2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
65 #define DESC_RING_BUF_SZ PAGE_SIZE
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
72 u32 des1; /* Reserved */
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
79 u32 des3; /* Reserved */
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
102 __le32 des2; /* buffer 1 physical address */
104 __le32 des3; /* buffer 2 physical address */
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
146 spin_unlock_bh(&slot->host->lock);
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
153 return single_open(file, dw_mci_req_show, inode->i_private);
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
161 .release = single_release,
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
166 struct dw_mci *host = s->private;
168 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
180 return single_open(file, dw_mci_regs_show, inode->i_private);
183 static const struct file_operations dw_mci_regs_fops = {
184 .owner = THIS_MODULE,
185 .open = dw_mci_regs_open,
188 .release = single_release,
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
193 struct mmc_host *mmc = slot->mmc;
194 struct dw_mci *host = slot->host;
198 root = mmc->debugfs_root;
202 node = debugfs_create_file("regs", S_IRUSR, root, host,
207 node = debugfs_create_file("req", S_IRUSR, root, slot,
212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
216 node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 (u32 *)&host->pending_events);
221 node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 (u32 *)&host->completed_events);
229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
231 #endif /* defined(CONFIG_DEBUG_FS) */
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
237 ctrl = mci_readl(host, CTRL);
239 mci_writel(host, CTRL, ctrl);
241 /* wait till resets clear */
242 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
244 1, 500 * USEC_PER_MSEC)) {
246 "Timeout resetting block (ctrl reset %#x)\n",
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
259 * Databook says that before issuing a new data transfer command
260 * we need to check to see if the card is busy. Data transfer commands
261 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
263 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
266 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
270 !(status & SDMMC_STATUS_BUSY),
271 10, 500 * USEC_PER_MSEC))
272 dev_err(host->dev, "Busy; trying anyway\n");
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
278 struct dw_mci *host = slot->host;
279 unsigned int cmd_status = 0;
281 mci_writel(host, CMDARG, arg);
282 wmb(); /* drain writebuffer */
283 dw_mci_wait_while_busy(host, cmd);
284 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
286 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 !(cmd_status & SDMMC_CMD_START),
288 1, 500 * USEC_PER_MSEC))
289 dev_err(&slot->mmc->class_dev,
290 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 cmd, arg, cmd_status);
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
296 struct dw_mci_slot *slot = mmc_priv(mmc);
297 struct dw_mci *host = slot->host;
300 cmd->error = -EINPROGRESS;
303 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 cmd->opcode == MMC_GO_IDLE_STATE ||
305 cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 (cmd->opcode == SD_IO_RW_DIRECT &&
307 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 cmdr |= SDMMC_CMD_STOP;
309 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
312 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
315 /* Special bit makes CMD11 not die */
316 cmdr |= SDMMC_CMD_VOLT_SWITCH;
318 /* Change state to continue to handle CMD11 weirdness */
319 WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 slot->host->state = STATE_SENDING_CMD11;
323 * We need to disable low power mode (automatic clock stop)
324 * while doing voltage switch so we don't confuse the card,
325 * since stopping the clock is a specific part of the UHS
326 * voltage change dance.
328 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 * ever called with a non-zero clock. That shouldn't happen
331 * until the voltage change is all done.
333 clk_en_a = mci_readl(host, CLKENA);
334 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 mci_writel(host, CLKENA, clk_en_a);
336 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 SDMMC_CMD_PRV_DAT_WAIT, 0);
340 if (cmd->flags & MMC_RSP_PRESENT) {
341 /* We expect a response, so set this bit */
342 cmdr |= SDMMC_CMD_RESP_EXP;
343 if (cmd->flags & MMC_RSP_136)
344 cmdr |= SDMMC_CMD_RESP_LONG;
347 if (cmd->flags & MMC_RSP_CRC)
348 cmdr |= SDMMC_CMD_RESP_CRC;
351 cmdr |= SDMMC_CMD_DAT_EXP;
352 if (cmd->data->flags & MMC_DATA_WRITE)
353 cmdr |= SDMMC_CMD_DAT_WR;
356 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 cmdr |= SDMMC_CMD_USE_HOLD_REG;
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
364 struct mmc_command *stop;
370 stop = &host->stop_abort;
372 memset(stop, 0, sizeof(struct mmc_command));
374 if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 cmdr == MMC_WRITE_BLOCK ||
377 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 cmdr == MMC_SEND_TUNING_BLOCK ||
379 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 stop->opcode = MMC_STOP_TRANSMISSION;
382 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 } else if (cmdr == SD_IO_RW_EXTENDED) {
384 stop->opcode = SD_IO_RW_DIRECT;
385 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 ((cmd->arg >> 28) & 0x7);
387 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
392 cmdr = stop->opcode | SDMMC_CMD_STOP |
393 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
395 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->cur_slot->flags))
396 cmdr |= SDMMC_CMD_USE_HOLD_REG;
401 static void dw_mci_start_command(struct dw_mci *host,
402 struct mmc_command *cmd, u32 cmd_flags)
406 "start command: ARGR=0x%08x CMDR=0x%08x\n",
407 cmd->arg, cmd_flags);
409 mci_writel(host, CMDARG, cmd->arg);
410 wmb(); /* drain writebuffer */
411 dw_mci_wait_while_busy(host, cmd_flags);
413 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418 struct mmc_command *stop = &host->stop_abort;
420 dw_mci_start_command(host, stop, host->stop_cmdr);
423 /* DMA interface functions */
424 static void dw_mci_stop_dma(struct dw_mci *host)
426 if (host->using_dma) {
427 host->dma_ops->stop(host);
428 host->dma_ops->cleanup(host);
431 /* Data transfer was stopped by the interrupt handler */
432 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
435 static void dw_mci_dma_cleanup(struct dw_mci *host)
437 struct mmc_data *data = host->data;
439 if (data && data->host_cookie == COOKIE_MAPPED) {
440 dma_unmap_sg(host->dev,
443 mmc_get_dma_dir(data));
444 data->host_cookie = COOKIE_UNMAPPED;
448 static void dw_mci_idmac_reset(struct dw_mci *host)
450 u32 bmod = mci_readl(host, BMOD);
451 /* Software reset of DMA */
452 bmod |= SDMMC_IDMAC_SWRESET;
453 mci_writel(host, BMOD, bmod);
456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
460 /* Disable and reset the IDMAC interface */
461 temp = mci_readl(host, CTRL);
462 temp &= ~SDMMC_CTRL_USE_IDMAC;
463 temp |= SDMMC_CTRL_DMA_RESET;
464 mci_writel(host, CTRL, temp);
466 /* Stop the IDMAC running */
467 temp = mci_readl(host, BMOD);
468 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 temp |= SDMMC_IDMAC_SWRESET;
470 mci_writel(host, BMOD, temp);
473 static void dw_mci_dmac_complete_dma(void *arg)
475 struct dw_mci *host = arg;
476 struct mmc_data *data = host->data;
478 dev_vdbg(host->dev, "DMA complete\n");
480 if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 data && (data->flags & MMC_DATA_READ))
482 /* Invalidate cache after read */
483 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
488 host->dma_ops->cleanup(host);
491 * If the card was removed, data will be NULL. No point in trying to
492 * send the stop command or waiting for NBUSY in this case.
