) &
1487               (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1488                 return;
1489
1490         /* Handle busy detection on DAT0 if the variant supports it. */
1491         if (busy_resp && host->variant->busy_detect)
1492                 if (!host->ops->busy_complete(host, cmd, status, err_msk))
1493                         return;
1494
1495         host->cmd = NULL;
1496
1497         if (status & MCI_CMDTIMEOUT) {
1498                 cmd->error = -ETIMEDOUT;
1499         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1500                 cmd->error = -EILSEQ;
1501         } else if (host->variant->busy_timeout && busy_resp &&
1502                    status & MCI_DATATIMEOUT) {
1503                 cmd->error = -ETIMEDOUT;
1504                 /*
1505                  * This will wake up mmci_irq_thread() which will issue
1506                  * a hardware reset of the MMCI block.
1507                  */
1508                 host->irq_action = IRQ_WAKE_THREAD;
1509         } else {
1510                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1511                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1512                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1513                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1514         }
1515
1516         if ((!sbc && !cmd->data) || cmd->error) {
1517                 if (host->data) {
1518                         /* Terminate the DMA transfer */
1519                         mmci_dma_error(host);
1520
1521                         mmci_stop_data(host);
1522                         if (host->variant->cmdreg_stop && cmd->error) {
1523                                 mmci_stop_command(host);
1524                                 return;
1525                         }
1526                 }
1527
1528                 if (host->irq_action != IRQ_WAKE_THREAD)
1529                         mmci_request_end(host, host->mrq);
1530
1531         } else if (sbc) {
1532                 mmci_start_command(host, host->mrq->cmd, 0);
1533         } else if (!host->variant->datactrl_first &&
1534                    !(cmd->data->flags & MMC_DATA_READ)) {
1535                 mmci_start_data(host, cmd->data);
1536         }
1537 }
1538
1539 static char *ux500_state_str(struct mmci_host *host)
1540 {
1541         switch (host->busy_state) {
1542         case MMCI_BUSY_WAITING_FOR_START_IRQ:
1543                 return "waiting for start IRQ";
1544         case MMCI_BUSY_WAITING_FOR_END_IRQ:
1545                 return "waiting for end IRQ";
1546         case MMCI_BUSY_DONE:
1547                 return "not waiting for IRQs";
1548         default:
1549                 return "unknown";
1550         }
1551 }
1552
1553 /*
1554  * This busy timeout worker is used to "kick" the command IRQ if a
1555  * busy detect IRQ fails to appear in reasonable time. Only used on
1556  * variants with busy detection IRQ delivery.
1557  */
1558 static void ux500_busy_timeout_work(struct work_struct *work)
1559 {
1560         struct mmci_host *host = container_of(work, struct mmci_host,
1561                                         ux500_busy_timeout_work.work);
1562         unsigned long flags;
1563         u32 status;
1564
1565         spin_lock_irqsave(&host->lock, flags);
1566
1567         if (host->cmd) {
1568                 /* If we are still busy let's tag on a cmd-timeout error. */
1569                 status = readl(host->base + MMCISTATUS);
1570                 if (status & host->variant->busy_detect_flag) {
1571                         status |= MCI_CMDTIMEOUT;
1572                         dev_err(mmc_dev(host->mmc),
1573                                 "timeout in state %s still busy with CMD%02x\n",
1574                                 ux500_state_str(host), host->cmd->opcode);
1575                 } else {
1576                         dev_err(mmc_dev(host->mmc),
1577                                 "timeout in state %s waiting for busy CMD%02x\n",
1578                                 ux500_state_str(host), host->cmd->opcode);
1579                 }
1580
1581                 mmci_cmd_irq(host, host->cmd, status);
1582         }
1583
1584         spin_unlock_irqrestore(&host->lock, flags);
1585 }
1586
1587 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1588 {
1589         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1590 }
1591
1592 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1593 {
1594         /*
1595          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1596          * from the fifo range should be used
1597          */
1598         if (status & MCI_RXFIFOHALFFULL)
1599                 return host->variant->fifohalfsize;
1600         else if (status & MCI_RXDATAAVLBL)
1601                 return 4;
1602
1603         return 0;
1604 }
1605
1606 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1607 {
1608         void __iomem *base = host->base;
1609         char *ptr = buffer;
1610         u32 status = readl(host->base + MMCISTATUS);
1611         int host_remain = host->size;
1612
1613         do {
1614                 int count = host->get_rx_fifocnt(host, status, host_remain);
1615
1616                 if (count > remain)
1617                         count = remain;
1618
1619                 if (count <= 0)
1620                         break;
1621
1622                 /*
1623                  * SDIO especially may want to send something that is
1624                  * not divisible by 4 (as opposed to card sectors
1625                  * etc). Therefore make sure to always read the last bytes
1626                  * while only doing full 32-bit reads towards the FIFO.
