mmc: mmci: Add STM32 variant
[platform/kernel/linux-rpi.git] / drivers / mmc / host / mmci.c
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *            is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *                is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *                   register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if the variant supports busy detection on DAT0.
75  * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76  * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77  *                    indicating that the card is busy
78  * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79  *                    getting busy end detection interrupts
80  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81  * @explicit_mclk_control: enable explicit mclk control in driver.
82  * @qcom_fifo: enables qcom specific fifo pio read logic.
83  * @qcom_dml: enables qcom specific dma glue for dma transfers.
84  * @reversed_irq_handling: handle data irq before cmd irq.
85  * @mmcimask1: true if variant have a MMCIMASK1 register.
86  * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87  *             register.
88  * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89  */
90 struct variant_data {
91         unsigned int            clkreg;
92         unsigned int            clkreg_enable;
93         unsigned int            clkreg_8bit_bus_enable;
94         unsigned int            clkreg_neg_edge_enable;
95         unsigned int            datalength_bits;
96         unsigned int            fifosize;
97         unsigned int            fifohalfsize;
98         unsigned int            data_cmd_enable;
99         unsigned int            datactrl_mask_ddrmode;
100         unsigned int            datactrl_mask_sdio;
101         bool                    st_sdio;
102         bool                    st_clkdiv;
103         bool                    blksz_datactrl16;
104         bool                    blksz_datactrl4;
105         u32                     pwrreg_powerup;
106         u32                     f_max;
107         bool                    signal_direction;
108         bool                    pwrreg_clkgate;
109         bool                    busy_detect;
110         u32                     busy_dpsm_flag;
111         u32                     busy_detect_flag;
112         u32                     busy_detect_mask;
113         bool                    pwrreg_nopower;
114         bool                    explicit_mclk_control;
115         bool                    qcom_fifo;
116         bool                    qcom_dml;
117         bool                    reversed_irq_handling;
118         bool                    mmcimask1;
119         u32                     start_err;
120         u32                     opendrain;
121 };
122
123 static struct variant_data variant_arm = {
124         .fifosize               = 16 * 4,
125         .fifohalfsize           = 8 * 4,
126         .datalength_bits        = 16,
127         .pwrreg_powerup         = MCI_PWR_UP,
128         .f_max                  = 100000000,
129         .reversed_irq_handling  = true,
130         .mmcimask1              = true,
131         .start_err              = MCI_STARTBITERR,
132         .opendrain              = MCI_ROD,
133 };
134
135 static struct variant_data variant_arm_extended_fifo = {
136         .fifosize               = 128 * 4,
137         .fifohalfsize           = 64 * 4,
138         .datalength_bits        = 16,
139         .pwrreg_powerup         = MCI_PWR_UP,
140         .f_max                  = 100000000,
141         .mmcimask1              = true,
142         .start_err              = MCI_STARTBITERR,
143         .opendrain              = MCI_ROD,
144 };
145
146 static struct variant_data variant_arm_extended_fifo_hwfc = {
147         .fifosize               = 128 * 4,
148         .fifohalfsize           = 64 * 4,
149         .clkreg_enable          = MCI_ARM_HWFCEN,
150         .datalength_bits        = 16,
151         .pwrreg_powerup         = MCI_PWR_UP,
152         .f_max                  = 100000000,
153         .mmcimask1              = true,
154         .start_err              = MCI_STARTBITERR,
155         .opendrain              = MCI_ROD,
156 };
157
158 static struct variant_data variant_u300 = {
159         .fifosize               = 16 * 4,
160         .fifohalfsize           = 8 * 4,
161         .clkreg_enable          = MCI_ST_U300_HWFCEN,
162         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163         .datalength_bits        = 16,
164         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
165         .st_sdio                        = true,
166         .pwrreg_powerup         = MCI_PWR_ON,
167         .f_max                  = 100000000,
168         .signal_direction       = true,
169         .pwrreg_clkgate         = true,
170         .pwrreg_nopower         = true,
171         .mmcimask1              = true,
172         .start_err              = MCI_STARTBITERR,
173         .opendrain              = MCI_OD,
174 };
175
176 static struct variant_data variant_nomadik = {
177         .fifosize               = 16 * 4,
178         .fifohalfsize           = 8 * 4,
179         .clkreg                 = MCI_CLK_ENABLE,
180         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181         .datalength_bits        = 24,
182         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
183         .st_sdio                = true,
184         .st_clkdiv              = true,
185         .pwrreg_powerup         = MCI_PWR_ON,
186         .f_max                  = 100000000,
187         .signal_direction       = true,
188         .pwrreg_clkgate         = true,
189         .pwrreg_nopower         = true,
190         .mmcimask1              = true,
191         .start_err              = MCI_STARTBITERR,
192         .opendrain              = MCI_OD,
193 };
194
195 static struct variant_data variant_ux500 = {
196         .fifosize               = 30 * 4,
197         .fifohalfsize           = 8 * 4,
198         .clkreg                 = MCI_CLK_ENABLE,
199         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
200         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202         .datalength_bits        = 24,
203         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
204         .st_sdio                = true,
205         .st_clkdiv              = true,
206         .pwrreg_powerup         = MCI_PWR_ON,
207         .f_max                  = 100000000,
208         .signal_direction       = true,
209         .pwrreg_clkgate         = true,
210         .busy_detect            = true,
211         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
212         .busy_detect_flag       = MCI_ST_CARDBUSY,
213         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
214         .pwrreg_nopower         = true,
215         .mmcimask1              = true,
216         .start_err              = MCI_STARTBITERR,
217         .opendrain              = MCI_OD,
218 };
219
220 static struct variant_data variant_ux500v2 = {
221         .fifosize               = 30 * 4,
222         .fifohalfsize           = 8 * 4,
223         .clkreg                 = MCI_CLK_ENABLE,
224         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
225         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
228         .datalength_bits        = 24,
229         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
230         .st_sdio                = true,
231         .st_clkdiv              = true,
232         .blksz_datactrl16       = true,
233         .pwrreg_powerup         = MCI_PWR_ON,
234         .f_max                  = 100000000,
235         .signal_direction       = true,
236         .pwrreg_clkgate         = true,
237         .busy_detect            = true,
238         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
239         .busy_detect_flag       = MCI_ST_CARDBUSY,
240         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
241         .pwrreg_nopower         = true,
242         .mmcimask1              = true,
243         .start_err              = MCI_STARTBITERR,
244         .opendrain              = MCI_OD,
245 };
246
247 static struct variant_data variant_stm32 = {
248         .fifosize               = 32 * 4,
249         .fifohalfsize           = 8 * 4,
250         .clkreg                 = MCI_CLK_ENABLE,
251         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
252         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254         .datalength_bits        = 24,
255         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
256         .st_sdio                = true,
257         .st_clkdiv              = true,
258         .pwrreg_powerup         = MCI_PWR_ON,
259         .f_max                  = 48000000,
260         .pwrreg_clkgate         = true,
261         .pwrreg_nopower         = true,
262 };
263
264 static struct variant_data variant_qcom = {
265         .fifosize               = 16 * 4,
266         .fifohalfsize           = 8 * 4,
267         .clkreg                 = MCI_CLK_ENABLE,
268         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
269                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
270         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
273         .blksz_datactrl4        = true,
274         .datalength_bits        = 24,
275         .pwrreg_powerup         = MCI_PWR_UP,
276         .f_max                  = 208000000,
277         .explicit_mclk_control  = true,
278         .qcom_fifo              = true,
279         .qcom_dml               = true,
280         .mmcimask1              = true,
281         .start_err              = MCI_STARTBITERR,
282         .opendrain              = MCI_ROD,
283 };
284
285 /* Busy detection for the ST Micro variant */
286 static int mmci_card_busy(struct mmc_host *mmc)
287 {
288         struct mmci_host *host = mmc_priv(mmc);
289         unsigned long flags;
290         int busy = 0;
291
292         spin_lock_irqsave(&host->lock, flags);
293         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294                 busy = 1;
295         spin_unlock_irqrestore(&host->lock, flags);
296
297         return busy;
298 }
299
300 /*
301  * Validate mmc prerequisites
302  */
303 static int mmci_validate_data(struct mmci_host *host,
304                               struct mmc_data *data)
305 {
306         if (!data)
307                 return 0;
308
309         if (!is_power_of_2(data->blksz)) {
310                 dev_err(mmc_dev(host->mmc),
311                         "unsupported block size (%d bytes)\n", data->blksz);
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 static void mmci_reg_delay(struct mmci_host *host)
319 {
320         /*
321          * According to the spec, at least three feedback clock cycles
322          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324          * Worst delay time during card init is at 100 kHz => 30 us.
