2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax = 515633;
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
92 unsigned int clkreg_enable;
93 unsigned int clkreg_8bit_bus_enable;
94 unsigned int clkreg_neg_edge_enable;
95 unsigned int datalength_bits;
96 unsigned int fifosize;
97 unsigned int fifohalfsize;
98 unsigned int data_cmd_enable;
99 unsigned int datactrl_mask_ddrmode;
100 unsigned int datactrl_mask_sdio;
103 bool blksz_datactrl16;
104 bool blksz_datactrl4;
107 bool signal_direction;
111 u32 busy_detect_flag;
112 u32 busy_detect_mask;
114 bool explicit_mclk_control;
117 bool reversed_irq_handling;
123 static struct variant_data variant_arm = {
125 .fifohalfsize = 8 * 4,
126 .datalength_bits = 16,
127 .pwrreg_powerup = MCI_PWR_UP,
129 .reversed_irq_handling = true,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_ROD,
135 static struct variant_data variant_arm_extended_fifo = {
137 .fifohalfsize = 64 * 4,
138 .datalength_bits = 16,
139 .pwrreg_powerup = MCI_PWR_UP,
142 .start_err = MCI_STARTBITERR,
143 .opendrain = MCI_ROD,
146 static struct variant_data variant_arm_extended_fifo_hwfc = {
148 .fifohalfsize = 64 * 4,
149 .clkreg_enable = MCI_ARM_HWFCEN,
150 .datalength_bits = 16,
151 .pwrreg_powerup = MCI_PWR_UP,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_ROD,
158 static struct variant_data variant_u300 = {
160 .fifohalfsize = 8 * 4,
161 .clkreg_enable = MCI_ST_U300_HWFCEN,
162 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 .datalength_bits = 16,
164 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
166 .pwrreg_powerup = MCI_PWR_ON,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
172 .start_err = MCI_STARTBITERR,
176 static struct variant_data variant_nomadik = {
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .datalength_bits = 24,
182 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
185 .pwrreg_powerup = MCI_PWR_ON,
187 .signal_direction = true,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
191 .start_err = MCI_STARTBITERR,
195 static struct variant_data variant_ux500 = {
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datalength_bits = 24,
203 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
206 .pwrreg_powerup = MCI_PWR_ON,
208 .signal_direction = true,
209 .pwrreg_clkgate = true,
211 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
212 .busy_detect_flag = MCI_ST_CARDBUSY,
213 .busy_detect_mask = MCI_ST_BUSYENDMASK,
214 .pwrreg_nopower = true,
216 .start_err = MCI_STARTBITERR,
220 static struct variant_data variant_ux500v2 = {
222 .fifohalfsize = 8 * 4,
223 .clkreg = MCI_CLK_ENABLE,
224 .clkreg_enable = MCI_ST_UX500_HWFCEN,
225 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
228 .datalength_bits = 24,
229 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
232 .blksz_datactrl16 = true,
233 .pwrreg_powerup = MCI_PWR_ON,
235 .signal_direction = true,
236 .pwrreg_clkgate = true,
238 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
239 .busy_detect_flag = MCI_ST_CARDBUSY,
240 .busy_detect_mask = MCI_ST_BUSYENDMASK,
241 .pwrreg_nopower = true,
243 .start_err = MCI_STARTBITERR,
247 static struct variant_data variant_stm32 = {
249 .fifohalfsize = 8 * 4,
250 .clkreg = MCI_CLK_ENABLE,
251 .clkreg_enable = MCI_ST_UX500_HWFCEN,
252 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254 .datalength_bits = 24,
255 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
258 .pwrreg_powerup = MCI_PWR_ON,
260 .pwrreg_clkgate = true,
261 .pwrreg_nopower = true,
264 static struct variant_data variant_qcom = {
266 .fifohalfsize = 8 * 4,
267 .clkreg = MCI_CLK_ENABLE,
268 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
269 MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
273 .blksz_datactrl4 = true,
274 .datalength_bits = 24,
275 .pwrreg_powerup = MCI_PWR_UP,
277 .explicit_mclk_control = true,
281 .start_err = MCI_STARTBITERR,
282 .opendrain = MCI_ROD,
285 /* Busy detection for the ST Micro variant */
286 static int mmci_card_busy(struct mmc_host *mmc)
288 struct mmci_host *host = mmc_priv(mmc);
292 spin_lock_irqsave(&host->lock, flags);
293 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
295 spin_unlock_irqrestore(&host->lock, flags);
301 * Validate mmc prerequisites
303 static int mmci_validate_data(struct mmci_host *host,
304 struct mmc_data *data)
309 if (!is_power_of_2(data->blksz)) {
310 dev_err(mmc_dev(host->mmc),