1627                  */
1628                 if (unlikely(count & 0x3)) {
1629                         if (count < 4) {
1630                                 unsigned char buf[4];
1631                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1632                                 memcpy(ptr, buf, count);
1633                         } else {
1634                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1635                                 count &= ~0x3;
1636                         }
1637                 } else {
1638                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1639                 }
1640
1641                 ptr += count;
1642                 remain -= count;
1643                 host_remain -= count;
1644
1645                 if (remain == 0)
1646                         break;
1647
1648                 status = readl(base + MMCISTATUS);
1649         } while (status & MCI_RXDATAAVLBL);
1650
1651         return ptr - buffer;
1652 }
1653
1654 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1655 {
1656         struct variant_data *variant = host->variant;
1657         void __iomem *base = host->base;
1658         char *ptr = buffer;
1659
1660         do {
1661                 unsigned int count, maxcnt;
1662
1663                 maxcnt = status & MCI_TXFIFOEMPTY ?
1664                          variant->fifosize : variant->fifohalfsize;
1665                 count = min(remain, maxcnt);
1666
1667                 /*
1668                  * SDIO especially may want to send something that is
1669                  * not divisible by 4 (as opposed to card sectors
1670                  * etc), and the FIFO only accept full 32-bit writes.
1671                  * So compensate by adding +3 on the count, a single
1672                  * byte become a 32bit write, 7 bytes will be two
1673                  * 32bit writes etc.
1674                  */
1675                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1676
1677                 ptr += count;
1678                 remain -= count;
1679
1680                 if (remain == 0)
1681                         break;
1682
1683                 status = readl(base + MMCISTATUS);
1684         } while (status & MCI_TXFIFOHALFEMPTY);
1685
1686         return ptr - buffer;
1687 }
1688
1689 /*
1690  * PIO data transfer IRQ handler.
1691  */
1692 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1693 {
1694         struct mmci_host *host = dev_id;
1695         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1696         struct variant_data *variant = host->variant;
1697         void __iomem *base = host->base;
1698         u32 status;
1699
1700         status = readl(base + MMCISTATUS);
1701
1702         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1703
1704         do {
1705                 unsigned int remain, len;
1706                 char *buffer;
1707
1708                 /*
1709                  * For write, we only need to test the half-empty flag
1710                  * here - if the FIFO is completely empty, then by
1711                  * definition it is more than half empty.
1712                  *
1713                  * For read, check for data available.
1714                  */
1715                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1716                         break;
1717
1718                 if (!sg_miter_next(sg_miter))
1719                         break;
1720
1721                 buffer = sg_miter->addr;
1722                 remain = sg_miter->length;
1723
1724                 len = 0;
1725                 if (status & MCI_RXACTIVE)
1726                         len = mmci_pio_read(host, buffer, remain);
1727                 if (status & MCI_TXACTIVE)
1728                         len = mmci_pio_write(host, buffer, remain, status);
1729
1730                 sg_miter->consumed = len;
1731
1732                 host->size -= len;
1733                 remain -= len;
1734
1735                 if (remain)
1736                         break;
1737
1738                 status = readl(base + MMCISTATUS);
1739         } while (1);
1740
1741         sg_miter_stop(sg_miter);
1742
1743         /*
1744          * If we have less than the fifo 'half-full' threshold to transfer,
1745          * trigger a PIO interrupt as soon as any data is available.
1746          */
1747         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1748                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1749
1750         /*
1751          * If we run out of data, disable the data IRQs; this
1752          * prevents a race where the FIFO becomes empty before
1753          * the chip itself has disabled the data path, and
1754          * stops us racing with our data end IRQ.
1755          */
1756         if (host->size == 0) {
1757                 mmci_set_mask1(host, 0);
1758                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1759         }
1760
1761         return IRQ_HANDLED;
1762 }
1763
1764 /*
1765  * Handle completion of command and data transfers.
1766  */
1767 static irqreturn_t mmci_irq(int irq, void *dev_id)
1768 {
1769         struct mmci_host *host = dev_id;
1770         u32 status;
1771
1772         spin_lock(&host->lock);
1773         host->irq_action = IRQ_HANDLED;
1774
1775         do {
1776                 status = readl(host->base + MMCISTATUS);
1777                 if (!status)
1778                         break;
1779
1780                 if (host->singleirq) {
1781                         if (status & host->mask1_reg)
1782                                 mmci_pio_irq(irq, dev_id);
1783
1784                         status &= ~host->variant->irq_pio_mask;
1785                 }
1786
1787                 /*
1788                  * Busy detection is managed by mmci_cmd_irq(), including to
1789                  * clear the corresponding IRQ.