325          * Worst delay time when up and running is at 25 MHz => 120 ns.
326          */
327         if (host->cclk < 25000000)
328                 udelay(30);
329         else
330                 ndelay(120);
331 }
332
333 /*
334  * This must be called with host->lock held
335  */
336 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337 {
338         if (host->clk_reg != clk) {
339                 host->clk_reg = clk;
340                 writel(clk, host->base + MMCICLOCK);
341         }
342 }
343
344 /*
345  * This must be called with host->lock held
346  */
347 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348 {
349         if (host->pwr_reg != pwr) {
350                 host->pwr_reg = pwr;
351                 writel(pwr, host->base + MMCIPOWER);
352         }
353 }
354
355 /*
356  * This must be called with host->lock held
357  */
358 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359 {
360         /* Keep busy mode in DPSM if enabled */
361         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363         if (host->datactrl_reg != datactrl) {
364                 host->datactrl_reg = datactrl;
365                 writel(datactrl, host->base + MMCIDATACTRL);
366         }
367 }
368
369 /*
370  * This must be called with host->lock held
371  */
372 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373 {
374         struct variant_data *variant = host->variant;
375         u32 clk = variant->clkreg;
376
377         /* Make sure cclk reflects the current calculated clock */
378         host->cclk = 0;
379
380         if (desired) {
381                 if (variant->explicit_mclk_control) {
382                         host->cclk = host->mclk;
383                 } else if (desired >= host->mclk) {
384                         clk = MCI_CLK_BYPASS;
385                         if (variant->st_clkdiv)
386                                 clk |= MCI_ST_UX500_NEG_EDGE;
387                         host->cclk = host->mclk;
388                 } else if (variant->st_clkdiv) {
389                         /*
390                          * DB8500 TRM says f = mclk / (clkdiv + 2)
391                          * => clkdiv = (mclk / f) - 2
392                          * Round the divider up so we don't exceed the max
393                          * frequency
394                          */
395                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396                         if (clk >= 256)
397                                 clk = 255;
398                         host->cclk = host->mclk / (clk + 2);
399                 } else {
400                         /*
401                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402                          * => clkdiv = mclk / (2 * f) - 1
403                          */
404                         clk = host->mclk / (2 * desired) - 1;
405                         if (clk >= 256)
406                                 clk = 255;
407                         host->cclk = host->mclk / (2 * (clk + 1));
408                 }
409
410                 clk |= variant->clkreg_enable;
411                 clk |= MCI_CLK_ENABLE;
412                 /* This hasn't proven to be worthwhile */
413                 /* clk |= MCI_CLK_PWRSAVE; */
414         }
415
416         /* Set actual clock for debug */
417         host->mmc->actual_clock = host->cclk;
418
419         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420                 clk |= MCI_4BIT_BUS;
421         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422                 clk |= variant->clkreg_8bit_bus_enable;
423
424         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426                 clk |= variant->clkreg_neg_edge_enable;
427
428         mmci_write_clkreg(host, clk);
429 }
430
431 static void
432 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433 {
434         writel(0, host->base + MMCICOMMAND);
435
436         BUG_ON(host->data);
437
438         host->mrq = NULL;
439         host->cmd = NULL;
440
441         mmc_request_done(host->mmc, mrq);
442 }
443
444 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445 {
446         void __iomem *base = host->base;
447         struct variant_data *variant = host->variant;
448
449         if (host->singleirq) {
450                 unsigned int mask0 = readl(base + MMCIMASK0);
451
452                 mask0 &= ~MCI_IRQ1MASK;
453                 mask0 |= mask;
454
455                 writel(mask0, base + MMCIMASK0);
456         }
457
458         if (variant->mmcimask1)
459                 writel(mask, base + MMCIMASK1);
460
461         host->mask1_reg = mask;
462 }
463
464 static void mmci_stop_data(struct mmci_host *host)
465 {
466         mmci_write_datactrlreg(host, 0);
467         mmci_set_mask1(host, 0);
468         host->data = NULL;
469 }
470
471 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472 {
473         unsigned int flags = SG_MITER_ATOMIC;
474
475         if (data->flags & MMC_DATA_READ)
476                 flags |= SG_MITER_TO_SG;
477         else
478                 flags |= SG_MITER_FROM_SG;
479
480         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481 }
482
483 /*
484  * All the DMA operation mode stuff goes inside this ifdef.
485  * This assumes that you have a generic DMA device interface,
486  * no custom DMA interfaces are supported.
487  */
488 #ifdef CONFIG_DMA_ENGINE
489 static void mmci_dma_setup(struct mmci_host *host)
490 {
491         const char *rxname, *txname;
492         struct variant_data *variant = host->variant;
493
494         host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495         host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497         /* initialize pre request cookie */
498         host->next_data.cookie = 1;
499
500         /*
501          * If only an RX channel is specified, the driver will
502          * attempt to use it bidirectionally, however if it is
503          * is specified but cannot be located, DMA will be disabled.
504          */
505         if (host->dma_rx_channel && !host->dma_tx_channel)
506                 host->dma_tx_channel = host->dma_rx_channel;
507
508         if (host->dma_rx_channel)
509                 rxname = dma_chan_name(host->dma_rx_channel);
510         else
511                 rxname = "none";
512
513         if (host->dma_tx_channel)
514                 txname = dma_chan_name(host->dma_tx_channel);
515         else
516                 txname = "none";
517
518         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519                  rxname, txname);
520
521         /*
522          * Limit the maximum segment size in any SG entry according to
523          * the parameters of the DMA engine device.
524          */
525         if (host->dma_tx_channel) {
526                 struct device *dev = host->dma_tx_channel->device->dev;
527                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529                 if (max_seg_size < host->mmc->max_seg_size)
530                         host->mmc->max_seg_size = max_seg_size;
531         }
532         if (host->dma_rx_channel) {
533                 struct device *dev = host->dma_rx_channel->device->dev;
534                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536                 if (max_seg_size < host->mmc->max_seg_size)
537                         host->mmc->max_seg_size = max_seg_size;
538         }
539
540         if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541                 if (dml_hw_init(host, host->mmc->parent->of_node))
542                         variant->qcom_dml = false;
543 }
544
545 /*
546  * This is used in or so inline it
547  * so it can be discarded.