311 "unsupported block size (%d bytes)\n", data->blksz);
318 static void mmci_reg_delay(struct mmci_host *host)
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
327 if (host->cclk < 25000000)
334 * This must be called with host->lock held
336 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
338 if (host->clk_reg != clk) {
340 writel(clk, host->base + MMCICLOCK);
345 * This must be called with host->lock held
347 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
349 if (host->pwr_reg != pwr) {
351 writel(pwr, host->base + MMCIPOWER);
356 * This must be called with host->lock held
358 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
360 /* Keep busy mode in DPSM if enabled */
361 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
363 if (host->datactrl_reg != datactrl) {
364 host->datactrl_reg = datactrl;
365 writel(datactrl, host->base + MMCIDATACTRL);
370 * This must be called with host->lock held
372 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
374 struct variant_data *variant = host->variant;
375 u32 clk = variant->clkreg;
377 /* Make sure cclk reflects the current calculated clock */
381 if (variant->explicit_mclk_control) {
382 host->cclk = host->mclk;
383 } else if (desired >= host->mclk) {
384 clk = MCI_CLK_BYPASS;
385 if (variant->st_clkdiv)
386 clk |= MCI_ST_UX500_NEG_EDGE;
387 host->cclk = host->mclk;
388 } else if (variant->st_clkdiv) {
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
395 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
398 host->cclk = host->mclk / (clk + 2);
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
404 clk = host->mclk / (2 * desired) - 1;
407 host->cclk = host->mclk / (2 * (clk + 1));
410 clk |= variant->clkreg_enable;
411 clk |= MCI_CLK_ENABLE;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
416 /* Set actual clock for debug */
417 host->mmc->actual_clock = host->cclk;
419 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 clk |= variant->clkreg_8bit_bus_enable;
424 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 clk |= variant->clkreg_neg_edge_enable;
428 mmci_write_clkreg(host, clk);
432 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
434 writel(0, host->base + MMCICOMMAND);
441 mmc_request_done(host->mmc, mrq);
444 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
446 void __iomem *base = host->base;
447 struct variant_data *variant = host->variant;
449 if (host->singleirq) {
450 unsigned int mask0 = readl(base + MMCIMASK0);
452 mask0 &= ~MCI_IRQ1MASK;
455 writel(mask0, base + MMCIMASK0);
458 if (variant->mmcimask1)
459 writel(mask, base + MMCIMASK1);
461 host->mask1_reg = mask;
464 static void mmci_stop_data(struct mmci_host *host)
466 mmci_write_datactrlreg(host, 0);
467 mmci_set_mask1(host, 0);
471 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
473 unsigned int flags = SG_MITER_ATOMIC;
475 if (data->flags & MMC_DATA_READ)
476 flags |= SG_MITER_TO_SG;
478 flags |= SG_MITER_FROM_SG;
480 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
488 #ifdef CONFIG_DMA_ENGINE
489 static void mmci_dma_setup(struct mmci_host *host)
491 const char *rxname, *txname;
492 struct variant_data *variant = host->variant;
494 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
497 /* initialize pre request cookie */
498 host->next_data.cookie = 1;
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
505 if (host->dma_rx_channel && !host->dma_tx_channel)
506 host->dma_tx_channel = host->dma_rx_channel;
508 if (host->dma_rx_channel)
509 rxname = dma_chan_name(host->dma_rx_channel);
513 if (host->dma_tx_channel)
514 txname = dma_chan_name(host->dma_tx_channel);
518 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
525 if (host->dma_tx_channel) {
526 struct device *dev = host->dma_tx_channel->device->dev;
527 unsigned int max_seg_size = dma_get_max_seg_size(dev);
529 if (max_seg_size < host->mmc->max_seg_size)
530 host->mmc->max_seg_size = max_seg_size;
532 if (host->dma_rx_channel) {
533 struct device *dev = host->dma_rx_channel->device->dev;
534 unsigned int max_seg_size = dma_get_max_seg_size(dev);
536 if (max_seg_size < host->mmc->max_seg_size)
537 host->mmc->max_seg_size = max_seg_size;
540 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 if (dml_hw_init(host, host->mmc->parent->of_node))
542 variant->qcom_dml = false;
546 * This is used in or so inline it
547 * so it can be discarded.