495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 tasklet_schedule(&host->tasklet);
500 static int dw_mci_idmac_init(struct dw_mci *host)
504 if (host->dma_64bit_address == 1) {
505 struct idmac_desc_64addr *p;
506 /* Number of descriptors in the ring buffer */
508 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510 /* Forward link the descriptor list */
511 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513 p->des6 = (host->sg_dma +
514 (sizeof(struct idmac_desc_64addr) *
515 (i + 1))) & 0xffffffff;
517 p->des7 = (u64)(host->sg_dma +
518 (sizeof(struct idmac_desc_64addr) *
520 /* Initialize reserved and buffer size fields to "0" */
526 /* Set the last descriptor as the end-of-ring descriptor */
527 p->des6 = host->sg_dma & 0xffffffff;
528 p->des7 = (u64)host->sg_dma >> 32;
529 p->des0 = IDMAC_DES0_ER;
532 struct idmac_desc *p;
533 /* Number of descriptors in the ring buffer */
535 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
537 /* Forward link the descriptor list */
538 for (i = 0, p = host->sg_cpu;
539 i < host->ring_size - 1;
541 p->des3 = cpu_to_le32(host->sg_dma +
542 (sizeof(struct idmac_desc) * (i + 1)));
546 /* Set the last descriptor as the end-of-ring descriptor */
547 p->des3 = cpu_to_le32(host->sg_dma);
548 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
551 dw_mci_idmac_reset(host);
553 if (host->dma_64bit_address == 1) {
554 /* Mask out interrupts - get Tx & Rx complete only */
555 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
556 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
557 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
559 /* Set the descriptor base address */
560 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
561 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
564 /* Mask out interrupts - get Tx & Rx complete only */
565 mci_writel(host, IDSTS, IDMAC_INT_CLR);
566 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
567 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
569 /* Set the descriptor base address */
570 mci_writel(host, DBADDR, host->sg_dma);
576 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
577 struct mmc_data *data,
580 unsigned int desc_len;
581 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585 desc_first = desc_last = desc = host->sg_cpu;
587 for (i = 0; i < sg_len; i++) {
588 unsigned int length = sg_dma_len(&data->sg[i]);
590 u64 mem_addr = sg_dma_address(&data->sg[i]);
592 for ( ; length ; desc++) {
593 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
594 length : DW_MCI_DESC_DATA_LENGTH;
599 * Wait for the former clear OWN bit operation
600 * of IDMAC to make sure that this descriptor
601 * isn't still owned by IDMAC as IDMAC's write
602 * ops and CPU's read ops are asynchronous.
604 if (readl_poll_timeout_atomic(&desc->des0, val,
605 !(val & IDMAC_DES0_OWN),
606 10, 100 * USEC_PER_MSEC))
610 * Set the OWN bit and disable interrupts
611 * for this descriptor
613 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
619 /* Physical address to DMA to/from */
620 desc->des4 = mem_addr & 0xffffffff;
621 desc->des5 = mem_addr >> 32;
623 /* Update physical address for the next desc */
624 mem_addr += desc_len;
626 /* Save pointer to the last descriptor */
631 /* Set first descriptor */
632 desc_first->des0 |= IDMAC_DES0_FD;
634 /* Set last descriptor */
635 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
636 desc_last->des0 |= IDMAC_DES0_LD;
640 /* restore the descriptor chain as it's polluted */
641 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
642 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
643 dw_mci_idmac_init(host);
648 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
649 struct mmc_data *data,
652 unsigned int desc_len;
653 struct idmac_desc *desc_first, *desc_last, *desc;
657 desc_first = desc_last = desc = host->sg_cpu;
659 for (i = 0; i < sg_len; i++) {
660 unsigned int length = sg_dma_len(&data->sg[i]);
662 u32 mem_addr = sg_dma_address(&data->sg[i]);
664 for ( ; length ; desc++) {
665 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
666 length : DW_MCI_DESC_DATA_LENGTH;
671 * Wait for the former clear OWN bit operation
672 * of IDMAC to make sure that this descriptor
673 * isn't still owned by IDMAC as IDMAC's write
674 * ops and CPU's read ops are asynchronous.
676 if (readl_poll_timeout_atomic(&desc->des0, val,
677 IDMAC_OWN_CLR64(val),
679 100 * USEC_PER_MSEC))
683 * Set the OWN bit and disable interrupts
684 * for this descriptor
686 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
691 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
693 /* Physical address to DMA to/from */
694 desc->des2 = cpu_to_le32(mem_addr);
696 /* Update physical address for the next desc */
697 mem_addr += desc_len;
699 /* Save pointer to the last descriptor */
704 /* Set first descriptor */
705 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
707 /* Set last descriptor */
708 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
710 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714 /* restore the descriptor chain as it's polluted */
715 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
716 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
717 dw_mci_idmac_init(host);
721 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
726 if (host->dma_64bit_address == 1)
727 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
729 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
734 /* drain writebuffer */
737 /* Make sure to reset DMA in case we did PIO before this */
738 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
739 dw_mci_idmac_reset(host);
741 /* Select IDMAC interface */
742 temp = mci_readl(host, CTRL);
743 temp |= SDMMC_CTRL_USE_IDMAC;
744 mci_writel(host, CTRL, temp);
746 /* drain writebuffer */
749 /* Enable the IDMAC */
750 temp = mci_readl(host, BMOD);
751 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
752 mci_writel(host, BMOD, temp);
754 /* Start it running */
755 mci_writel(host, PLDMND, 1);
761 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
762 .init = dw_mci_idmac_init,
763 .start = dw_mci_idmac_start_dma,
764 .stop = dw_mci_idmac_stop_dma,
765 .complete = dw_mci_dmac_complete_dma,
766 .cleanup = dw_mci_dma_cleanup,
769 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
771 dmaengine_terminate_async(host->dms->ch);
774 static int dw_mci_edmac_start_dma(struct dw_mci *host,
777 struct dma_slave_config cfg;
778 struct dma_async_tx_descriptor *desc = NULL;
779 struct scatterlist *sgl = host->data->sg;
780 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
781 u32 sg_elems = host->data->sg_len;
783 u32 fifo_offset = host->fifo_reg - host->regs;
786 /* Set external dma config: burst size, burst width */