548  */
549 static inline void mmci_dma_release(struct mmci_host *host)
550 {
551         if (host->dma_rx_channel)
552                 dma_release_channel(host->dma_rx_channel);
553         if (host->dma_tx_channel)
554                 dma_release_channel(host->dma_tx_channel);
555         host->dma_rx_channel = host->dma_tx_channel = NULL;
556 }
557
558 static void mmci_dma_data_error(struct mmci_host *host)
559 {
560         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561         dmaengine_terminate_all(host->dma_current);
562         host->dma_in_progress = false;
563         host->dma_current = NULL;
564         host->dma_desc_current = NULL;
565         host->data->host_cookie = 0;
566 }
567
568 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569 {
570         struct dma_chan *chan;
571
572         if (data->flags & MMC_DATA_READ)
573                 chan = host->dma_rx_channel;
574         else
575                 chan = host->dma_tx_channel;
576
577         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578                      mmc_get_dma_dir(data));
579 }
580
581 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582 {
583         u32 status;
584         int i;
585
586         /* Wait up to 1ms for the DMA to complete */
587         for (i = 0; ; i++) {
588                 status = readl(host->base + MMCISTATUS);
589                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590                         break;
591                 udelay(10);
592         }
593
594         /*
595          * Check to see whether we still have some data left in the FIFO -
596          * this catches DMA controllers which are unable to monitor the
597          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
599          */
600         if (status & MCI_RXDATAAVLBLMASK) {
601                 mmci_dma_data_error(host);
602                 if (!data->error)
603                         data->error = -EIO;
604         }
605
606         if (!data->host_cookie)
607                 mmci_dma_unmap(host, data);
608
609         /*
610          * Use of DMA with scatter-gather is impossible.
611          * Give up with DMA and switch back to PIO mode.
612          */
613         if (status & MCI_RXDATAAVLBLMASK) {
614                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615                 mmci_dma_release(host);
616         }
617
618         host->dma_in_progress = false;
619         host->dma_current = NULL;
620         host->dma_desc_current = NULL;
621 }
622
623 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625                                 struct dma_chan **dma_chan,
626                                 struct dma_async_tx_descriptor **dma_desc)
627 {
628         struct variant_data *variant = host->variant;
629         struct dma_slave_config conf = {
630                 .src_addr = host->phybase + MMCIFIFO,
631                 .dst_addr = host->phybase + MMCIFIFO,
632                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636                 .device_fc = false,
637         };
638         struct dma_chan *chan;
639         struct dma_device *device;
640         struct dma_async_tx_descriptor *desc;
641         int nr_sg;
642         unsigned long flags = DMA_CTRL_ACK;
643
644         if (data->flags & MMC_DATA_READ) {
645                 conf.direction = DMA_DEV_TO_MEM;
646                 chan = host->dma_rx_channel;
647         } else {
648                 conf.direction = DMA_MEM_TO_DEV;
649                 chan = host->dma_tx_channel;
650         }
651
652         /* If there's no DMA channel, fall back to PIO */
653         if (!chan)
654                 return -EINVAL;
655
656         /* If less than or equal to the fifo size, don't bother with DMA */
657         if (data->blksz * data->blocks <= variant->fifosize)
658                 return -EINVAL;
659
660         device = chan->device;
661         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662                            mmc_get_dma_dir(data));
663         if (nr_sg == 0)
664                 return -EINVAL;
665
666         if (host->variant->qcom_dml)
667                 flags |= DMA_PREP_INTERRUPT;
668
669         dmaengine_slave_config(chan, &conf);
670         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671                                             conf.direction, flags);
672         if (!desc)
673                 goto unmap_exit;
674
675         *dma_chan = chan;
676         *dma_desc = desc;
677
678         return 0;
679
680  unmap_exit:
681         dma_unmap_sg(device->dev, data->sg, data->sg_len,
682                      mmc_get_dma_dir(data));
683         return -ENOMEM;
684 }
685
686 static inline int mmci_dma_prep_data(struct mmci_host *host,
687                                      struct mmc_data *data)
688 {
689         /* Check if next job is already prepared. */
690         if (host->dma_current && host->dma_desc_current)
691                 return 0;
692
693         /* No job were prepared thus do it now. */
694         return __mmci_dma_prep_data(host, data, &host->dma_current,
695                                     &host->dma_desc_current);
696 }
697
698 static inline int mmci_dma_prep_next(struct mmci_host *host,
699                                      struct mmc_data *data)
700 {
701         struct mmci_host_next *nd = &host->next_data;
702         return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703 }
704
705 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706 {
707         int ret;
708         struct mmc_data *data = host->data;
709
710         ret = mmci_dma_prep_data(host, host->data);
711         if (ret)
712                 return ret;
713
714         /* Okay, go for it. */
715         dev_vdbg(mmc_dev(host->mmc),
716                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717                  data->sg_len, data->blksz, data->blocks, data->flags);
718         host->dma_in_progress = true;
719         dmaengine_submit(host->dma_desc_current);
720         dma_async_issue_pending(host->dma_current);
721
722         if (host->variant->qcom_dml)
723                 dml_start_xfer(host, data);
724
725         datactrl |= MCI_DPSM_DMAENABLE;
726
727         /* Trigger the DMA transfer */
728         mmci_write_datactrlreg(host, datactrl);
729
730         /*
731          * Let the MMCI say when the data is ended and it's time
732          * to fire next DMA request. When that happens, MMCI will
733          * call mmci_data_end()
734          */
735         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736                host->base + MMCIMASK0);
737         return 0;
738 }
739
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741 {
742         struct mmci_host_next *next = &host->next_data;
743
744         WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745         WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747         host->dma_desc_current = next->dma_desc;
748         host->dma_current = next->dma_chan;
749         next->dma_desc = NULL;
750         next->dma_chan = NULL;
751 }
752
753 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754 {
755         struct mmci_host *host = mmc_priv(mmc);
756         struct mmc_data *data = mrq->data;
757         struct mmci_host_next *nd = &host->next_data;
758
759         if (!data)
760                 return;
761
762         BUG_ON(data->host_cookie);
763
764         if (mmci_validate_data(host, data))
765                 return;
766
767         if (!mmci_dma_prep_next(host, data))
768                 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769 }
770
771 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772                               int err)
773 {
774         struct mmci_host *host = mmc_priv(mmc);
775         struct mmc_data *data = mrq->data;
776
777         if (!data || !data->host_cookie)
778                 return;
779
780         mmci_dma_unmap(host, data);
781
782         if (err) {
783                 struct mmci_host_next *next = &host->next_data;
784                 struct dma_chan *chan;
785                 if (data->flags & MMC_DATA_READ)
786                         chan = host->dma_rx_channel;
787                 else
788                         chan = host->dma_tx_channel;
789                 dmaengine_terminate_all(chan);
790
791                 if (host->dma_desc_current == next->dma_desc)
792                         host->dma_desc_current = NULL;
793
794                 if (host->dma_current == next->dma_chan) {
795                         host->dma_in_progress = false;
796                         host->dma_current = NULL;
797                 }
798
799                 next->dma_desc = NULL;
800                 next->dma_chan = NULL;
801                 data->host_cookie = 0;
802         }
803 }
804
805 #else
806 /* Blank functions if the DMA engine is not available */
807 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808 {
809 }
810 static inline void mmci_dma_setup(struct mmci_host *host)
811 {
812 }
813
814 static inline void mmci_dma_release(struct mmci_host *host)
815 {
816 }
817
818 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819 {
820 }
821
822 static inline void mmci_dma_finalize(struct mmci_host *host,
823                                      struct mmc_data *data)
824 {
825 }
826
827 static inline void mmci_dma_data_error(struct mmci_host *host)
828 {
829 }
830
831 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832 {
833         return -ENOSYS;
834 }
835
836 #define mmci_pre_request NULL
837 #define mmci_post_request NULL
838
839 #endif
840
841 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842 {
843         struct variant_data *variant = host->variant;
844         unsigned int datactrl, timeout, irqmask;
845         unsigned long long clks;
846         void __iomem *base;
847         int blksz_bits;
848
849         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850                 data->blksz, data->blocks, data->flags);
851
852         host->data = data;
853         host->size = data->blksz * data->blocks;
854         data->bytes_xfered = 0;
855
856         clks = (unsigned long long)data->timeout_ns * host->cclk;
857         do_div(clks, NSEC_PER_SEC);
858
859         timeout = data->timeout_clks + (unsigned int)clks;
860
861         base = host->base;
862         writel(timeout, base + MMCIDATATIMER);
863         writel(host->size, base + MMCIDATALENGTH);
864
865         blksz_bits = ffs(data->blksz) - 1;
866         BUG_ON(1 << blksz_bits != data->blksz);
867
868         if (variant->blksz_datactrl16)
869                 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870         else if (variant->blksz_datactrl4)
871                 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872         else
873                 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875         if (data->flags & MMC_DATA_READ)
876                 datactrl |= MCI_DPSM_DIRECTION;
877
878         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879                 u32 clk;
880
881                 datactrl |= variant->datactrl_mask_sdio;
882
883                 /*
884                  * The ST Micro variant for SDIO small write transfers
885                  * needs to have clock H/W flow control disabled,
886                  * otherwise the transfer will not start. The threshold
887                  * depends on the rate of MCLK.