549 static inline void mmci_dma_release(struct mmci_host *host)
551 if (host->dma_rx_channel)
552 dma_release_channel(host->dma_rx_channel);
553 if (host->dma_tx_channel)
554 dma_release_channel(host->dma_tx_channel);
555 host->dma_rx_channel = host->dma_tx_channel = NULL;
558 static void mmci_dma_data_error(struct mmci_host *host)
560 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host->dma_current);
562 host->dma_in_progress = false;
563 host->dma_current = NULL;
564 host->dma_desc_current = NULL;
565 host->data->host_cookie = 0;
568 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
570 struct dma_chan *chan;
572 if (data->flags & MMC_DATA_READ)
573 chan = host->dma_rx_channel;
575 chan = host->dma_tx_channel;
577 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 mmc_get_dma_dir(data));
581 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
586 /* Wait up to 1ms for the DMA to complete */
588 status = readl(host->base + MMCISTATUS);
589 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
600 if (status & MCI_RXDATAAVLBLMASK) {
601 mmci_dma_data_error(host);
606 if (!data->host_cookie)
607 mmci_dma_unmap(host, data);
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
613 if (status & MCI_RXDATAAVLBLMASK) {
614 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host);
618 host->dma_in_progress = false;
619 host->dma_current = NULL;
620 host->dma_desc_current = NULL;
623 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 struct dma_chan **dma_chan,
626 struct dma_async_tx_descriptor **dma_desc)
628 struct variant_data *variant = host->variant;
629 struct dma_slave_config conf = {
630 .src_addr = host->phybase + MMCIFIFO,
631 .dst_addr = host->phybase + MMCIFIFO,
632 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
638 struct dma_chan *chan;
639 struct dma_device *device;
640 struct dma_async_tx_descriptor *desc;
642 unsigned long flags = DMA_CTRL_ACK;
644 if (data->flags & MMC_DATA_READ) {
645 conf.direction = DMA_DEV_TO_MEM;
646 chan = host->dma_rx_channel;
648 conf.direction = DMA_MEM_TO_DEV;
649 chan = host->dma_tx_channel;
652 /* If there's no DMA channel, fall back to PIO */
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data->blksz * data->blocks <= variant->fifosize)
660 device = chan->device;
661 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 mmc_get_dma_dir(data));
666 if (host->variant->qcom_dml)
667 flags |= DMA_PREP_INTERRUPT;
669 dmaengine_slave_config(chan, &conf);
670 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 conf.direction, flags);
681 dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 mmc_get_dma_dir(data));
686 static inline int mmci_dma_prep_data(struct mmci_host *host,
687 struct mmc_data *data)
689 /* Check if next job is already prepared. */
690 if (host->dma_current && host->dma_desc_current)
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host, data, &host->dma_current,
695 &host->dma_desc_current);
698 static inline int mmci_dma_prep_next(struct mmci_host *host,
699 struct mmc_data *data)
701 struct mmci_host_next *nd = &host->next_data;
702 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
705 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
708 struct mmc_data *data = host->data;
710 ret = mmci_dma_prep_data(host, host->data);
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host->mmc),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data->sg_len, data->blksz, data->blocks, data->flags);
718 host->dma_in_progress = true;
719 dmaengine_submit(host->dma_desc_current);
720 dma_async_issue_pending(host->dma_current);
722 if (host->variant->qcom_dml)
723 dml_start_xfer(host, data);
725 datactrl |= MCI_DPSM_DMAENABLE;
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host, datactrl);
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
735 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 host->base + MMCIMASK0);
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
742 struct mmci_host_next *next = &host->next_data;
744 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
747 host->dma_desc_current = next->dma_desc;
748 host->dma_current = next->dma_chan;
749 next->dma_desc = NULL;
750 next->dma_chan = NULL;
753 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
755 struct mmci_host *host = mmc_priv(mmc);
756 struct mmc_data *data = mrq->data;
757 struct mmci_host_next *nd = &host->next_data;
762 BUG_ON(data->host_cookie);
764 if (mmci_validate_data(host, data))
767 if (!mmci_dma_prep_next(host, data))
768 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
771 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
774 struct mmci_host *host = mmc_priv(mmc);
775 struct mmc_data *data = mrq->data;
777 if (!data || !data->host_cookie)
780 mmci_dma_unmap(host, data);
783 struct mmci_host_next *next = &host->next_data;
784 struct dma_chan *chan;
785 if (data->flags & MMC_DATA_READ)
786 chan = host->dma_rx_channel;
788 chan = host->dma_tx_channel;
789 dmaengine_terminate_all(chan);
791 if (host->dma_desc_current == next->dma_desc)
792 host->dma_desc_current = NULL;
794 if (host->dma_current == next->dma_chan) {
795 host->dma_in_progress = false;
796 host->dma_current = NULL;
799 next->dma_desc = NULL;
800 next->dma_chan = NULL;