1790                  */
1791                 status &= readl(host->base + MMCIMASK0);
1792                 if (host->variant->busy_detect)
1793                         writel(status & ~host->variant->busy_detect_mask,
1794                                host->base + MMCICLEAR);
1795                 else
1796                         writel(status, host->base + MMCICLEAR);
1797
1798                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1799
1800                 if (host->variant->reversed_irq_handling) {
1801                         mmci_data_irq(host, host->data, status);
1802                         mmci_cmd_irq(host, host->cmd, status);
1803                 } else {
1804                         mmci_cmd_irq(host, host->cmd, status);
1805                         mmci_data_irq(host, host->data, status);
1806                 }
1807
1808                 /*
1809                  * Busy detection has been handled by mmci_cmd_irq() above.
1810                  * Clear the status bit to prevent polling in IRQ context.
1811                  */
1812                 if (host->variant->busy_detect_flag)
1813                         status &= ~host->variant->busy_detect_flag;
1814
1815         } while (status);
1816
1817         spin_unlock(&host->lock);
1818
1819         return host->irq_action;
1820 }
1821
1822 /*
1823  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1824  *
1825  * A reset is needed for some variants, where a datatimeout for a R1B request
1826  * causes the DPSM to stay busy (non-functional).
1827  */
1828 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1829 {
1830         struct mmci_host *host = dev_id;
1831         unsigned long flags;
1832
1833         if (host->rst) {
1834                 reset_control_assert(host->rst);
1835                 udelay(2);
1836                 reset_control_deassert(host->rst);
1837         }
1838
1839         spin_lock_irqsave(&host->lock, flags);
1840         writel(host->clk_reg, host->base + MMCICLOCK);
1841         writel(host->pwr_reg, host->base + MMCIPOWER);
1842         writel(MCI_IRQENABLE | host->variant->start_err,
1843                host->base + MMCIMASK0);
1844
1845         host->irq_action = IRQ_HANDLED;
1846         mmci_request_end(host, host->mrq);
1847         spin_unlock_irqrestore(&host->lock, flags);
1848
1849         return host->irq_action;
1850 }
1851
1852 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1853 {
1854         struct mmci_host *host = mmc_priv(mmc);
1855         unsigned long flags;
1856
1857         WARN_ON(host->mrq != NULL);
1858
1859         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1860         if (mrq->cmd->error) {
1861                 mmc_request_done(mmc, mrq);
1862                 return;
1863         }
1864
1865         spin_lock_irqsave(&host->lock, flags);
1866
1867         host->mrq = mrq;
1868
1869         if (mrq->data)
1870                 mmci_get_next_data(host, mrq->data);
1871
1872         if (mrq->data &&
1873             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1874                 mmci_start_data(host, mrq->data);
1875
1876         if (mrq->sbc)
1877                 mmci_start_command(host, mrq->sbc, 0);
1878         else
1879                 mmci_start_command(host, mrq->cmd, 0);
1880
1881         spin_unlock_irqrestore(&host->lock, flags);
1882 }
1883
1884 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1885 {
1886         struct mmci_host *host = mmc_priv(mmc);
1887         u32 max_busy_timeout = 0;
1888
1889         if (!host->variant->busy_detect)
1890                 return;
1891
1892         if (host->variant->busy_timeout && mmc->actual_clock)
1893                 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1894                                                           MSEC_PER_SEC);
1895
1896         mmc->max_busy_timeout = max_busy_timeout;
1897 }
1898
1899 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1900 {
1901         struct mmci_host *host = mmc_priv(mmc);
1902         struct variant_data *variant = host->variant;
1903         u32 pwr = 0;
1904         unsigned long flags;
1905         int ret;
1906
1907         switch (ios->power_mode) {
1908         case MMC_POWER_OFF:
1909                 if (!IS_ERR(mmc->supply.vmmc))
1910                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1911
1912                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1913                         regulator_disable(mmc->supply.vqmmc);
1914                         host->vqmmc_enabled = false;
1915                 }
1916
1917                 break;
1918         case MMC_POWER_UP:
1919                 if (!IS_ERR(mmc->supply.vmmc))
1920                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1921
1922                 /*
1923                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1924                  * and instead uses MCI_PWR_ON so apply whatever value is
1925                  * configured in the variant data.