888                  */
889                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890                     (host->size < 8 ||
891                      (host->size <= 8 && host->mclk > 50000000)))
892                         clk = host->clk_reg & ~variant->clkreg_enable;
893                 else
894                         clk = host->clk_reg | variant->clkreg_enable;
895
896                 mmci_write_clkreg(host, clk);
897         }
898
899         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901                 datactrl |= variant->datactrl_mask_ddrmode;
902
903         /*
904          * Attempt to use DMA operation mode, if this
905          * should fail, fall back to PIO mode
906          */
907         if (!mmci_dma_start_data(host, datactrl))
908                 return;
909
910         /* IRQ mode, map the SG list for CPU reading/writing */
911         mmci_init_sg(host, data);
912
913         if (data->flags & MMC_DATA_READ) {
914                 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916                 /*
917                  * If we have less than the fifo 'half-full' threshold to
918                  * transfer, trigger a PIO interrupt as soon as any data
919                  * is available.
920                  */
921                 if (host->size < variant->fifohalfsize)
922                         irqmask |= MCI_RXDATAAVLBLMASK;
923         } else {
924                 /*
925                  * We don't actually need to include "FIFO empty" here
926                  * since its implicit in "FIFO half empty".
927                  */
928                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929         }
930
931         mmci_write_datactrlreg(host, datactrl);
932         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933         mmci_set_mask1(host, irqmask);
934 }
935
936 static void
937 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938 {
939         void __iomem *base = host->base;
940
941         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942             cmd->opcode, cmd->arg, cmd->flags);
943
944         if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945                 writel(0, base + MMCICOMMAND);
946                 mmci_reg_delay(host);
947         }
948
949         c |= cmd->opcode | MCI_CPSM_ENABLE;
950         if (cmd->flags & MMC_RSP_PRESENT) {
951                 if (cmd->flags & MMC_RSP_136)
952                         c |= MCI_CPSM_LONGRSP;
953                 c |= MCI_CPSM_RESPONSE;
954         }
955         if (/*interrupt*/0)
956                 c |= MCI_CPSM_INTERRUPT;
957
958         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959                 c |= host->variant->data_cmd_enable;
960
961         host->cmd = cmd;
962
963         writel(cmd->arg, base + MMCIARGUMENT);
964         writel(c, base + MMCICOMMAND);
965 }
966
967 static void
968 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969               unsigned int status)
970 {
971         /* Make sure we have data to handle */
972         if (!data)
973                 return;
974
975         /* First check for errors */
976         if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977                       host->variant->start_err |
978                       MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979                 u32 remain, success;
980
981                 /* Terminate the DMA transfer */
982                 if (dma_inprogress(host)) {
983                         mmci_dma_data_error(host);
984                         mmci_dma_unmap(host, data);
985                 }
986
987                 /*
988                  * Calculate how far we are into the transfer.  Note that
989                  * the data counter gives the number of bytes transferred
990                  * on the MMC bus, not on the host side.  On reads, this
991                  * can be as much as a FIFO-worth of data ahead.  This
992                  * matters for FIFO overruns only.
993                  */
994                 remain = readl(host->base + MMCIDATACNT);
995                 success = data->blksz * data->blocks - remain;
996
997                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998                         status, success);
999                 if (status & MCI_DATACRCFAIL) {
1000                         /* Last block was not successful */
1001                         success -= 1;
1002                         data->error = -EILSEQ;
1003                 } else if (status & MCI_DATATIMEOUT) {
1004                         data->error = -ETIMEDOUT;
1005                 } else if (status & MCI_STARTBITERR) {
1006                         data->error = -ECOMM;
1007                 } else if (status & MCI_TXUNDERRUN) {
1008                         data->error = -EIO;
1009                 } else if (status & MCI_RXOVERRUN) {
1010                         if (success > host->variant->fifosize)
1011                                 success -= host->variant->fifosize;
1012                         else
1013                                 success = 0;
1014                         data->error = -EIO;
1015                 }
1016                 data->bytes_xfered = round_down(success, data->blksz);
1017         }
1018
1019         if (status & MCI_DATABLOCKEND)
1020                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022         if (status & MCI_DATAEND || data->error) {
1023                 if (dma_inprogress(host))
1024                         mmci_dma_finalize(host, data);
1025                 mmci_stop_data(host);
1026
1027                 if (!data->error)
1028                         /* The error clause is handled above, success! */
1029                         data->bytes_xfered = data->blksz * data->blocks;
1030
1031                 if (!data->stop || host->mrq->sbc) {
1032                         mmci_request_end(host, data->mrq);
1033                 } else {
1034                         mmci_start_command(host, data->stop, 0);
1035                 }
1036         }
1037 }
1038
1039 static void
1040 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041              unsigned int status)
1042 {
1043         void __iomem *base = host->base;
1044         bool sbc;
1045
1046         if (!cmd)
1047                 return;
1048
1049         sbc = (cmd == host->mrq->sbc);
1050
1051         /*
1052          * We need to be one of these interrupts to be considered worth
1053          * handling. Note that we tag on any latent IRQs postponed
1054          * due to waiting for busy status.
1055          */
1056         if (!((status|host->busy_status) &
1057               (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058                 return;
1059
1060         /*
1061          * ST Micro variant: handle busy detection.