801 data->host_cookie = 0;
806 /* Blank functions if the DMA engine is not available */
807 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
810 static inline void mmci_dma_setup(struct mmci_host *host)
814 static inline void mmci_dma_release(struct mmci_host *host)
818 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
822 static inline void mmci_dma_finalize(struct mmci_host *host,
823 struct mmc_data *data)
827 static inline void mmci_dma_data_error(struct mmci_host *host)
831 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
836 #define mmci_pre_request NULL
837 #define mmci_post_request NULL
841 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
843 struct variant_data *variant = host->variant;
844 unsigned int datactrl, timeout, irqmask;
845 unsigned long long clks;
849 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 data->blksz, data->blocks, data->flags);
853 host->size = data->blksz * data->blocks;
854 data->bytes_xfered = 0;
856 clks = (unsigned long long)data->timeout_ns * host->cclk;
857 do_div(clks, NSEC_PER_SEC);
859 timeout = data->timeout_clks + (unsigned int)clks;
862 writel(timeout, base + MMCIDATATIMER);
863 writel(host->size, base + MMCIDATALENGTH);
865 blksz_bits = ffs(data->blksz) - 1;
866 BUG_ON(1 << blksz_bits != data->blksz);
868 if (variant->blksz_datactrl16)
869 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 else if (variant->blksz_datactrl4)
871 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
873 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
875 if (data->flags & MMC_DATA_READ)
876 datactrl |= MCI_DPSM_DIRECTION;
878 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
881 datactrl |= variant->datactrl_mask_sdio;
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
889 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
891 (host->size <= 8 && host->mclk > 50000000)))
892 clk = host->clk_reg & ~variant->clkreg_enable;
894 clk = host->clk_reg | variant->clkreg_enable;
896 mmci_write_clkreg(host, clk);
899 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 datactrl |= variant->datactrl_mask_ddrmode;
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
907 if (!mmci_dma_start_data(host, datactrl))
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host, data);
913 if (data->flags & MMC_DATA_READ) {
914 irqmask = MCI_RXFIFOHALFFULLMASK;
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
921 if (host->size < variant->fifohalfsize)
922 irqmask |= MCI_RXDATAAVLBLMASK;
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
928 irqmask = MCI_TXFIFOHALFEMPTYMASK;
931 mmci_write_datactrlreg(host, datactrl);
932 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 mmci_set_mask1(host, irqmask);
937 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
939 void __iomem *base = host->base;
941 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 cmd->opcode, cmd->arg, cmd->flags);
944 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 writel(0, base + MMCICOMMAND);
946 mmci_reg_delay(host);
949 c |= cmd->opcode | MCI_CPSM_ENABLE;
950 if (cmd->flags & MMC_RSP_PRESENT) {
951 if (cmd->flags & MMC_RSP_136)
952 c |= MCI_CPSM_LONGRSP;
953 c |= MCI_CPSM_RESPONSE;
956 c |= MCI_CPSM_INTERRUPT;
958 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 c |= host->variant->data_cmd_enable;
963 writel(cmd->arg, base + MMCIARGUMENT);
964 writel(c, base + MMCICOMMAND);
968 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
971 /* Make sure we have data to handle */
975 /* First check for errors */
976 if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 host->variant->start_err |
978 MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host)) {
983 mmci_dma_data_error(host);
984 mmci_dma_unmap(host, data);
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
994 remain = readl(host->base + MMCIDATACNT);
995 success = data->blksz * data->blocks - remain;
997 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
999 if (status & MCI_DATACRCFAIL) {
1000 /* Last block was not successful */
1002 data->error = -EILSEQ;
1003 } else if (status & MCI_DATATIMEOUT) {
1004 data->error = -ETIMEDOUT;
1005 } else if (status & MCI_STARTBITERR) {
1006 data->error = -ECOMM;
1007 } else if (status & MCI_TXUNDERRUN) {
1009 } else if (status & MCI_RXOVERRUN) {
1010 if (success > host->variant->fifosize)
1011 success -= host->variant->fifosize;
1016 data->bytes_xfered = round_down(success, data->blksz);
1019 if (status & MCI_DATABLOCKEND)
1020 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1022 if (status & MCI_DATAEND || data->error) {
1023 if (dma_inprogress(host))
1024 mmci_dma_finalize(host, data);
1025 mmci_stop_data(host);
1028 /* The error clause is handled above, success! */
1029 data->bytes_xfered = data->blksz * data->blocks;
1031 if (!data->stop || host->mrq->sbc) {
1032 mmci_request_end(host, data->mrq);
1034 mmci_start_command(host, data->stop, 0);
1040 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 unsigned int status)
1043 void __iomem *base = host->base;
1049 sbc = (cmd == host->mrq->sbc);
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1056 if (!((status|host->busy_status) &
1057 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1061 * ST Micro variant: handle busy detection.