787 cfg.dst_addr = host->phy_regs + fifo_offset;
788 cfg.src_addr = cfg.dst_addr;
789 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
792 /* Match burst msize with external dma config */
793 fifoth_val = mci_readl(host, FIFOTH);
794 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
795 cfg.src_maxburst = cfg.dst_maxburst;
797 if (host->data->flags & MMC_DATA_WRITE)
798 cfg.direction = DMA_MEM_TO_DEV;
800 cfg.direction = DMA_DEV_TO_MEM;
802 ret = dmaengine_slave_config(host->dms->ch, &cfg);
804 dev_err(host->dev, "Failed to config edmac.\n");
808 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
809 sg_len, cfg.direction,
810 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
812 dev_err(host->dev, "Can't prepare slave sg.\n");
816 /* Set dw_mci_dmac_complete_dma as callback */
817 desc->callback = dw_mci_dmac_complete_dma;
818 desc->callback_param = (void *)host;
819 dmaengine_submit(desc);
821 /* Flush cache before write */
822 if (host->data->flags & MMC_DATA_WRITE)
823 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
824 sg_elems, DMA_TO_DEVICE);
826 dma_async_issue_pending(host->dms->ch);
831 static int dw_mci_edmac_init(struct dw_mci *host)
833 /* Request external dma channel */
834 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
838 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
839 if (!host->dms->ch) {
840 dev_err(host->dev, "Failed to get external DMA channel.\n");
849 static void dw_mci_edmac_exit(struct dw_mci *host)
853 dma_release_channel(host->dms->ch);
854 host->dms->ch = NULL;
861 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
862 .init = dw_mci_edmac_init,
863 .exit = dw_mci_edmac_exit,
864 .start = dw_mci_edmac_start_dma,
865 .stop = dw_mci_edmac_stop_dma,
866 .complete = dw_mci_dmac_complete_dma,
867 .cleanup = dw_mci_dma_cleanup,
870 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
871 struct mmc_data *data,
874 struct scatterlist *sg;
875 unsigned int i, sg_len;
877 if (data->host_cookie == COOKIE_PRE_MAPPED)
881 * We don't do DMA on "complex" transfers, i.e. with
882 * non-word-aligned buffers or lengths. Also, we don't bother
883 * with all the DMA setup overhead for short transfers.
885 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
891 for_each_sg(data->sg, sg, data->sg_len, i) {
892 if (sg->offset & 3 || sg->length & 3)
896 sg_len = dma_map_sg(host->dev,
899 mmc_get_dma_dir(data));
903 data->host_cookie = cookie;
908 static void dw_mci_pre_req(struct mmc_host *mmc,
909 struct mmc_request *mrq)
911 struct dw_mci_slot *slot = mmc_priv(mmc);
912 struct mmc_data *data = mrq->data;
914 if (!slot->host->use_dma || !data)
917 /* This data might be unmapped at this time */
918 data->host_cookie = COOKIE_UNMAPPED;
920 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
921 COOKIE_PRE_MAPPED) < 0)
922 data->host_cookie = COOKIE_UNMAPPED;
925 static void dw_mci_post_req(struct mmc_host *mmc,
926 struct mmc_request *mrq,
929 struct dw_mci_slot *slot = mmc_priv(mmc);
930 struct mmc_data *data = mrq->data;
932 if (!slot->host->use_dma || !data)
935 if (data->host_cookie != COOKIE_UNMAPPED)
936 dma_unmap_sg(slot->host->dev,
939 mmc_get_dma_dir(data));
940 data->host_cookie = COOKIE_UNMAPPED;
943 static int dw_mci_get_cd(struct mmc_host *mmc)
946 struct dw_mci_slot *slot = mmc_priv(mmc);
947 struct dw_mci *host = slot->host;
948 int gpio_cd = mmc_gpio_get_cd(mmc);
950 /* Use platform get_cd function, else try onboard card detect */
951 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
952 || !mmc_card_is_removable(mmc))) {
955 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
956 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
957 dev_info(&mmc->class_dev,
958 "card is polling.\n");
960 dev_info(&mmc->class_dev,
961 "card is non-removable.\n");
963 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
967 } else if (gpio_cd >= 0)
970 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
973 spin_lock_bh(&host->lock);
974 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
975 dev_dbg(&mmc->class_dev, "card is present\n");
977 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
978 dev_dbg(&mmc->class_dev, "card is not present\n");
979 spin_unlock_bh(&host->lock);
984 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
986 unsigned int blksz = data->blksz;
987 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
988 u32 fifo_width = 1 << host->data_shift;
989 u32 blksz_depth = blksz / fifo_width, fifoth_val;
990 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
991 int idx = ARRAY_SIZE(mszs) - 1;
993 /* pio should ship this scenario */
997 tx_wmark = (host->fifo_depth) / 2;
998 tx_wmark_invers = host->fifo_depth - tx_wmark;
1002 * if blksz is not a multiple of the FIFO width
1004 if (blksz % fifo_width)
1008 if (!((blksz_depth % mszs[idx]) ||
1009 (tx_wmark_invers % mszs[idx]))) {
1011 rx_wmark = mszs[idx] - 1;
1014 } while (--idx > 0);
1016 * If idx is '0', it won't be tried
1017 * Thus, initial values are uesed
1020 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1021 mci_writel(host, FIFOTH, fifoth_val);
1024 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1026 unsigned int blksz = data->blksz;
1027 u32 blksz_depth, fifo_depth;
1032 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1033 * in the FIFO region, so we really shouldn't access it).
1035 if (host->verid < DW_MMC_240A ||
1036 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1040 * Card write Threshold is introduced since 2.80a
1041 * It's used when HS400 mode is enabled.
1043 if (data->flags & MMC_DATA_WRITE &&
1044 !(host->timing != MMC_TIMING_MMC_HS400))
1047 if (data->flags & MMC_DATA_WRITE)
1048 enable = SDMMC_CARD_WR_THR_EN;
1050 enable = SDMMC_CARD_RD_THR_EN;
1052 if (host->timing != MMC_TIMING_MMC_HS200 &&
1053 host->timing != MMC_TIMING_UHS_SDR104)
1056 blksz_depth = blksz / (1 << host->data_shift);
1057 fifo_depth = host->fifo_depth;
1059 if (blksz_depth > fifo_depth)
1063 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1064 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1065 * Currently just choose blksz.
1068 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1072 mci_writel(host, CDTHRCTL, 0);
1075 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1077 unsigned long irqflags;
1081 host->using_dma = 0;
1083 /* If we don't have a channel, we can't do DMA */
1087 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1089 host->dma_ops->stop(host);
1093 host->using_dma = 1;
1095 if (host->use_dma == TRANS_MODE_IDMAC)
1097 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1098 (unsigned long)host->sg_cpu,
1099 (unsigned long)host->sg_dma,
1103 * Decide the MSIZE and RX/TX Watermark.