1926                  */
1927                 pwr |= variant->pwrreg_powerup;
1928
1929                 break;
1930         case MMC_POWER_ON:
1931                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1932                         ret = regulator_enable(mmc->supply.vqmmc);
1933                         if (ret < 0)
1934                                 dev_err(mmc_dev(mmc),
1935                                         "failed to enable vqmmc regulator\n");
1936                         else
1937                                 host->vqmmc_enabled = true;
1938                 }
1939
1940                 pwr |= MCI_PWR_ON;
1941                 break;
1942         }
1943
1944         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1945                 /*
1946                  * The ST Micro variant has some additional bits
1947                  * indicating signal direction for the signals in
1948                  * the SD/MMC bus and feedback-clock usage.
1949                  */
1950                 pwr |= host->pwr_reg_add;
1951
1952                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1953                         pwr &= ~MCI_ST_DATA74DIREN;
1954                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1955                         pwr &= (~MCI_ST_DATA74DIREN &
1956                                 ~MCI_ST_DATA31DIREN &
1957                                 ~MCI_ST_DATA2DIREN);
1958         }
1959
1960         if (variant->opendrain) {
1961                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1962                         pwr |= variant->opendrain;
1963         } else {
1964                 /*
1965                  * If the variant cannot configure the pads by its own, then we
1966                  * expect the pinctrl to be able to do that for us
1967                  */
1968                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1969                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1970                 else
1971                         pinctrl_select_default_state(mmc_dev(mmc));
1972         }
1973
1974         /*
1975          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1976          * gating the clock, the MCI_PWR_ON bit is cleared.
1977          */
1978         if (!ios->clock && variant->pwrreg_clkgate)
1979                 pwr &= ~MCI_PWR_ON;
1980
1981         if (host->variant->explicit_mclk_control &&
1982             ios->clock != host->clock_cache) {
1983                 ret = clk_set_rate(host->clk, ios->clock);
1984                 if (ret < 0)
1985                         dev_err(mmc_dev(host->mmc),
1986                                 "Error setting clock rate (%d)\n", ret);
1987                 else
1988                         host->mclk = clk_get_rate(host->clk);
1989         }
1990         host->clock_cache = ios->clock;
1991
1992         spin_lock_irqsave(&host->lock, flags);
1993
1994         if (host->ops && host->ops->set_clkreg)
1995                 host->ops->set_clkreg(host, ios->clock);
1996         else
1997                 mmci_set_clkreg(host, ios->clock);
1998
1999         mmci_set_max_busy_timeout(mmc);
2000
2001         if (host->ops && host->ops->set_pwrreg)
2002                 host->ops->set_pwrreg(host, pwr);
2003         else
2004                 mmci_write_pwrreg(host, pwr);
2005
2006         mmci_reg_delay(host);
2007
2008         spin_unlock_irqrestore(&host->lock, flags);
2009 }
2010
2011 static int mmci_get_cd(struct mmc_host *mmc)
2012 {
2013         struct mmci_host *host = mmc_priv(mmc);
2014         struct mmci_platform_data *plat = host->plat;
2015         unsigned int status = mmc_gpio_get_cd(mmc);
2016
2017         if (status == -ENOSYS) {
2018                 if (!plat->status)
2019                         return 1; /* Assume always present */
2020
2021                 status = plat->status(mmc_dev(host->mmc));
2022         }
2023         return status;
2024 }
2025
2026 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2027 {
2028         struct mmci_host *host = mmc_priv(mmc);
2029         int ret;
2030
2031         ret = mmc_regulator_set_vqmmc(mmc, ios);
2032
2033         if (!ret && host->ops && host->ops->post_sig_volt_switch)
2034                 ret = host->ops->post_sig_volt_switch(host, ios);
2035         else if (ret)
2036                 ret = 0;
2037
2038         if (ret < 0)
2039                 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2040
2041         return ret;
2042 }
2043
2044 static struct mmc_host_ops mmci_ops = {
2045         .request        = mmci_request,
2046         .pre_req        = mmci_pre_request,
2047         .post_req       = mmci_post_request,
2048         .set_ios        = mmci_set_ios,
2049         .get_ro         = mmc_gpio_get_ro,
2050         .get_cd         = mmci_get_cd,
2051         .start_signal_voltage_switch = mmci_sig_volt_switch,
2052 };
2053
2054 static void mmci_probe_level_translator(struct mmc_host *mmc)
2055 {
2056         struct device *dev = mmc_dev(mmc);
2057         struct mmci_host *host = mmc_priv(mmc);
2058         struct gpio_desc *cmd_gpio;
2059         struct gpio_desc *ck_gpio;
2060         struct gpio_desc *ckin_gpio;
2061         int clk_hi, clk_lo;
2062
2063         /*
2064          * Assume the level translator is present if st,use-ckin is set.