1063 if (host->variant->busy_detect) {
1064 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1066 /* We are busy with a command, return */
1067 if (host->busy_status &&
1068 (status & host->variant->busy_detect_flag))
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1077 if (!host->busy_status && busy_resp &&
1078 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1081 /* Clear the busy start IRQ */
1082 writel(host->variant->busy_detect_mask,
1083 host->base + MMCICLEAR);
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base + MMCIMASK0) |
1087 host->variant->busy_detect_mask,
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1094 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1103 if (host->busy_status) {
1105 writel(host->variant->busy_detect_mask,
1106 host->base + MMCICLEAR);
1108 writel(readl(base + MMCIMASK0) &
1109 ~host->variant->busy_detect_mask,
1111 host->busy_status = 0;
1117 if (status & MCI_CMDTIMEOUT) {
1118 cmd->error = -ETIMEDOUT;
1119 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 cmd->error = -EILSEQ;
1122 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1128 if ((!sbc && !cmd->data) || cmd->error) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host)) {
1132 mmci_dma_data_error(host);
1133 mmci_dma_unmap(host, host->data);
1135 mmci_stop_data(host);
1137 mmci_request_end(host, host->mrq);
1139 mmci_start_command(host, host->mrq->cmd, 0);
1140 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 mmci_start_data(host, cmd->data);
1145 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1147 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1156 if (status & MCI_RXFIFOHALFFULL)
1157 return host->variant->fifohalfsize;
1158 else if (status & MCI_RXDATAAVLBL)
1164 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1166 void __iomem *base = host->base;
1168 u32 status = readl(host->base + MMCISTATUS);
1169 int host_remain = host->size;
1172 int count = host->get_rx_fifocnt(host, status, host_remain);
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1186 if (unlikely(count & 0x3)) {
1188 unsigned char buf[4];
1189 ioread32_rep(base + MMCIFIFO, buf, 1);
1190 memcpy(ptr, buf, count);
1192 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1196 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1201 host_remain -= count;
1206 status = readl(base + MMCISTATUS);
1207 } while (status & MCI_RXDATAAVLBL);
1209 return ptr - buffer;
1212 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1214 struct variant_data *variant = host->variant;
1215 void __iomem *base = host->base;
1219 unsigned int count, maxcnt;
1221 maxcnt = status & MCI_TXFIFOEMPTY ?
1222 variant->fifosize : variant->fifohalfsize;
1223 count = min(remain, maxcnt);
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1233 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1241 status = readl(base + MMCISTATUS);
1242 } while (status & MCI_TXFIFOHALFEMPTY);
1244 return ptr - buffer;
1248 * PIO data transfer IRQ handler.
1250 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1252 struct mmci_host *host = dev_id;
1253 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 struct variant_data *variant = host->variant;
1255 void __iomem *base = host->base;
1256 unsigned long flags;
1259 status = readl(base + MMCISTATUS);
1261 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1263 local_irq_save(flags);
1266 unsigned int remain, len;
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1274 * For read, check for data available.
1276 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1279 if (!sg_miter_next(sg_miter))
1282 buffer = sg_miter->addr;
1283 remain = sg_miter->length;
1286 if (status & MCI_RXACTIVE)
1287 len = mmci_pio_read(host, buffer, remain);
1288 if (status & MCI_TXACTIVE)
1289 len = mmci_pio_write(host, buffer, remain, status);
1291 sg_miter->consumed = len;
1299 status = readl(base + MMCISTATUS);
1302 sg_miter_stop(sg_miter);
1304 local_irq_restore(flags);
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1310 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1319 if (host->size == 0) {
1320 mmci_set_mask1(host, 0);
1321 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1328 * Handle completion of command and data transfers.
1330 static irqreturn_t mmci_irq(int irq, void *dev_id)
1332 struct mmci_host *host = dev_id;
1336 spin_lock(&host->lock);
1339 status = readl(host->base + MMCISTATUS);
1341 if (host->singleirq) {
1342 if (status & host->mask1_reg)
1343 mmci_pio_irq(irq, dev_id);
1345 status &= ~MCI_IRQ1MASK;
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1358 status &= readl(host->base + MMCIMASK0);
1359 if (host->variant->busy_detect)
1360 writel(status & ~host->variant->busy_detect_mask,
1361 host->base + MMCICLEAR);
1363 writel(status, host->base + MMCICLEAR);
1365 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1367 if (host->variant->reversed_irq_handling) {
1368 mmci_data_irq(host, host->data, status);
1369 mmci_cmd_irq(host, host->cmd, status);
1371 mmci_cmd_irq(host, host->cmd, status);
1372 mmci_data_irq(host, host->data, status);
1376 * Don't poll for busy completion in irq context.