1104 * If current block size is same with previous size,
1105 * no need to update fifoth.
1107 if (host->prev_blksz != data->blksz)
1108 dw_mci_adjust_fifoth(host, data);
1110 /* Enable the DMA interface */
1111 temp = mci_readl(host, CTRL);
1112 temp |= SDMMC_CTRL_DMA_ENABLE;
1113 mci_writel(host, CTRL, temp);
1115 /* Disable RX/TX IRQs, let DMA handle it */
1116 spin_lock_irqsave(&host->irq_lock, irqflags);
1117 temp = mci_readl(host, INTMASK);
1118 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1119 mci_writel(host, INTMASK, temp);
1120 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1122 if (host->dma_ops->start(host, sg_len)) {
1123 host->dma_ops->stop(host);
1124 /* We can't do DMA, try PIO for this one */
1126 "%s: fall back to PIO mode for current transfer\n",
1134 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1136 unsigned long irqflags;
1137 int flags = SG_MITER_ATOMIC;
1140 data->error = -EINPROGRESS;
1142 WARN_ON(host->data);
1146 if (data->flags & MMC_DATA_READ)
1147 host->dir_status = DW_MCI_RECV_STATUS;
1149 host->dir_status = DW_MCI_SEND_STATUS;
1151 dw_mci_ctrl_thld(host, data);
1153 if (dw_mci_submit_data_dma(host, data)) {
1154 if (host->data->flags & MMC_DATA_READ)
1155 flags |= SG_MITER_TO_SG;
1157 flags |= SG_MITER_FROM_SG;
1159 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1160 host->sg = data->sg;
1161 host->part_buf_start = 0;
1162 host->part_buf_count = 0;
1164 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1166 spin_lock_irqsave(&host->irq_lock, irqflags);
1167 temp = mci_readl(host, INTMASK);
1168 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1169 mci_writel(host, INTMASK, temp);
1170 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1172 temp = mci_readl(host, CTRL);
1173 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1174 mci_writel(host, CTRL, temp);
1177 * Use the initial fifoth_val for PIO mode. If wm_algined
1178 * is set, we set watermark same as data size.
1179 * If next issued data may be transfered by DMA mode,
1180 * prev_blksz should be invalidated.
1182 if (host->wm_aligned)
1183 dw_mci_adjust_fifoth(host, data);
1185 mci_writel(host, FIFOTH, host->fifoth_val);
1186 host->prev_blksz = 0;
1189 * Keep the current block size.
1190 * It will be used to decide whether to update
1191 * fifoth register next time.
1193 host->prev_blksz = data->blksz;
1197 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1199 struct dw_mci *host = slot->host;
1200 unsigned int clock = slot->clock;
1203 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1205 /* We must continue to set bit 28 in CMD until the change is complete */
1206 if (host->state == STATE_WAITING_CMD11_DONE)
1207 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1210 mci_writel(host, CLKENA, 0);
1211 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1212 } else if (clock != host->current_speed || force_clkinit) {
1213 div = host->bus_hz / clock;
1214 if (host->bus_hz % clock && host->bus_hz > clock)
1216 * move the + 1 after the divide to prevent
1217 * over-clocking the card.
1221 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1223 if ((clock != slot->__clk_old &&
1224 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1226 /* Silent the verbose log if calling from PM context */
1228 dev_info(&slot->mmc->class_dev,
1229 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1230 slot->id, host->bus_hz, clock,
1231 div ? ((host->bus_hz / div) >> 1) :
1235 * If card is polling, display the message only
1236 * one time at boot time.
1238 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1239 slot->mmc->f_min == clock)
1240 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1244 mci_writel(host, CLKENA, 0);
1245 mci_writel(host, CLKSRC, 0);
1248 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1250 /* set clock to desired speed */
1251 mci_writel(host, CLKDIV, div);
1254 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1256 /* enable clock; only low power if no SDIO */
1257 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1258 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1259 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1260 mci_writel(host, CLKENA, clk_en_a);
1263 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1265 /* keep the last clock value that was requested from core */
1266 slot->__clk_old = clock;
1269 host->current_speed = clock;
1271 /* Set the current slot bus width */
1272 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1275 static void __dw_mci_start_request(struct dw_mci *host,
1276 struct dw_mci_slot *slot,
1277 struct mmc_command *cmd)
1279 struct mmc_request *mrq;
1280 struct mmc_data *data;
1285 host->cur_slot = slot;
1288 host->pending_events = 0;
1289 host->completed_events = 0;
1290 host->cmd_status = 0;
1291 host->data_status = 0;
1292 host->dir_status = 0;
1296 mci_writel(host, TMOUT, 0xFFFFFFFF);
1297 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1298 mci_writel(host, BLKSIZ, data->blksz);
1301 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1303 /* this is the first command, send the initialization clock */
1304 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1305 cmdflags |= SDMMC_CMD_INIT;
1308 dw_mci_submit_data(host, data);
1309 wmb(); /* drain writebuffer */
1312 dw_mci_start_command(host, cmd, cmdflags);
1314 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1315 unsigned long irqflags;
1318 * Databook says to fail after 2ms w/ no response, but evidence
1319 * shows that sometimes the cmd11 interrupt takes over 130ms.
1320 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1321 * is just about to roll over.
1323 * We do this whole thing under spinlock and only if the
1324 * command hasn't already completed (indicating the the irq
1325 * already ran so we don't want the timeout).
1327 spin_lock_irqsave(&host->irq_lock, irqflags);
1328 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1329 mod_timer(&host->cmd11_timer,
1330 jiffies + msecs_to_jiffies(500) + 1);
1331 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1334 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1337 static void dw_mci_start_request(struct dw_mci *host,
1338 struct dw_mci_slot *slot)
1340 struct mmc_request *mrq = slot->mrq;
1341 struct mmc_command *cmd;
1343 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1344 __dw_mci_start_request(host, slot, cmd);
1347 /* must be called with host->lock held */
1348 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1349 struct mmc_request *mrq)
1351 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1356 if (host->state == STATE_WAITING_CMD11_DONE) {
1357 dev_warn(&slot->mmc->class_dev,
1358 "Voltage change didn't complete\n");
1360 * this case isn't expected to happen, so we can
1361 * either crash here or just try to continue on
1362 * in the closest possible state
1364 host->state = STATE_IDLE;
1367 if (host->state == STATE_IDLE) {
1368 host->state = STATE_SENDING_CMD;
1369 dw_mci_start_request(host, slot);
1371 list_add_tail(&slot->queue_node, &host->queue);
1375 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1377 struct dw_mci_slot *slot = mmc_priv(mmc);
1378 struct dw_mci *host = slot->host;
1383 * The check for card presence and queueing of the request must be
1384 * atomic, otherwise the card could be removed in between and the
1385 * request wouldn't fail until another card was inserted.