2065          * This is to cater for DTs which do not implement this test.
2066          */
2067         host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2068
2069         cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2070         if (IS_ERR(cmd_gpio))
2071                 goto exit_cmd;
2072
2073         ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2074         if (IS_ERR(ck_gpio))
2075                 goto exit_ck;
2076
2077         ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2078         if (IS_ERR(ckin_gpio))
2079                 goto exit_ckin;
2080
2081         /* All GPIOs are valid, test whether level translator works */
2082
2083         /* Sample CKIN */
2084         clk_hi = !!gpiod_get_value(ckin_gpio);
2085
2086         /* Set CK low */
2087         gpiod_set_value(ck_gpio, 0);
2088
2089         /* Sample CKIN */
2090         clk_lo = !!gpiod_get_value(ckin_gpio);
2091
2092         /* Tristate all */
2093         gpiod_direction_input(cmd_gpio);
2094         gpiod_direction_input(ck_gpio);
2095
2096         /* Level translator is present if CK signal is propagated to CKIN */
2097         if (!clk_hi || clk_lo) {
2098                 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2099                 dev_warn(dev,
2100                          "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2101         }
2102
2103         gpiod_put(ckin_gpio);
2104
2105 exit_ckin:
2106         gpiod_put(ck_gpio);
2107 exit_ck:
2108         gpiod_put(cmd_gpio);
2109 exit_cmd:
2110         pinctrl_select_default_state(dev);
2111 }
2112
2113 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2114 {
2115         struct mmci_host *host = mmc_priv(mmc);
2116         int ret = mmc_of_parse(mmc);
2117
2118         if (ret)
2119                 return ret;
2120
2121         if (of_property_read_bool(np, "st,sig-dir-dat0"))
2122                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2123         if (of_property_read_bool(np, "st,sig-dir-dat2"))
2124                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2125         if (of_property_read_bool(np, "st,sig-dir-dat31"))
2126                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2127         if (of_property_read_bool(np, "st,sig-dir-dat74"))
2128                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2129         if (of_property_read_bool(np, "st,sig-dir-cmd"))
2130                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
2131         if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2132                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
2133         if (of_property_read_bool(np, "st,sig-dir"))
2134                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
2135         if (of_property_read_bool(np, "st,neg-edge"))
2136                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2137         if (of_property_read_bool(np, "st,use-ckin"))
2138                 mmci_probe_level_translator(mmc);
2139
2140         if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2141                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2142         if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2143                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2144
2145         return 0;
2146 }
2147
2148 static int mmci_probe(struct amba_device *dev,
2149         const struct amba_id *id)
2150 {
2151         struct mmci_platform_data *plat = dev->dev.platform_data;
2152         struct device_node *np = dev->dev.of_node;
2153         struct variant_data *variant = id->data;
2154         struct mmci_host *host;
2155         struct mmc_host *mmc;
2156         int ret;
2157
2158         /* Must have platform data or Device Tree. */
2159         if (!plat && !np) {
2160                 dev_err(&dev->dev, "No plat data or DT found\n");
2161                 return -EINVAL;
2162         }
2163
2164         if (!plat) {
2165                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2166                 if (!plat)
2167                         return -ENOMEM;
2168         }
2169
2170         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2171         if (!mmc)
2172                 return -ENOMEM;
2173
2174         host = mmc_priv(mmc);
2175         host->mmc = mmc;
2176         host->mmc_ops = &mmci_ops;
2177         mmc->ops = &mmci_ops;
2178
2179         ret = mmci_of_parse(np, mmc);
2180         if (ret)
2181                 goto host_free;
2182
2183         /*
2184          * Some variant (STM32) doesn't have opendrain bit, nevertheless
2185          * pins can be set accordingly using pinctrl
2186          */
2187         if (!variant->opendrain) {
2188                 host->pinctrl = devm_pinctrl_get(&dev->dev);
2189                 if (IS_ERR(host->pinctrl)) {
2190                         dev_err(&dev->dev, "failed to get pinctrl");
2191                         ret = PTR_ERR(host->pinctrl);
2192                         goto host_free;
2193                 }
2194
2195                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2196                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
2197                 if (IS_ERR(host->pins_opendrain)) {
2198                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2199                         ret = PTR_ERR(host->pins_opendrain);
2200                         goto host_free;
2201                 }
2202         }
2203
2204         host->hw_designer = amba_manf(dev);
2205         host->hw_revision = amba_rev(dev);
2206         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2207         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2208
2209         host->clk = devm_clk_get(&dev->dev, NULL);
2210         if (IS_ERR(host->clk)) {
2211                 ret = PTR_ERR(host->clk);
2212                 goto host_free;
2213         }
2214
2215         ret = clk_prepare_enable(host->clk);
2216         if (ret)
2217                 goto host_free;
2218
2219         if (variant->qcom_fifo)
2220                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2221         else
2222                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2223
2224         host->plat = plat;
2225         host->variant = variant;
2226         host->mclk = clk_get_rate(host->clk);
2227         /*
2228          * According to the spec, mclk is max 100 MHz,
2229          * so we try to adjust the clock down to this,
2230          * (if possible).