1378 if (host->variant->busy_detect && host->busy_status)
1379 status &= ~host->variant->busy_detect_flag;
1384 spin_unlock(&host->lock);
1386 return IRQ_RETVAL(ret);
1389 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1391 struct mmci_host *host = mmc_priv(mmc);
1392 unsigned long flags;
1394 WARN_ON(host->mrq != NULL);
1396 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397 if (mrq->cmd->error) {
1398 mmc_request_done(mmc, mrq);
1402 spin_lock_irqsave(&host->lock, flags);
1407 mmci_get_next_data(host, mrq->data);
1409 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410 mmci_start_data(host, mrq->data);
1413 mmci_start_command(host, mrq->sbc, 0);
1415 mmci_start_command(host, mrq->cmd, 0);
1417 spin_unlock_irqrestore(&host->lock, flags);
1420 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct variant_data *variant = host->variant;
1425 unsigned long flags;
1428 if (host->plat->ios_handler &&
1429 host->plat->ios_handler(mmc_dev(mmc), ios))
1430 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1432 switch (ios->power_mode) {
1434 if (!IS_ERR(mmc->supply.vmmc))
1435 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1437 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438 regulator_disable(mmc->supply.vqmmc);
1439 host->vqmmc_enabled = false;
1444 if (!IS_ERR(mmc->supply.vmmc))
1445 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1452 pwr |= variant->pwrreg_powerup;
1456 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457 ret = regulator_enable(mmc->supply.vqmmc);
1459 dev_err(mmc_dev(mmc),
1460 "failed to enable vqmmc regulator\n");
1462 host->vqmmc_enabled = true;
1469 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1475 pwr |= host->pwr_reg_add;
1477 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478 pwr &= ~MCI_ST_DATA74DIREN;
1479 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480 pwr &= (~MCI_ST_DATA74DIREN &
1481 ~MCI_ST_DATA31DIREN &
1482 ~MCI_ST_DATA2DIREN);
1485 if (variant->opendrain) {
1486 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487 pwr |= variant->opendrain;
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1493 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1496 pinctrl_select_state(host->pinctrl, host->pins_default);
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1503 if (!ios->clock && variant->pwrreg_clkgate)
1506 if (host->variant->explicit_mclk_control &&
1507 ios->clock != host->clock_cache) {
1508 ret = clk_set_rate(host->clk, ios->clock);
1510 dev_err(mmc_dev(host->mmc),
1511 "Error setting clock rate (%d)\n", ret);
1513 host->mclk = clk_get_rate(host->clk);
1515 host->clock_cache = ios->clock;
1517 spin_lock_irqsave(&host->lock, flags);
1519 mmci_set_clkreg(host, ios->clock);
1520 mmci_write_pwrreg(host, pwr);
1521 mmci_reg_delay(host);
1523 spin_unlock_irqrestore(&host->lock, flags);
1526 static int mmci_get_cd(struct mmc_host *mmc)
1528 struct mmci_host *host = mmc_priv(mmc);
1529 struct mmci_platform_data *plat = host->plat;
1530 unsigned int status = mmc_gpio_get_cd(mmc);
1532 if (status == -ENOSYS) {
1534 return 1; /* Assume always present */
1536 status = plat->status(mmc_dev(host->mmc));
1541 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1545 if (!IS_ERR(mmc->supply.vqmmc)) {
1547 switch (ios->signal_voltage) {
1548 case MMC_SIGNAL_VOLTAGE_330:
1549 ret = regulator_set_voltage(mmc->supply.vqmmc,
1552 case MMC_SIGNAL_VOLTAGE_180:
1553 ret = regulator_set_voltage(mmc->supply.vqmmc,
1556 case MMC_SIGNAL_VOLTAGE_120:
1557 ret = regulator_set_voltage(mmc->supply.vqmmc,
1563 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1569 static struct mmc_host_ops mmci_ops = {
1570 .request = mmci_request,
1571 .pre_req = mmci_pre_request,
1572 .post_req = mmci_post_request,
1573 .set_ios = mmci_set_ios,
1574 .get_ro = mmc_gpio_get_ro,
1575 .get_cd = mmci_get_cd,
1576 .start_signal_voltage_switch = mmci_sig_volt_switch,
1579 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1581 struct mmci_host *host = mmc_priv(mmc);
1582 int ret = mmc_of_parse(mmc);
1587 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1600 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1608 static int mmci_probe(struct amba_device *dev,
1609 const struct amba_id *id)
1611 struct mmci_platform_data *plat = dev->dev.platform_data;
1612 struct device_node *np = dev->dev.of_node;
1613 struct variant_data *variant = id->data;
1614 struct mmci_host *host;
1615 struct mmc_host *mmc;
1618 /* Must have platform data or Device Tree. */