1388 if (!dw_mci_get_cd(mmc)) {
1389 mrq->cmd->error = -ENOMEDIUM;
1390 mmc_request_done(mmc, mrq);
1394 spin_lock_bh(&host->lock);
1396 dw_mci_queue_request(host, slot, mrq);
1398 spin_unlock_bh(&host->lock);
1401 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1403 struct dw_mci_slot *slot = mmc_priv(mmc);
1404 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1408 switch (ios->bus_width) {
1409 case MMC_BUS_WIDTH_4:
1410 slot->ctype = SDMMC_CTYPE_4BIT;
1412 case MMC_BUS_WIDTH_8:
1413 slot->ctype = SDMMC_CTYPE_8BIT;
1416 /* set default 1 bit mode */
1417 slot->ctype = SDMMC_CTYPE_1BIT;
1420 regs = mci_readl(slot->host, UHS_REG);
1423 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1424 ios->timing == MMC_TIMING_UHS_DDR50 ||
1425 ios->timing == MMC_TIMING_MMC_HS400)
1426 regs |= ((0x1 << slot->id) << 16);
1428 regs &= ~((0x1 << slot->id) << 16);
1430 mci_writel(slot->host, UHS_REG, regs);
1431 slot->host->timing = ios->timing;
1434 * Use mirror of ios->clock to prevent race with mmc
1435 * core ios update when finding the minimum.
1437 slot->clock = ios->clock;
1439 if (drv_data && drv_data->set_ios)
1440 drv_data->set_ios(slot->host, ios);
1442 switch (ios->power_mode) {
1444 if (!IS_ERR(mmc->supply.vmmc)) {
1445 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1448 dev_err(slot->host->dev,
1449 "failed to enable vmmc regulator\n");
1450 /*return, if failed turn on vmmc*/
1454 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1455 regs = mci_readl(slot->host, PWREN);
1456 regs |= (1 << slot->id);
1457 mci_writel(slot->host, PWREN, regs);
1460 if (!slot->host->vqmmc_enabled) {
1461 if (!IS_ERR(mmc->supply.vqmmc)) {
1462 ret = regulator_enable(mmc->supply.vqmmc);
1464 dev_err(slot->host->dev,
1465 "failed to enable vqmmc\n");
1467 slot->host->vqmmc_enabled = true;
1470 /* Keep track so we don't reset again */
1471 slot->host->vqmmc_enabled = true;
1474 /* Reset our state machine after powering on */
1475 dw_mci_ctrl_reset(slot->host,
1476 SDMMC_CTRL_ALL_RESET_FLAGS);
1479 /* Adjust clock / bus width after power is up */
1480 dw_mci_setup_bus(slot, false);
1484 /* Turn clock off before power goes down */
1485 dw_mci_setup_bus(slot, false);
1487 if (!IS_ERR(mmc->supply.vmmc))
1488 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1490 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1491 regulator_disable(mmc->supply.vqmmc);
1492 slot->host->vqmmc_enabled = false;
1494 regs = mci_readl(slot->host, PWREN);
1495 regs &= ~(1 << slot->id);
1496 mci_writel(slot->host, PWREN, regs);
1502 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1503 slot->host->state = STATE_IDLE;
1506 static int dw_mci_card_busy(struct mmc_host *mmc)
1508 struct dw_mci_slot *slot = mmc_priv(mmc);
1512 * Check the busy bit which is low when DAT[3:0]
1513 * (the data lines) are 0000
1515 status = mci_readl(slot->host, STATUS);
1517 return !!(status & SDMMC_STATUS_BUSY);
1520 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1522 struct dw_mci_slot *slot = mmc_priv(mmc);
1523 struct dw_mci *host = slot->host;
1524 const struct dw_mci_drv_data *drv_data = host->drv_data;
1526 u32 v18 = SDMMC_UHS_18V << slot->id;
1529 if (drv_data && drv_data->switch_voltage)
1530 return drv_data->switch_voltage(mmc, ios);
1533 * Program the voltage. Note that some instances of dw_mmc may use
1534 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1535 * does no harm but you need to set the regulator directly. Try both.
1537 uhs = mci_readl(host, UHS_REG);
1538 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1543 if (!IS_ERR(mmc->supply.vqmmc)) {
1544 ret = mmc_regulator_set_vqmmc(mmc, ios);
1547 dev_dbg(&mmc->class_dev,
1548 "Regulator set error %d - %s V\n",
1549 ret, uhs & v18 ? "1.8" : "3.3");
1553 mci_writel(host, UHS_REG, uhs);
1558 static int dw_mci_get_ro(struct mmc_host *mmc)
1561 struct dw_mci_slot *slot = mmc_priv(mmc);
1562 int gpio_ro = mmc_gpio_get_ro(mmc);
1564 /* Use platform get_ro function, else try on board write protect */
1566 read_only = gpio_ro;
1569 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1571 dev_dbg(&mmc->class_dev, "card is %s\n",
1572 read_only ? "read-only" : "read-write");
1577 static void dw_mci_hw_reset(struct mmc_host *mmc)
1579 struct dw_mci_slot *slot = mmc_priv(mmc);
1580 struct dw_mci *host = slot->host;
1583 if (host->use_dma == TRANS_MODE_IDMAC)
1584 dw_mci_idmac_reset(host);
1586 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1587 SDMMC_CTRL_FIFO_RESET))
1591 * According to eMMC spec, card reset procedure:
1592 * tRstW >= 1us: RST_n pulse width
1593 * tRSCA >= 200us: RST_n to Command time
1594 * tRSTH >= 1us: RST_n high period
1596 reset = mci_readl(host, RST_N);
1597 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1598 mci_writel(host, RST_N, reset);
1600 reset |= SDMMC_RST_HWACTIVE << slot->id;
1601 mci_writel(host, RST_N, reset);
1602 usleep_range(200, 300);
1605 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1607 struct dw_mci_slot *slot = mmc_priv(mmc);
1608 struct dw_mci *host = slot->host;
1611 * Low power mode will stop the card clock when idle. According to the
1612 * description of the CLKENA register we should disable low power mode
1613 * for SDIO cards if we need SDIO interrupts to work.