1062          */
1063         if (host->variant->busy_detect) {
1064                 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066                 /* We are busy with a command, return */
1067                 if (host->busy_status &&
1068                     (status & host->variant->busy_detect_flag))
1069                         return;
1070
1071                 /*
1072                  * We were not busy, but we now got a busy response on
1073                  * something that was not an error, and we double-check
1074                  * that the special busy status bit is still set before
1075                  * proceeding.
1076                  */
1077                 if (!host->busy_status && busy_resp &&
1078                     !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079                     (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081                         /* Clear the busy start IRQ */
1082                         writel(host->variant->busy_detect_mask,
1083                                host->base + MMCICLEAR);
1084
1085                         /* Unmask the busy end IRQ */
1086                         writel(readl(base + MMCIMASK0) |
1087                                host->variant->busy_detect_mask,
1088                                base + MMCIMASK0);
1089                         /*
1090                          * Now cache the last response status code (until
1091                          * the busy bit goes low), and return.
1092                          */
1093                         host->busy_status =
1094                                 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095                         return;
1096                 }
1097
1098                 /*
1099                  * At this point we are not busy with a command, we have
1100                  * not received a new busy request, clear and mask the busy
1101                  * end IRQ and fall through to process the IRQ.
1102                  */
1103                 if (host->busy_status) {
1104
1105                         writel(host->variant->busy_detect_mask,
1106                                host->base + MMCICLEAR);
1107
1108                         writel(readl(base + MMCIMASK0) &
1109                                ~host->variant->busy_detect_mask,
1110                                base + MMCIMASK0);
1111                         host->busy_status = 0;
1112                 }
1113         }
1114
1115         host->cmd = NULL;
1116
1117         if (status & MCI_CMDTIMEOUT) {
1118                 cmd->error = -ETIMEDOUT;
1119         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120                 cmd->error = -EILSEQ;
1121         } else {
1122                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126         }
1127
1128         if ((!sbc && !cmd->data) || cmd->error) {
1129                 if (host->data) {
1130                         /* Terminate the DMA transfer */
1131                         if (dma_inprogress(host)) {
1132                                 mmci_dma_data_error(host);
1133                                 mmci_dma_unmap(host, host->data);
1134                         }
1135                         mmci_stop_data(host);
1136                 }
1137                 mmci_request_end(host, host->mrq);
1138         } else if (sbc) {
1139                 mmci_start_command(host, host->mrq->cmd, 0);
1140         } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141                 mmci_start_data(host, cmd->data);
1142         }
1143 }
1144
1145 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146 {
1147         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148 }
1149
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151 {
1152         /*
1153          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154          * from the fifo range should be used
1155          */
1156         if (status & MCI_RXFIFOHALFFULL)
1157                 return host->variant->fifohalfsize;
1158         else if (status & MCI_RXDATAAVLBL)
1159                 return 4;
1160
1161         return 0;
1162 }
1163
1164 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165 {
1166         void __iomem *base = host->base;
1167         char *ptr = buffer;
1168         u32 status = readl(host->base + MMCISTATUS);
1169         int host_remain = host->size;
1170
1171         do {
1172                 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174                 if (count > remain)
1175                         count = remain;
1176
1177                 if (count <= 0)
1178                         break;
1179
1180                 /*
1181                  * SDIO especially may want to send something that is
1182                  * not divisible by 4 (as opposed to card sectors
1183                  * etc). Therefore make sure to always read the last bytes
1184                  * while only doing full 32-bit reads towards the FIFO.
1185                  */
1186                 if (unlikely(count & 0x3)) {
1187                         if (count < 4) {
1188                                 unsigned char buf[4];
1189                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1190                                 memcpy(ptr, buf, count);
1191                         } else {
1192                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193                                 count &= ~0x3;
1194                         }
1195                 } else {
1196                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197                 }
1198
1199                 ptr += count;
1200                 remain -= count;
1201                 host_remain -= count;
1202
1203                 if (remain == 0)
1204                         break;
1205
1206                 status = readl(base + MMCISTATUS);
1207         } while (status & MCI_RXDATAAVLBL);
1208
1209         return ptr - buffer;
1210 }
1211
1212 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213 {
1214         struct variant_data *variant = host->variant;
1215         void __iomem *base = host->base;
1216         char *ptr = buffer;
1217
1218         do {
1219                 unsigned int count, maxcnt;
1220
1221                 maxcnt = status & MCI_TXFIFOEMPTY ?
1222                          variant->fifosize : variant->fifohalfsize;
1223                 count = min(remain, maxcnt);
1224
1225                 /*
1226                  * SDIO especially may want to send something that is
1227                  * not divisible by 4 (as opposed to card sectors
1228                  * etc), and the FIFO only accept full 32-bit writes.
1229                  * So compensate by adding +3 on the count, a single
1230                  * byte become a 32bit write, 7 bytes will be two
1231                  * 32bit writes etc.
1232                  */
1233                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235                 ptr += count;
1236                 remain -= count;
1237
1238                 if (remain == 0)
1239                         break;
1240
1241                 status = readl(base + MMCISTATUS);
1242         } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244         return ptr - buffer;
1245 }
1246
1247 /*
1248  * PIO data transfer IRQ handler.
1249  */
1250 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251 {
1252         struct mmci_host *host = dev_id;
1253         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254         struct variant_data *variant = host->variant;
1255         void __iomem *base = host->base;
1256         unsigned long flags;
1257         u32 status;
1258
1259         status = readl(base + MMCISTATUS);
1260
1261         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263         local_irq_save(flags);
1264
1265         do {
1266                 unsigned int remain, len;
1267                 char *buffer;
1268
1269                 /*
1270                  * For write, we only need to test the half-empty flag
1271                  * here - if the FIFO is completely empty, then by
1272                  * definition it is more than half empty.
1273                  *
1274                  * For read, check for data available.
1275                  */
1276                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277                         break;
1278
1279                 if (!sg_miter_next(sg_miter))
1280                         break;
1281
1282                 buffer = sg_miter->addr;
1283                 remain = sg_miter->length;
1284
1285                 len = 0;
1286                 if (status & MCI_RXACTIVE)
1287                         len = mmci_pio_read(host, buffer, remain);
1288                 if (status & MCI_TXACTIVE)
1289                         len = mmci_pio_write(host, buffer, remain, status);
1290
1291                 sg_miter->consumed = len;
1292
1293                 host->size -= len;
1294                 remain -= len;
1295
1296                 if (remain)
1297                         break;
1298
1299                 status = readl(base + MMCISTATUS);
1300         } while (1);
1301
1302         sg_miter_stop(sg_miter);
1303
1304         local_irq_restore(flags);
1305
1306         /*
1307          * If we have less than the fifo 'half-full' threshold to transfer,
1308          * trigger a PIO interrupt as soon as any data is available.
1309          */
1310         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313         /*
1314          * If we run out of data, disable the data IRQs; this
1315          * prevents a race where the FIFO becomes empty before
1316          * the chip itself has disabled the data path, and
1317          * stops us racing with our data end IRQ.
1318          */
1319         if (host->size == 0) {
1320                 mmci_set_mask1(host, 0);
1321                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322         }
1323
1324         return IRQ_HANDLED;
1325 }
1326
1327 /*
1328  * Handle completion of command and data transfers.