1620 dev_err(&dev->dev, "No plat data or DT found\n");
1625 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1630 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1634 ret = mmci_of_parse(np, mmc);
1638 host = mmc_priv(mmc);
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1645 if (!variant->opendrain) {
1646 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647 if (IS_ERR(host->pinctrl)) {
1648 dev_err(&dev->dev, "failed to get pinctrl");
1652 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1653 PINCTRL_STATE_DEFAULT);
1654 if (IS_ERR(host->pins_default)) {
1655 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1659 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1660 MMCI_PINCTRL_STATE_OPENDRAIN);
1661 if (IS_ERR(host->pins_opendrain)) {
1662 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1667 host->hw_designer = amba_manf(dev);
1668 host->hw_revision = amba_rev(dev);
1669 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1670 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1672 host->clk = devm_clk_get(&dev->dev, NULL);
1673 if (IS_ERR(host->clk)) {
1674 ret = PTR_ERR(host->clk);
1678 ret = clk_prepare_enable(host->clk);
1682 if (variant->qcom_fifo)
1683 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1685 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1688 host->variant = variant;
1689 host->mclk = clk_get_rate(host->clk);
1691 * According to the spec, mclk is max 100 MHz,
1692 * so we try to adjust the clock down to this,
1695 if (host->mclk > variant->f_max) {
1696 ret = clk_set_rate(host->clk, variant->f_max);
1699 host->mclk = clk_get_rate(host->clk);
1700 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704 host->phybase = dev->res.start;
1705 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1706 if (IS_ERR(host->base)) {
1707 ret = PTR_ERR(host->base);
1712 * The ARM and ST versions of the block have slightly different
1713 * clock divider equations which means that the minimum divider
1715 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1717 if (variant->st_clkdiv)
1718 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1719 else if (variant->explicit_mclk_control)
1720 mmc->f_min = clk_round_rate(host->clk, 100000);
1722 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1724 * If no maximum operating frequency is supplied, fall back to use
1725 * the module parameter, which has a (low) default value in case it
1726 * is not specified. Either value must not exceed the clock rate into
1727 * the block, of course.
1730 mmc->f_max = variant->explicit_mclk_control ?
1731 min(variant->f_max, mmc->f_max) :
1732 min(host->mclk, mmc->f_max);
1734 mmc->f_max = variant->explicit_mclk_control ?
1735 fmax : min(host->mclk, fmax);
1738 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1740 /* Get regulators and the supported OCR mask */
1741 ret = mmc_regulator_get_supply(mmc);
1745 if (!mmc->ocr_avail)
1746 mmc->ocr_avail = plat->ocr_mask;
1747 else if (plat->ocr_mask)
1748 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1750 /* DT takes precedence over platform data. */
1752 if (!plat->cd_invert)
1753 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1754 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1757 /* We support these capabilities. */
1758 mmc->caps |= MMC_CAP_CMD23;
1761 * Enable busy detection.
1763 if (variant->busy_detect) {
1764 mmci_ops.card_busy = mmci_card_busy;
1766 * Not all variants have a flag to enable busy detection
1767 * in the DPSM, but if they do, set it here.
1769 if (variant->busy_dpsm_flag)
1770 mmci_write_datactrlreg(host,
1771 host->variant->busy_dpsm_flag);
1772 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1773 mmc->max_busy_timeout = 0;
1776 mmc->ops = &mmci_ops;
1778 /* We support these PM capabilities. */
1779 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1784 mmc->max_segs = NR_SG;
1787 * Since only a certain number of bits are valid in the data length
1788 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1791 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1794 * Set the maximum segment size. Since we aren't doing DMA
1795 * (yet) we are only limited by the data length register.
1797 mmc->max_seg_size = mmc->max_req_size;
1800 * Block size can be up to 2048 bytes, but must be a power of two.
1802 mmc->max_blk_size = 1 << 11;
1805 * Limit the number of blocks transferred so that we don't overflow
1806 * the maximum request size.