1615 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1616 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1620 clk_en_a_old = mci_readl(host, CLKENA);
1622 if (card->type == MMC_TYPE_SDIO ||
1623 card->type == MMC_TYPE_SD_COMBO) {
1624 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) {
1625 pm_runtime_get_noresume(mmc->parent);
1626 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1628 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1630 if (test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) {
1631 pm_runtime_put_noidle(mmc->parent);
1632 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1634 clk_en_a = clk_en_a_old | clken_low_pwr;
1637 if (clk_en_a != clk_en_a_old) {
1638 mci_writel(host, CLKENA, clk_en_a);
1639 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1640 SDMMC_CMD_PRV_DAT_WAIT, 0);
1645 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1647 struct dw_mci_slot *slot = mmc_priv(mmc);
1648 struct dw_mci *host = slot->host;
1649 unsigned long irqflags;
1652 spin_lock_irqsave(&host->irq_lock, irqflags);
1654 /* Enable/disable Slot Specific SDIO interrupt */
1655 int_mask = mci_readl(host, INTMASK);
1657 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1659 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1660 mci_writel(host, INTMASK, int_mask);
1662 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1665 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1667 struct dw_mci_slot *slot = mmc_priv(mmc);
1668 struct dw_mci *host = slot->host;
1669 const struct dw_mci_drv_data *drv_data = host->drv_data;
1672 if (drv_data && drv_data->execute_tuning)
1673 err = drv_data->execute_tuning(slot, opcode);
1677 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1678 struct mmc_ios *ios)
1680 struct dw_mci_slot *slot = mmc_priv(mmc);
1681 struct dw_mci *host = slot->host;
1682 const struct dw_mci_drv_data *drv_data = host->drv_data;
1684 if (drv_data && drv_data->prepare_hs400_tuning)
1685 return drv_data->prepare_hs400_tuning(host, ios);
1690 static bool dw_mci_reset(struct dw_mci *host)
1692 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1697 * Resetting generates a block interrupt, hence setting
1698 * the scatter-gather pointer to NULL.
1701 sg_miter_stop(&host->sg_miter);
1706 flags |= SDMMC_CTRL_DMA_RESET;
1708 if (dw_mci_ctrl_reset(host, flags)) {
1710 * In all cases we clear the RAWINTS
1711 * register to clear any interrupts.
1713 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1715 if (!host->use_dma) {
1720 /* Wait for dma_req to be cleared */
1721 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1723 !(status & SDMMC_STATUS_DMA_REQ),
1724 1, 500 * USEC_PER_MSEC)) {
1726 "%s: Timeout waiting for dma_req to be cleared\n",
1731 /* when using DMA next we reset the fifo again */
1732 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1735 /* if the controller reset bit did clear, then set clock regs */
1736 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1738 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1744 if (host->use_dma == TRANS_MODE_IDMAC)
1745 /* It is also recommended that we reset and reprogram idmac */
1746 dw_mci_idmac_reset(host);
1751 /* After a CTRL reset we need to have CIU set clock registers */
1752 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
1757 static const struct mmc_host_ops dw_mci_ops = {
1758 .request = dw_mci_request,
1759 .pre_req = dw_mci_pre_req,
1760 .post_req = dw_mci_post_req,
1761 .set_ios = dw_mci_set_ios,
1762 .get_ro = dw_mci_get_ro,
1763 .get_cd = dw_mci_get_cd,
1764 .hw_reset = dw_mci_hw_reset,
1765 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1766 .execute_tuning = dw_mci_execute_tuning,
1767 .card_busy = dw_mci_card_busy,
1768 .start_signal_voltage_switch = dw_mci_switch_voltage,
1769 .init_card = dw_mci_init_card,
1770 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1773 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1774 __releases(&host->lock)
1775 __acquires(&host->lock)
1777 struct dw_mci_slot *slot;
1778 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1780 WARN_ON(host->cmd || host->data);
1782 host->cur_slot->mrq = NULL;
1784 if (!list_empty(&host->queue)) {
1785 slot = list_entry(host->queue.next,
1786 struct dw_mci_slot, queue_node);
1787 list_del(&slot->queue_node);
1788 dev_vdbg(host->dev, "list not empty: %s is next\n",
1789 mmc_hostname(slot->mmc));
1790 host->state = STATE_SENDING_CMD;
1791 dw_mci_start_request(host, slot);
1793 dev_vdbg(host->dev, "list empty\n");
1795 if (host->state == STATE_SENDING_CMD11)
1796 host->state = STATE_WAITING_CMD11_DONE;
1798 host->state = STATE_IDLE;
1801 spin_unlock(&host->lock);
1802 mmc_request_done(prev_mmc, mrq);
1803 spin_lock(&host->lock);
1806 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1808 u32 status = host->cmd_status;
1810 host->cmd_status = 0;
1812 /* Read the response from the card (up to 16 bytes) */
1813 if (cmd->flags & MMC_RSP_PRESENT) {
1814 if (cmd->flags & MMC_RSP_136) {
1815 cmd->resp[3] = mci_readl(host, RESP0);
1816 cmd->resp[2] = mci_readl(host, RESP1);
1817 cmd->resp[1] = mci_readl(host, RESP2);
1818 cmd->resp[0] = mci_readl(host, RESP3);
1820 cmd->resp[0] = mci_readl(host, RESP0);
1827 if (status & SDMMC_INT_RTO)
1828 cmd->error = -ETIMEDOUT;
1829 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1830 cmd->error = -EILSEQ;
1831 else if (status & SDMMC_INT_RESP_ERR)
1839 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1841 u32 status = host->data_status;
1843 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1844 if (status & SDMMC_INT_DRTO) {
1845 data->error = -ETIMEDOUT;
1846 } else if (status & SDMMC_INT_DCRC) {
1847 data->error = -EILSEQ;
1848 } else if (status & SDMMC_INT_EBE) {
1849 if (host->dir_status ==
1850 DW_MCI_SEND_STATUS) {
1852 * No data CRC status was returned.
1853 * The number of bytes transferred
1854 * will be exaggerated in PIO mode.
1856 data->bytes_xfered = 0;
1857 data->error = -ETIMEDOUT;
1858 } else if (host->dir_status ==
1859 DW_MCI_RECV_STATUS) {
1860 data->error = -EILSEQ;
1863 /* SDMMC_INT_SBE is included */
1864 data->error = -EILSEQ;
1867 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1870 * After an error, there may be data lingering
1875 data->bytes_xfered = data->blocks * data->blksz;
1882 static void dw_mci_set_drto(struct dw_mci *host)
1884 unsigned int drto_clks;
1885 unsigned int drto_ms;
1887 drto_clks = mci_readl(host, TMOUT) >> 8;
1888 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1890 /* add a bit spare time */
1893 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1896 static void dw_mci_tasklet_func(unsigned long priv)
1898 struct dw_mci *host = (struct dw_mci *)priv;
1899 struct mmc_data *data;
1900 struct mmc_command *cmd;
1901 struct mmc_request *mrq;
1902 enum dw_mci_state state;
1903 enum dw_mci_state prev_state;
1906 spin_lock(&host->lock);
1908 state = host->state;
1917 case STATE_WAITING_CMD11_DONE:
1920 case STATE_SENDING_CMD11:
1921 case STATE_SENDING_CMD:
1922 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1923 &host->pending_events))
1928 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1929 err = dw_mci_command_complete(host, cmd);
1930 if (cmd == mrq->sbc && !err) {
1931 prev_state = state = STATE_SENDING_CMD;
1932 __dw_mci_start_request(host, host->cur_slot,
1937 if (cmd->data && err) {
1939 * During UHS tuning sequence, sending the stop
1940 * command after the response CRC error would
1941 * throw the system into a confused state
1942 * causing all future tuning phases to report
1945 * In such case controller will move into a data
1946 * transfer state after a response error or
1947 * response CRC error. Let's let that finish
1948 * before trying to send a stop, so we'll go to
1949 * STATE_SENDING_DATA.