1329  */
1330 static irqreturn_t mmci_irq(int irq, void *dev_id)
1331 {
1332         struct mmci_host *host = dev_id;
1333         u32 status;
1334         int ret = 0;
1335
1336         spin_lock(&host->lock);
1337
1338         do {
1339                 status = readl(host->base + MMCISTATUS);
1340
1341                 if (host->singleirq) {
1342                         if (status & host->mask1_reg)
1343                                 mmci_pio_irq(irq, dev_id);
1344
1345                         status &= ~MCI_IRQ1MASK;
1346                 }
1347
1348                 /*
1349                  * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350                  * enabled) in mmci_cmd_irq() function where ST Micro busy
1351                  * detection variant is handled. Considering the HW seems to be
1352                  * triggering the IRQ on both edges while monitoring DAT0 for
1353                  * busy completion and that same status bit is used to monitor
1354                  * start and end of busy detection, special care must be taken
1355                  * to make sure that both start and end interrupts are always
1356                  * cleared one after the other.
1357                  */
1358                 status &= readl(host->base + MMCIMASK0);
1359                 if (host->variant->busy_detect)
1360                         writel(status & ~host->variant->busy_detect_mask,
1361                                host->base + MMCICLEAR);
1362                 else
1363                         writel(status, host->base + MMCICLEAR);
1364
1365                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367                 if (host->variant->reversed_irq_handling) {
1368                         mmci_data_irq(host, host->data, status);
1369                         mmci_cmd_irq(host, host->cmd, status);
1370                 } else {
1371                         mmci_cmd_irq(host, host->cmd, status);
1372                         mmci_data_irq(host, host->data, status);
1373                 }
1374
1375                 /*
1376                  * Don't poll for busy completion in irq context.
1377                  */
1378                 if (host->variant->busy_detect && host->busy_status)
1379                         status &= ~host->variant->busy_detect_flag;
1380
1381                 ret = 1;
1382         } while (status);
1383
1384         spin_unlock(&host->lock);
1385
1386         return IRQ_RETVAL(ret);
1387 }
1388
1389 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390 {
1391         struct mmci_host *host = mmc_priv(mmc);
1392         unsigned long flags;
1393
1394         WARN_ON(host->mrq != NULL);
1395
1396         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397         if (mrq->cmd->error) {
1398                 mmc_request_done(mmc, mrq);
1399                 return;
1400         }
1401
1402         spin_lock_irqsave(&host->lock, flags);
1403
1404         host->mrq = mrq;
1405
1406         if (mrq->data)
1407                 mmci_get_next_data(host, mrq->data);
1408
1409         if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410                 mmci_start_data(host, mrq->data);
1411
1412         if (mrq->sbc)
1413                 mmci_start_command(host, mrq->sbc, 0);
1414         else
1415                 mmci_start_command(host, mrq->cmd, 0);
1416
1417         spin_unlock_irqrestore(&host->lock, flags);
1418 }
1419
1420 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421 {
1422         struct mmci_host *host = mmc_priv(mmc);
1423         struct variant_data *variant = host->variant;
1424         u32 pwr = 0;
1425         unsigned long flags;
1426         int ret;
1427
1428         if (host->plat->ios_handler &&
1429                 host->plat->ios_handler(mmc_dev(mmc), ios))
1430                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432         switch (ios->power_mode) {
1433         case MMC_POWER_OFF:
1434                 if (!IS_ERR(mmc->supply.vmmc))
1435                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438                         regulator_disable(mmc->supply.vqmmc);
1439                         host->vqmmc_enabled = false;
1440                 }
1441
1442                 break;
1443         case MMC_POWER_UP:
1444                 if (!IS_ERR(mmc->supply.vmmc))
1445                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447                 /*
1448                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449                  * and instead uses MCI_PWR_ON so apply whatever value is
1450                  * configured in the variant data.
1451                  */
1452                 pwr |= variant->pwrreg_powerup;
1453
1454                 break;
1455         case MMC_POWER_ON:
1456                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457                         ret = regulator_enable(mmc->supply.vqmmc);
1458                         if (ret < 0)
1459                                 dev_err(mmc_dev(mmc),
1460                                         "failed to enable vqmmc regulator\n");
1461                         else
1462                                 host->vqmmc_enabled = true;
1463                 }
1464
1465                 pwr |= MCI_PWR_ON;
1466                 break;
1467         }
1468
1469         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470                 /*
1471                  * The ST Micro variant has some additional bits
1472                  * indicating signal direction for the signals in
1473                  * the SD/MMC bus and feedback-clock usage.
1474                  */
1475                 pwr |= host->pwr_reg_add;
1476
1477                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478                         pwr &= ~MCI_ST_DATA74DIREN;
1479                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480                         pwr &= (~MCI_ST_DATA74DIREN &
1481                                 ~MCI_ST_DATA31DIREN &
1482                                 ~MCI_ST_DATA2DIREN);
1483         }
1484
1485         if (variant->opendrain) {
1486                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487                         pwr |= variant->opendrain;
1488         } else {
1489                 /*
1490                  * If the variant cannot configure the pads by its own, then we
1491                  * expect the pinctrl to be able to do that for us
1492                  */
1493                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495                 else
1496                         pinctrl_select_state(host->pinctrl, host->pins_default);
1497         }
1498
1499         /*
1500          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501          * gating the clock, the MCI_PWR_ON bit is cleared.
1502          */
1503         if (!ios->clock && variant->pwrreg_clkgate)
1504                 pwr &= ~MCI_PWR_ON;
1505
1506         if (host->variant->explicit_mclk_control &&
1507             ios->clock != host->clock_cache) {
1508                 ret = clk_set_rate(host->clk, ios->clock);
1509                 if (ret < 0)
1510                         dev_err(mmc_dev(host->mmc),
1511                                 "Error setting clock rate (%d)\n", ret);
1512                 else
1513                         host->mclk = clk_get_rate(host->clk);
1514         }
1515         host->clock_cache = ios->clock;
1516
1517         spin_lock_irqsave(&host->lock, flags);
1518
1519         mmci_set_clkreg(host, ios->clock);
1520         mmci_write_pwrreg(host, pwr);
1521         mmci_reg_delay(host);
1522
1523         spin_unlock_irqrestore(&host->lock, flags);
1524 }
1525
1526 static int mmci_get_cd(struct mmc_host *mmc)
1527 {
1528         struct mmci_host *host = mmc_priv(mmc);
1529         struct mmci_platform_data *plat = host->plat;
1530         unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532         if (status == -ENOSYS) {
1533                 if (!plat->status)
1534                         return 1; /* Assume always present */
1535
1536                 status = plat->status(mmc_dev(host->mmc));
1537         }
1538         return status;
1539 }
1540
1541 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542 {
1543         int ret = 0;
1544
1545         if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547                 switch (ios->signal_voltage) {
1548                 case MMC_SIGNAL_VOLTAGE_330:
1549                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1550                                                 2700000, 3600000);
1551                         break;
1552                 case MMC_SIGNAL_VOLTAGE_180:
1553                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1554                                                 1700000, 1950000);
1555                         break;
1556                 case MMC_SIGNAL_VOLTAGE_120:
1557                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1558                                                 1100000, 1300000);
1559                         break;
1560                 }
1561
1562                 if (ret)
1563                         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564         }
1565
1566         return ret;
1567 }
1568
1569 static struct mmc_host_ops mmci_ops = {
1570         .request        = mmci_request,
1571         .pre_req        = mmci_pre_request,
1572         .post_req       = mmci_post_request,
1573         .set_ios        = mmci_set_ios,
1574         .get_ro         = mmc_gpio_get_ro,
1575         .get_cd         = mmci_get_cd,
1576         .start_signal_voltage_switch = mmci_sig_volt_switch,
1577 };
1578
1579 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580 {
1581         struct mmci_host *host = mmc_priv(mmc);
1582         int ret = mmc_of_parse(mmc);
1583
1584         if (ret)
1585                 return ret;
1586
1587         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605         return 0;
1606 }
1607
1608 static int mmci_probe(struct amba_device *dev,
1609         const struct amba_id *id)
1610 {
1611         struct mmci_platform_data *plat = dev->dev.platform_data;
1612         struct device_node *np = dev->dev.of_node;
1613         struct variant_data *variant = id->data;
1614         struct mmci_host *host;
1615         struct mmc_host *mmc;
1616         int ret;
1617
1618         /* Must have platform data or Device Tree. */
1619         if (!plat && !np) {
1620                 dev_err(&dev->dev, "No plat data or DT found\n");
1621                 return -EINVAL;
1622         }
1623
1624         if (!plat) {
1625                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626                 if (!plat)
1627                         return -ENOMEM;
1628         }
1629
1630         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631         if (!mmc)
1632                 return -ENOMEM;
1633
1634         ret = mmci_of_parse(np, mmc);
1635         if (ret)
1636                 goto host_free;
1637
1638         host = mmc_priv(mmc);
1639         host->mmc = mmc;
1640
1641         /*
1642          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643          * pins can be set accordingly using pinctrl
1644          */
1645         if (!variant->opendrain) {
1646                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647                 if (IS_ERR(host->pinctrl)) {
1648                         dev_err(&dev->dev, "failed to get pinctrl");
1649                         goto host_free;
1650                 }
1651
1652                 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1653                                                           PINCTRL_STATE_DEFAULT);
1654                 if (IS_ERR(host->pins_default)) {
1655                         dev_err(mmc_dev(mmc), "Can't select default pins\n");
1656                         goto host_free;
1657                 }
1658
1659                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1660                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1661                 if (IS_ERR(host->pins_opendrain)) {
1662                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1663                         goto host_free;
1664                 }
1665         }
1666
1667         host->hw_designer = amba_manf(dev);
1668         host->hw_revision = amba_rev(dev);
1669         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1670         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1671
1672         host->clk = devm_clk_get(&dev->dev, NULL);
1673         if (IS_ERR(host->clk)) {
1674                 ret = PTR_ERR(host->clk);
1675                 goto host_free;
1676         }
1677
1678         ret = clk_prepare_enable(host->clk);
1679         if (ret)
1680                 goto host_free;
1681
1682         if (variant->qcom_fifo)
1683                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1684         else
1685                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1686
1687         host->plat = plat;
1688         host->variant = variant;
1689         host->mclk = clk_get_rate(host->clk);
1690         /*
1691          * According to the spec, mclk is max 100 MHz,
1692          * so we try to adjust the clock down to this,
1693          * (if possible).
1694          */
1695         if (host->mclk > variant->f_max) {
1696                 ret = clk_set_rate(host->clk, variant->f_max);
1697                 if (ret < 0)
1698                         goto clk_disable;
1699                 host->mclk = clk_get_rate(host->clk);
1700                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1701                         host->mclk);
1702         }
1703
1704         host->phybase = dev->res.start;
1705         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1706         if (IS_ERR(host->base)) {
1707                 ret = PTR_ERR(host->base);
1708                 goto clk_disable;
1709         }
1710
1711         /*
1712          * The ARM and ST versions of the block have slightly different
1713          * clock divider equations which means that the minimum divider
1714          * differs too.
1715          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1716          */
1717         if (variant->st_clkdiv)
1718                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1719         else if (variant->explicit_mclk_control)
1720                 mmc->f_min = clk_round_rate(host->clk, 100000);
1721         else
1722                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1723         /*
1724          * If no maximum operating frequency is supplied, fall back to use
1725          * the module parameter, which has a (low) default value in case it
1726          * is not specified. Either value must not exceed the clock rate into
1727          * the block, of course.
1728          */
1729         if (mmc->f_max)
1730                 mmc->f_max = variant->explicit_mclk_control ?
1731                                 min(variant->f_max, mmc->f_max) :
1732                                 min(host->mclk, mmc->f_max);
1733         else
1734                 mmc->f_max = variant->explicit_mclk_control ?
1735                                 fmax : min(host->mclk, fmax);
1736
1737
1738         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1739
1740         /* Get regulators and the supported OCR mask */
1741         ret = mmc_regulator_get_supply(mmc);
1742         if (ret)
1743                 goto clk_disable;
1744
1745         if (!mmc->ocr_avail)
1746                 mmc->ocr_avail = plat->ocr_mask;
1747         else if (plat->ocr_mask)
1748                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1749
1750         /* DT takes precedence over platform data. */
1751         if (!np) {
1752                 if (!plat->cd_invert)
1753                         mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1754                 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1755         }
1756
1757         /* We support these capabilities. */
1758         mmc->caps |= MMC_CAP_CMD23;
1759
1760         /*
1761          * Enable busy detection.
1762          */
1763         if (variant->busy_detect) {
1764                 mmci_ops.card_busy = mmci_card_busy;
1765                 /*
1766                  * Not all variants have a flag to enable busy detection
1767                  * in the DPSM, but if they do, set it here.
1768                  */
1769                 if (variant->busy_dpsm_flag)
1770                         mmci_write_datactrlreg(host,
1771                                                host->variant->busy_dpsm_flag);
1772                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1773                 mmc->max_busy_timeout = 0;
1774         }
1775
1776         mmc->ops = &mmci_ops;
1777
1778         /* We support these PM capabilities. */
1779         mmc->pm_caps |= MMC_PM_KEEP_POWER;
1780
1781         /*
1782          * We can do SGIO
1783          */
1784         mmc->max_segs = NR_SG;
1785
1786         /*
1787          * Since only a certain number of bits are valid in the data length
1788          * register, we must ensure that we don't exceed 2^num-1 bytes in a
1789          * single request.
1790          */
1791         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1792
1793         /*
1794          * Set the maximum segment size.  Since we aren't doing DMA
1795          * (yet) we are only limited by the data length register.
1796          */
1797         mmc->max_seg_size = mmc->max_req_size;
1798
1799         /*
1800          * Block size can be up to 2048 bytes, but must be a power of two.
1801          */
1802         mmc->max_blk_size = 1 << 11;
1803
1804         /*
1805          * Limit the number of blocks transferred so that we don't overflow
1806          * the maximum request size.