1808 mmc->max_blk_count = mmc->max_req_size >> 11;
1810 spin_lock_init(&host->lock);
1812 writel(0, host->base + MMCIMASK0);
1814 if (variant->mmcimask1)
1815 writel(0, host->base + MMCIMASK1);
1817 writel(0xfff, host->base + MMCICLEAR);
1821 * - not using DT but using a descriptor table, or
1822 * - using a table of descriptors ALONGSIDE DT, or
1823 * look up these descriptors named "cd" and "wp" right here, fail
1824 * silently of these do not exist and proceed to try platform data
1827 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1829 if (ret == -EPROBE_DEFER)
1831 else if (gpio_is_valid(plat->gpio_cd)) {
1832 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1838 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1840 if (ret == -EPROBE_DEFER)
1842 else if (gpio_is_valid(plat->gpio_wp)) {
1843 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1850 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1851 DRIVER_NAME " (cmd)", host);
1856 host->singleirq = true;
1858 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1859 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1864 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1866 amba_set_drvdata(dev, mmc);
1868 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1869 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1870 amba_rev(dev), (unsigned long long)dev->res.start,
1871 dev->irq[0], dev->irq[1]);
1873 mmci_dma_setup(host);
1875 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1876 pm_runtime_use_autosuspend(&dev->dev);
1880 pm_runtime_put(&dev->dev);
1884 clk_disable_unprepare(host->clk);
1890 static int mmci_remove(struct amba_device *dev)
1892 struct mmc_host *mmc = amba_get_drvdata(dev);
1895 struct mmci_host *host = mmc_priv(mmc);
1896 struct variant_data *variant = host->variant;
1899 * Undo pm_runtime_put() in probe. We use the _sync
1900 * version here so that we can access the primecell.
1902 pm_runtime_get_sync(&dev->dev);
1904 mmc_remove_host(mmc);
1906 writel(0, host->base + MMCIMASK0);
1908 if (variant->mmcimask1)
1909 writel(0, host->base + MMCIMASK1);
1911 writel(0, host->base + MMCICOMMAND);
1912 writel(0, host->base + MMCIDATACTRL);
1914 mmci_dma_release(host);
1915 clk_disable_unprepare(host->clk);
1923 static void mmci_save(struct mmci_host *host)
1925 unsigned long flags;
1927 spin_lock_irqsave(&host->lock, flags);
1929 writel(0, host->base + MMCIMASK0);
1930 if (host->variant->pwrreg_nopower) {
1931 writel(0, host->base + MMCIDATACTRL);
1932 writel(0, host->base + MMCIPOWER);
1933 writel(0, host->base + MMCICLOCK);
1935 mmci_reg_delay(host);
1937 spin_unlock_irqrestore(&host->lock, flags);
1940 static void mmci_restore(struct mmci_host *host)
1942 unsigned long flags;
1944 spin_lock_irqsave(&host->lock, flags);
1946 if (host->variant->pwrreg_nopower) {
1947 writel(host->clk_reg, host->base + MMCICLOCK);
1948 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1949 writel(host->pwr_reg, host->base + MMCIPOWER);
1951 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1952 mmci_reg_delay(host);
1954 spin_unlock_irqrestore(&host->lock, flags);
1957 static int mmci_runtime_suspend(struct device *dev)
1959 struct amba_device *adev = to_amba_device(dev);
1960 struct mmc_host *mmc = amba_get_drvdata(adev);
1963 struct mmci_host *host = mmc_priv(mmc);
1964 pinctrl_pm_select_sleep_state(dev);
1966 clk_disable_unprepare(host->clk);
1972 static int mmci_runtime_resume(struct device *dev)
1974 struct amba_device *adev = to_amba_device(dev);
1975 struct mmc_host *mmc = amba_get_drvdata(adev);
1978 struct mmci_host *host = mmc_priv(mmc);
1979 clk_prepare_enable(host->clk);
1981 pinctrl_pm_select_default_state(dev);
1988 static const struct dev_pm_ops mmci_dev_pm_ops = {
1989 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1990 pm_runtime_force_resume)
1991 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1994 static const struct amba_id mmci_ids[] = {
1998 .data = &variant_arm,
2003 .data = &variant_arm_extended_fifo,
2008 .data = &variant_arm_extended_fifo_hwfc,
2013 .data = &variant_arm,
2015 /* ST Micro variants */
2019 .data = &variant_u300,
2024 .data = &variant_nomadik,
2029 .data = &variant_nomadik,
2034 .data = &variant_ux500,
2039 .data = &variant_ux500v2,
2044 .data = &variant_stm32,
2046 /* Qualcomm variants */
2050 .data = &variant_qcom,
2055 MODULE_DEVICE_TABLE(amba, mmci_ids);
2057 static struct amba_driver mmci_driver = {
2059 .name = DRIVER_NAME,
2060 .pm = &mmci_dev_pm_ops,
2062 .probe = mmci_probe,
2063 .remove = mmci_remove,
2064 .id_table = mmci_ids,
2067 module_amba_driver(mmci_driver);
2069 module_param(fmax, uint, 0444);
2071 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2072 MODULE_LICENSE("GPL");