2231          */
2232         if (host->mclk > variant->f_max) {
2233                 ret = clk_set_rate(host->clk, variant->f_max);
2234                 if (ret < 0)
2235                         goto clk_disable;
2236                 host->mclk = clk_get_rate(host->clk);
2237                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2238                         host->mclk);
2239         }
2240
2241         host->phybase = dev->res.start;
2242         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2243         if (IS_ERR(host->base)) {
2244                 ret = PTR_ERR(host->base);
2245                 goto clk_disable;
2246         }
2247
2248         if (variant->init)
2249                 variant->init(host);
2250
2251         /*
2252          * The ARM and ST versions of the block have slightly different
2253          * clock divider equations which means that the minimum divider
2254          * differs too.
2255          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2256          */
2257         if (variant->st_clkdiv)
2258                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2259         else if (variant->stm32_clkdiv)
2260                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2261         else if (variant->explicit_mclk_control)
2262                 mmc->f_min = clk_round_rate(host->clk, 100000);
2263         else
2264                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2265         /*
2266          * If no maximum operating frequency is supplied, fall back to use
2267          * the module parameter, which has a (low) default value in case it
2268          * is not specified. Either value must not exceed the clock rate into
2269          * the block, of course.
2270          */
2271         if (mmc->f_max)
2272                 mmc->f_max = variant->explicit_mclk_control ?
2273                                 min(variant->f_max, mmc->f_max) :
2274                                 min(host->mclk, mmc->f_max);
2275         else
2276                 mmc->f_max = variant->explicit_mclk_control ?
2277                                 fmax : min(host->mclk, fmax);
2278
2279
2280         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2281
2282         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2283         if (IS_ERR(host->rst)) {
2284                 ret = PTR_ERR(host->rst);
2285                 goto clk_disable;
2286         }
2287         ret = reset_control_deassert(host->rst);
2288         if (ret)
2289                 dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2290
2291         /* Get regulators and the supported OCR mask */
2292         ret = mmc_regulator_get_supply(mmc);
2293         if (ret)
2294                 goto clk_disable;
2295
2296         if (!mmc->ocr_avail)
2297                 mmc->ocr_avail = plat->ocr_mask;
2298         else if (plat->ocr_mask)
2299                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2300
2301         /* We support these capabilities. */
2302         mmc->caps |= MMC_CAP_CMD23;
2303
2304         /*
2305          * Enable busy detection.
2306          */
2307         if (variant->busy_detect) {
2308                 mmci_ops.card_busy = mmci_card_busy;
2309                 /*
2310                  * Not all variants have a flag to enable busy detection
2311                  * in the DPSM, but if they do, set it here.
2312                  */
2313                 if (variant->busy_dpsm_flag)
2314                         mmci_write_datactrlreg(host,
2315                                                host->variant->busy_dpsm_flag);
2316                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2317         }
2318
2319         /* Variants with mandatory busy timeout in HW needs R1B responses. */
2320         if (variant->busy_timeout)
2321                 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2322
2323         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2324         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2325         host->stop_abort.arg = 0;
2326         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2327
2328         /* We support these PM capabilities. */
2329         mmc->pm_caps |= MMC_PM_KEEP_POWER;
2330
2331         /*
2332          * We can do SGIO
2333          */
2334         mmc->max_segs = NR_SG;
2335
2336         /*
2337          * Since only a certain number of bits are valid in the data length
2338          * register, we must ensure that we don't exceed 2^num-1 bytes in a
2339          * single request.
2340          */
2341         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2342
2343         /*
2344          * Set the maximum segment size.  Since we aren't doing DMA
2345          * (yet) we are only limited by the data length register.