1807          */
1808         mmc->max_blk_count = mmc->max_req_size >> 11;
1809
1810         spin_lock_init(&host->lock);
1811
1812         writel(0, host->base + MMCIMASK0);
1813
1814         if (variant->mmcimask1)
1815                 writel(0, host->base + MMCIMASK1);
1816
1817         writel(0xfff, host->base + MMCICLEAR);
1818
1819         /*
1820          * If:
1821          * - not using DT but using a descriptor table, or
1822          * - using a table of descriptors ALONGSIDE DT, or
1823          * look up these descriptors named "cd" and "wp" right here, fail
1824          * silently of these do not exist and proceed to try platform data
1825          */
1826         if (!np) {
1827                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1828                 if (ret < 0) {
1829                         if (ret == -EPROBE_DEFER)
1830                                 goto clk_disable;
1831                         else if (gpio_is_valid(plat->gpio_cd)) {
1832                                 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1833                                 if (ret)
1834                                         goto clk_disable;
1835                         }
1836                 }
1837
1838                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1839                 if (ret < 0) {
1840                         if (ret == -EPROBE_DEFER)
1841                                 goto clk_disable;
1842                         else if (gpio_is_valid(plat->gpio_wp)) {
1843                                 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1844                                 if (ret)
1845                                         goto clk_disable;
1846                         }
1847                 }
1848         }
1849
1850         ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1851                         DRIVER_NAME " (cmd)", host);
1852         if (ret)
1853                 goto clk_disable;
1854
1855         if (!dev->irq[1])
1856                 host->singleirq = true;
1857         else {
1858                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1859                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1860                 if (ret)
1861                         goto clk_disable;
1862         }
1863
1864         writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1865
1866         amba_set_drvdata(dev, mmc);
1867
1868         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1869                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1870                  amba_rev(dev), (unsigned long long)dev->res.start,
1871                  dev->irq[0], dev->irq[1]);
1872
1873         mmci_dma_setup(host);
1874
1875         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1876         pm_runtime_use_autosuspend(&dev->dev);
1877
1878         mmc_add_host(mmc);
1879
1880         pm_runtime_put(&dev->dev);
1881         return 0;
1882
1883  clk_disable:
1884         clk_disable_unprepare(host->clk);
1885  host_free:
1886         mmc_free_host(mmc);
1887         return ret;
1888 }
1889
1890 static int mmci_remove(struct amba_device *dev)
1891 {
1892         struct mmc_host *mmc = amba_get_drvdata(dev);
1893
1894         if (mmc) {
1895                 struct mmci_host *host = mmc_priv(mmc);
1896                 struct variant_data *variant = host->variant;
1897
1898                 /*
1899                  * Undo pm_runtime_put() in probe.  We use the _sync
1900                  * version here so that we can access the primecell.
1901                  */
1902                 pm_runtime_get_sync(&dev->dev);
1903
1904                 mmc_remove_host(mmc);
1905
1906                 writel(0, host->base + MMCIMASK0);
1907
1908                 if (variant->mmcimask1)
1909                         writel(0, host->base + MMCIMASK1);
1910
1911                 writel(0, host->base + MMCICOMMAND);
1912                 writel(0, host->base + MMCIDATACTRL);
1913
1914                 mmci_dma_release(host);
1915                 clk_disable_unprepare(host->clk);
1916                 mmc_free_host(mmc);
1917         }
1918
1919         return 0;
1920 }
1921
1922 #ifdef CONFIG_PM
1923 static void mmci_save(struct mmci_host *host)
1924 {
1925         unsigned long flags;
1926
1927         spin_lock_irqsave(&host->lock, flags);
1928
1929         writel(0, host->base + MMCIMASK0);
1930         if (host->variant->pwrreg_nopower) {
1931                 writel(0, host->base + MMCIDATACTRL);
1932                 writel(0, host->base + MMCIPOWER);
1933                 writel(0, host->base + MMCICLOCK);
1934         }
1935         mmci_reg_delay(host);
1936
1937         spin_unlock_irqrestore(&host->lock, flags);
1938 }
1939
1940 static void mmci_restore(struct mmci_host *host)
1941 {
1942         unsigned long flags;
1943
1944         spin_lock_irqsave(&host->lock, flags);
1945
1946         if (host->variant->pwrreg_nopower) {
1947                 writel(host->clk_reg, host->base + MMCICLOCK);
1948                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1949                 writel(host->pwr_reg, host->base + MMCIPOWER);
1950         }
1951         writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1952         mmci_reg_delay(host);
1953
1954         spin_unlock_irqrestore(&host->lock, flags);
1955 }
1956
1957 static int mmci_runtime_suspend(struct device *dev)
1958 {
1959         struct amba_device *adev = to_amba_device(dev);
1960         struct mmc_host *mmc = amba_get_drvdata(adev);
1961
1962         if (mmc) {
1963                 struct mmci_host *host = mmc_priv(mmc);
1964                 pinctrl_pm_select_sleep_state(dev);
1965                 mmci_save(host);
1966                 clk_disable_unprepare(host->clk);
1967         }
1968
1969         return 0;
1970 }
1971
1972 static int mmci_runtime_resume(struct device *dev)
1973 {
1974         struct amba_device *adev = to_amba_device(dev);
1975         struct mmc_host *mmc = amba_get_drvdata(adev);
1976
1977         if (mmc) {
1978                 struct mmci_host *host = mmc_priv(mmc);
1979                 clk_prepare_enable(host->clk);
1980                 mmci_restore(host);
1981                 pinctrl_pm_select_default_state(dev);
1982         }
1983
1984         return 0;
1985 }
1986 #endif
1987
1988 static const struct dev_pm_ops mmci_dev_pm_ops = {
1989         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1990                                 pm_runtime_force_resume)
1991         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1992 };
1993
1994 static const struct amba_id mmci_ids[] = {
1995         {
1996                 .id     = 0x00041180,
1997                 .mask   = 0xff0fffff,
1998                 .data   = &variant_arm,
1999         },
2000         {
2001                 .id     = 0x01041180,
2002                 .mask   = 0xff0fffff,
2003                 .data   = &variant_arm_extended_fifo,
2004         },
2005         {
2006                 .id     = 0x02041180,
2007                 .mask   = 0xff0fffff,
2008                 .data   = &variant_arm_extended_fifo_hwfc,
2009         },
2010         {
2011                 .id     = 0x00041181,
2012                 .mask   = 0x000fffff,
2013                 .data   = &variant_arm,
2014         },
2015         /* ST Micro variants */
2016         {
2017                 .id     = 0x00180180,
2018                 .mask   = 0x00ffffff,
2019                 .data   = &variant_u300,
2020         },
2021         {
2022                 .id     = 0x10180180,
2023                 .mask   = 0xf0ffffff,
2024                 .data   = &variant_nomadik,
2025         },
2026         {
2027                 .id     = 0x00280180,
2028                 .mask   = 0x00ffffff,
2029                 .data   = &variant_nomadik,
2030         },
2031         {
2032                 .id     = 0x00480180,
2033                 .mask   = 0xf0ffffff,
2034                 .data   = &variant_ux500,
2035         },
2036         {
2037                 .id     = 0x10480180,
2038                 .mask   = 0xf0ffffff,
2039                 .data   = &variant_ux500v2,
2040         },
2041         {
2042                 .id     = 0x00880180,
2043                 .mask   = 0x00ffffff,
2044                 .data   = &variant_stm32,
2045         },
2046         /* Qualcomm variants */
2047         {
2048                 .id     = 0x00051180,
2049                 .mask   = 0x000fffff,
2050                 .data   = &variant_qcom,
2051         },
2052         { 0, 0 },
2053 };
2054
2055 MODULE_DEVICE_TABLE(amba, mmci_ids);
2056
2057 static struct amba_driver mmci_driver = {
2058         .drv            = {
2059                 .name   = DRIVER_NAME,
2060                 .pm     = &mmci_dev_pm_ops,
2061         },
2062         .probe          = mmci_probe,
2063         .remove         = mmci_remove,
2064         .id_table       = mmci_ids,
2065 };
2066
2067 module_amba_driver(mmci_driver);
2068
2069 module_param(fmax, uint, 0444);
2070
2071 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2072 MODULE_LICENSE("GPL");