1951 * Although letting the data transfer take place
1952 * will waste a bit of time (we already know
1953 * the command was bad), it can't cause any
1954 * errors since it's possible it would have
1955 * taken place anyway if this tasklet got
1956 * delayed. Allowing the transfer to take place
1957 * avoids races and keeps things simple.
1959 if ((err != -ETIMEDOUT) &&
1960 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1961 state = STATE_SENDING_DATA;
1965 dw_mci_stop_dma(host);
1966 send_stop_abort(host, data);
1967 state = STATE_SENDING_STOP;
1971 if (!cmd->data || err) {
1972 dw_mci_request_end(host, mrq);
1976 prev_state = state = STATE_SENDING_DATA;
1979 case STATE_SENDING_DATA:
1981 * We could get a data error and never a transfer
1982 * complete so we'd better check for it here.
1984 * Note that we don't really care if we also got a
1985 * transfer complete; stopping the DMA and sending an
1988 if (test_and_clear_bit(EVENT_DATA_ERROR,
1989 &host->pending_events)) {
1990 dw_mci_stop_dma(host);
1991 if (!(host->data_status & (SDMMC_INT_DRTO |
1993 send_stop_abort(host, data);
1994 state = STATE_DATA_ERROR;
1998 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1999 &host->pending_events)) {
2001 * If all data-related interrupts don't come
2002 * within the given time in reading data state.
2004 if (host->dir_status == DW_MCI_RECV_STATUS)
2005 dw_mci_set_drto(host);
2009 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2012 * Handle an EVENT_DATA_ERROR that might have shown up
2013 * before the transfer completed. This might not have
2014 * been caught by the check above because the interrupt
2015 * could have gone off between the previous check and
2016 * the check for transfer complete.
2018 * Technically this ought not be needed assuming we
2019 * get a DATA_COMPLETE eventually (we'll notice the
2020 * error and end the request), but it shouldn't hurt.
2022 * This has the advantage of sending the stop command.
2024 if (test_and_clear_bit(EVENT_DATA_ERROR,
2025 &host->pending_events)) {
2026 dw_mci_stop_dma(host);
2027 if (!(host->data_status & (SDMMC_INT_DRTO |
2029 send_stop_abort(host, data);
2030 state = STATE_DATA_ERROR;
2033 prev_state = state = STATE_DATA_BUSY;
2037 case STATE_DATA_BUSY:
2038 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2039 &host->pending_events)) {
2041 * If data error interrupt comes but data over
2042 * interrupt doesn't come within the given time.
2043 * in reading data state.
2045 if (host->dir_status == DW_MCI_RECV_STATUS)
2046 dw_mci_set_drto(host);
2051 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2052 err = dw_mci_data_complete(host, data);
2055 if (!data->stop || mrq->sbc) {
2056 if (mrq->sbc && data->stop)
2057 data->stop->error = 0;
2058 dw_mci_request_end(host, mrq);
2062 /* stop command for open-ended transfer*/
2064 send_stop_abort(host, data);
2067 * If we don't have a command complete now we'll
2068 * never get one since we just reset everything;
2069 * better end the request.
2071 * If we do have a command complete we'll fall
2072 * through to the SENDING_STOP command and
2073 * everything will be peachy keen.
2075 if (!test_bit(EVENT_CMD_COMPLETE,
2076 &host->pending_events)) {
2078 dw_mci_request_end(host, mrq);
2084 * If err has non-zero,
2085 * stop-abort command has been already issued.
2087 prev_state = state = STATE_SENDING_STOP;
2091 case STATE_SENDING_STOP:
2092 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2093 &host->pending_events))
2096 /* CMD error in data command */
2097 if (mrq->cmd->error && mrq->data)
2103 if (!mrq->sbc && mrq->stop)
2104 dw_mci_command_complete(host, mrq->stop);
2106 host->cmd_status = 0;
2108 dw_mci_request_end(host, mrq);
2111 case STATE_DATA_ERROR:
2112 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2113 &host->pending_events))
2116 state = STATE_DATA_BUSY;
2119 } while (state != prev_state);
2121 host->state = state;
2123 spin_unlock(&host->lock);
2127 /* push final bytes to part_buf, only use during push */
2128 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2130 memcpy((void *)&host->part_buf, buf, cnt);
2131 host->part_buf_count = cnt;
2134 /* append bytes to part_buf, only use during push */
2135 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2137 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2138 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2139 host->part_buf_count += cnt;
2143 /* pull first bytes from part_buf, only use during pull */
2144 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2146 cnt = min_t(int, cnt, host->part_buf_count);
2148 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2150 host->part_buf_count -= cnt;
2151 host->part_buf_start += cnt;
2156 /* pull final bytes from the part_buf, assuming it's just been filled */
2157 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2159 memcpy(buf, &host->part_buf, cnt);
2160 host->part_buf_start = cnt;
2161 host->part_buf_count = (1 << host->data_shift) - cnt;
2164 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2166 struct mmc_data *data = host->data;
2169 /* try and push anything in the part_buf */
2170 if (unlikely(host->part_buf_count)) {
2171 int len = dw_mci_push_part_bytes(host, buf, cnt);
2175 if (host->part_buf_count == 2) {
2176 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2177 host->part_buf_count = 0;
2180 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2181 if (unlikely((unsigned long)buf & 0x1)) {
2183 u16 aligned_buf[64];
2184 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2185 int items = len >> 1;
2187 /* memcpy from input buffer into aligned buffer */
2188 memcpy(aligned_buf, buf, len);
2191 /* push data from aligned buffer into fifo */
2192 for (i = 0; i < items; ++i)
2193 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2200 for (; cnt >= 2; cnt -= 2)
2201 mci_fifo_writew(host->fifo_reg, *pdata++);
2204 /* put anything remaining in the part_buf */
2206 dw_mci_set_part_bytes(host, buf, cnt);
2207 /* Push data if we have reached the expected data length */
2208 if ((data->bytes_xfered + init_cnt) ==
2209 (data->blksz * data->blocks))
2210 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2214 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2216 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2217 if (unlikely((unsigned long)buf & 0x1)) {
2219 /* pull data from fifo into aligned buffer */
2220 u16 aligned_buf[64];
2221 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2222 int items = len >> 1;
2225 for (i = 0; i < items; ++i)