2346          */
2347         mmc->max_seg_size = mmc->max_req_size;
2348
2349         /*
2350          * Block size can be up to 2048 bytes, but must be a power of two.
2351          */
2352         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2353
2354         /*
2355          * Limit the number of blocks transferred so that we don't overflow
2356          * the maximum request size.
2357          */
2358         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2359
2360         spin_lock_init(&host->lock);
2361
2362         writel(0, host->base + MMCIMASK0);
2363
2364         if (variant->mmcimask1)
2365                 writel(0, host->base + MMCIMASK1);
2366
2367         writel(0xfff, host->base + MMCICLEAR);
2368
2369         /*
2370          * If:
2371          * - not using DT but using a descriptor table, or
2372          * - using a table of descriptors ALONGSIDE DT, or
2373          * look up these descriptors named "cd" and "wp" right here, fail
2374          * silently of these do not exist
2375          */
2376         if (!np) {
2377                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2378                 if (ret == -EPROBE_DEFER)
2379                         goto clk_disable;
2380
2381                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2382                 if (ret == -EPROBE_DEFER)
2383                         goto clk_disable;
2384         }
2385
2386         ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2387                                         mmci_irq_thread, IRQF_SHARED,
2388                                         DRIVER_NAME " (cmd)", host);
2389         if (ret)
2390                 goto clk_disable;
2391
2392         if (!dev->irq[1])
2393                 host->singleirq = true;
2394         else {
2395                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2396                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2397                 if (ret)
2398                         goto clk_disable;
2399         }
2400
2401         if (host->variant->busy_detect)
2402                 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2403                                   ux500_busy_timeout_work);
2404
2405         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2406
2407         amba_set_drvdata(dev, mmc);
2408
2409         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2410                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2411                  amba_rev(dev), (unsigned long long)dev->res.start,
2412                  dev->irq[0], dev->irq[1]);
2413
2414         mmci_dma_setup(host);
2415
2416         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2417         pm_runtime_use_autosuspend(&dev->dev);
2418
2419         ret = mmc_add_host(mmc);
2420         if (ret)
2421                 goto clk_disable;
2422
2423         pm_runtime_put(&dev->dev);
2424         return 0;
2425
2426  clk_disable:
2427         clk_disable_unprepare(host->clk);
2428  host_free:
2429         mmc_free_host(mmc);
2430         return ret;
2431 }
2432
2433 static void mmci_remove(struct amba_device *dev)
2434 {
2435         struct mmc_host *mmc = amba_get_drvdata(dev);
2436
2437         if (mmc) {
2438                 struct mmci_host *host = mmc_priv(mmc);
2439                 struct variant_data *variant = host->variant;
2440
2441                 /*
2442                  * Undo pm_runtime_put() in probe.  We use the _sync
2443                  * version here so that we can access the primecell.
2444                  */
2445                 pm_runtime_get_sync(&dev->dev);
2446
2447                 mmc_remove_host(mmc);
2448
2449                 writel(0, host->base + MMCIMASK0);
2450
2451                 if (variant->mmcimask1)
2452                         writel(0, host->base + MMCIMASK1);
2453
2454                 writel(0, host->base + MMCICOMMAND);
2455                 writel(0, host->base + MMCIDATACTRL);
2456
2457                 mmci_dma_release(host);
2458                 clk_disable_unprepare(host->clk);
2459                 mmc_free_host(mmc);
2460         }
2461 }
2462
2463 #ifdef CONFIG_PM
2464 static void mmci_save(struct mmci_host *host)
2465 {
2466         unsigned long flags;
2467
2468         spin_lock_irqsave(&host->lock, flags);
2469
2470         writel(0, host->base + MMCIMASK0);
2471         if (host->variant->pwrreg_nopower) {
2472                 writel(0, host->base + MMCIDATACTRL);
2473                 writel(0, host->base + MMCIPOWER);
2474                 writel(0, host->base + MMCICLOCK);
2475         }
2476         mmci_reg_delay(host);
2477
2478         spin_unlock_irqrestore(&host->lock, flags);
2479 }
2480
2481 static void mmci_restore(struct mmci_host *host)
2482 {
2483         unsigned long flags;
2484
2485         spin_lock_irqsave(&host->lock, flags);
2486
2487         if (host->variant->pwrreg_nopower) {
2488                 writel(host->clk_reg, host->base + MMCICLOCK);
2489                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2490                 writel(host->pwr_reg, host->base + MMCIPOWER);
2491         }
2492         writel(MCI_IRQENABLE | host->variant->start_err,
2493                host->base + MMCIMASK0);
2494         mmci_reg_delay(host);
2495
2496         spin_unlock_irqrestore(&host->lock, flags);
2497 }
2498
2499 static int mmci_runtime_suspend(struct device *dev)
2500 {
2501         struct amba_device *adev = to_amba_device(dev);
2502         struct mmc_host *mmc = amba_get_drvdata(adev);
2503
2504         if (mmc) {
2505                 struct mmci_host *host = mmc_priv(mmc);
2506                 pinctrl_pm_select_sleep_state(dev);
2507                 mmci_save(host);
2508                 clk_disable_unprepare(host->clk);
2509         }
2510
2511         return 0;
2512 }
2513
2514 static int mmci_runtime_resume(struct device *dev)
2515 {
2516         struct amba_device *adev = to_amba_device(dev);
2517         struct mmc_host *mmc = amba_get_drvdata(adev);
2518
2519         if (mmc) {
2520                 struct mmci_host *host = mmc_priv(mmc);
2521                 clk_prepare_enable(host->clk);
2522                 mmci_restore(host);
2523                 pinctrl_select_default_state(dev);
2524         }
2525
2526         return 0;
2527 }
2528 #endif
2529
2530 static const struct dev_pm_ops mmci_dev_pm_ops = {
2531         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2532                                 pm_runtime_force_resume)
2533         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2534 };
2535
2536 static const struct amba_id mmci_ids[] = {
2537         {
2538                 .id     = 0x00041180,
2539                 .mask   = 0xff0fffff,
2540                 .data   = &variant_arm,
2541         },
2542         {
2543                 .id     = 0x01041180,
2544                 .mask   = 0xff0fffff,
2545                 .data   = &variant_arm_extended_fifo,
2546         },
2547         {
2548                 .id     = 0x02041180,
2549                 .mask   = 0xff0fffff,
2550                 .data   = &variant_arm_extended_fifo_hwfc,
2551         },
2552         {
2553                 .id     = 0x00041181,
2554                 .mask   = 0x000fffff,
2555                 .data   = &variant_arm,
2556         },
2557         /* ST Micro variants */
2558         {
2559                 .id     = 0x00180180,
2560                 .mask   = 0x00ffffff,
2561                 .data   = &variant_u300,
2562         },
2563         {
2564                 .id     = 0x10180180,
2565                 .mask   = 0xf0ffffff,
2566                 .data   = &variant_nomadik,
2567         },
2568         {
2569                 .id     = 0x00280180,
2570                 .mask   = 0x00ffffff,
2571                 .data   = &variant_nomadik,
2572         },
2573         {
2574                 .id     = 0x00480180,
2575                 .mask   = 0xf0ffffff,
2576                 .data   = &variant_ux500,
2577         },
2578         {
2579                 .id     = 0x10480180,
2580                 .mask   = 0xf0ffffff,
2581                 .data   = &variant_ux500v2,
2582         },
2583         {
2584                 .id     = 0x00880180,
2585                 .mask   = 0x00ffffff,
2586                 .data   = &variant_stm32,
2587         },
2588         {
2589                 .id     = 0x10153180,
2590                 .mask   = 0xf0ffffff,
2591                 .data   = &variant_stm32_sdmmc,
2592         },
2593         {
2594                 .id     = 0x00253180,
2595                 .mask   = 0xf0ffffff,
2596                 .data   = &variant_stm32_sdmmcv2,
2597         },
2598         {
2599                 .id     = 0x20253180,
2600                 .mask   = 0xf0ffffff,
2601                 .data   = &variant_stm32_sdmmcv2,
2602         },
2603         {
2604                 .id     = 0x00353180,
2605                 .mask   = 0xf0ffffff,
2606                 .data   = &variant_stm32_sdmmcv3,
2607         },
2608         /* Qualcomm variants */
2609         {
2610                 .id     = 0x00051180,
2611                 .mask   = 0x000fffff,
2612                 .data   = &variant_qcom,
2613         },
2614         { 0, 0 },
2615 };
2616
2617 MODULE_DEVICE_TABLE(amba, mmci_ids);
2618
2619 static struct amba_driver mmci_driver = {
2620         .drv            = {
2621                 .name   = DRIVER_NAME,
2622                 .pm     = &mmci_dev_pm_ops,
2623                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2624         },
2625         .probe          = mmci_probe,
2626         .remove         = mmci_remove,
2627         .id_table       = mmci_ids,
2628 };
2629
2630 module_amba_driver(mmci_driver);
2631
2632 module_param(fmax, uint, 0444);
2633
2634 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2635 MODULE_LICENSE("GPL");