2226 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2227 /* memcpy from aligned buffer into output buffer */
2228 memcpy(buf, aligned_buf, len);
2237 for (; cnt >= 2; cnt -= 2)
2238 *pdata++ = mci_fifo_readw(host->fifo_reg);
2242 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2243 dw_mci_pull_final_bytes(host, buf, cnt);
2247 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2249 struct mmc_data *data = host->data;
2252 /* try and push anything in the part_buf */
2253 if (unlikely(host->part_buf_count)) {
2254 int len = dw_mci_push_part_bytes(host, buf, cnt);
2258 if (host->part_buf_count == 4) {
2259 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2260 host->part_buf_count = 0;
2263 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2264 if (unlikely((unsigned long)buf & 0x3)) {
2266 u32 aligned_buf[32];
2267 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2268 int items = len >> 2;
2270 /* memcpy from input buffer into aligned buffer */
2271 memcpy(aligned_buf, buf, len);
2274 /* push data from aligned buffer into fifo */
2275 for (i = 0; i < items; ++i)
2276 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2283 for (; cnt >= 4; cnt -= 4)
2284 mci_fifo_writel(host->fifo_reg, *pdata++);
2287 /* put anything remaining in the part_buf */
2289 dw_mci_set_part_bytes(host, buf, cnt);
2290 /* Push data if we have reached the expected data length */
2291 if ((data->bytes_xfered + init_cnt) ==
2292 (data->blksz * data->blocks))
2293 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2297 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2299 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2300 if (unlikely((unsigned long)buf & 0x3)) {
2302 /* pull data from fifo into aligned buffer */
2303 u32 aligned_buf[32];
2304 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2305 int items = len >> 2;
2308 for (i = 0; i < items; ++i)
2309 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2310 /* memcpy from aligned buffer into output buffer */
2311 memcpy(buf, aligned_buf, len);
2320 for (; cnt >= 4; cnt -= 4)
2321 *pdata++ = mci_fifo_readl(host->fifo_reg);
2325 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2326 dw_mci_pull_final_bytes(host, buf, cnt);
2330 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2332 struct mmc_data *data = host->data;
2335 /* try and push anything in the part_buf */
2336 if (unlikely(host->part_buf_count)) {
2337 int len = dw_mci_push_part_bytes(host, buf, cnt);
2342 if (host->part_buf_count == 8) {
2343 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2344 host->part_buf_count = 0;
2347 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2348 if (unlikely((unsigned long)buf & 0x7)) {
2350 u64 aligned_buf[16];
2351 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2352 int items = len >> 3;
2354 /* memcpy from input buffer into aligned buffer */
2355 memcpy(aligned_buf, buf, len);
2358 /* push data from aligned buffer into fifo */
2359 for (i = 0; i < items; ++i)
2360 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2367 for (; cnt >= 8; cnt -= 8)
2368 mci_fifo_writeq(host->fifo_reg, *pdata++);
2371 /* put anything remaining in the part_buf */
2373 dw_mci_set_part_bytes(host, buf, cnt);
2374 /* Push data if we have reached the expected data length */
2375 if ((data->bytes_xfered + init_cnt) ==
2376 (data->blksz * data->blocks))
2377 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2381 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2383 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2384 if (unlikely((unsigned long)buf & 0x7)) {
2386 /* pull data from fifo into aligned buffer */
2387 u64 aligned_buf[16];
2388 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2389 int items = len >> 3;
2392 for (i = 0; i < items; ++i)
2393 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2395 /* memcpy from aligned buffer into output buffer */
2396 memcpy(buf, aligned_buf, len);
2405 for (; cnt >= 8; cnt -= 8)
2406 *pdata++ = mci_fifo_readq(host->fifo_reg);
2410 host->part_buf = mci_fifo_readq(host->fifo_reg);
2411 dw_mci_pull_final_bytes(host, buf, cnt);
2415 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2419 /* get remaining partial bytes */
2420 len = dw_mci_pull_part_bytes(host, buf, cnt);
2421 if (unlikely(len == cnt))
2426 /* get the rest of the data */
2427 host->pull_data(host, buf, cnt);
2430 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2432 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2434 unsigned int offset;
2435 struct mmc_data *data = host->data;
2436 int shift = host->data_shift;
2439 unsigned int remain, fcnt;
2442 if (!sg_miter_next(sg_miter))
2445 host->sg = sg_miter->piter.sg;
2446 buf = sg_miter->addr;
2447 remain = sg_miter->length;
2451 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2452 << shift) + host->part_buf_count;
2453 len = min(remain, fcnt);
2456 dw_mci_pull_data(host, (void *)(buf + offset), len);
2457 data->bytes_xfered += len;
2462 sg_miter->consumed = offset;
2463 status = mci_readl(host, MINTSTS);
2464 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2465 /* if the RXDR is ready read again */
2466 } while ((status & SDMMC_INT_RXDR) ||
2467 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2470 if (!sg_miter_next(sg_miter))
2472 sg_miter->consumed = 0;
2474 sg_miter_stop(sg_miter);
2478 sg_miter_stop(sg_miter);
2480 smp_wmb(); /* drain writebuffer */
2481 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2484 static void dw_mci_write_data_pio(struct dw_mci *host)
2486 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2488 unsigned int offset;
2489 struct mmc_data *data = host->data;
2490 int shift = host->data_shift;
2493 unsigned int fifo_depth = host->fifo_depth;
2494 unsigned int remain, fcnt;
2497 if (!sg_miter_next(sg_miter))
2500 host->sg = sg_miter->piter.sg;
2501 buf = sg_miter->addr;
2502 remain = sg_miter->length;
2506 fcnt = ((fifo_depth -
2507 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2508 << shift) - host->part_buf_count;
2509 len = min(remain, fcnt);
2512 host->push_data(host, (void *)(buf + offset), len);
2513 data->bytes_xfered += len;
2518 sg_miter->consumed = offset;
2519 status = mci_readl(host, MINTSTS);
2520 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2521 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2524 if (!sg_miter_next(sg_miter))
2526 sg_miter->consumed = 0;
2528 sg_miter_stop(sg_miter);
2532 sg_miter_stop(sg_miter);
2534 smp_wmb(); /* drain writebuffer */
2535 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2538 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2540 if (!host->cmd_status)
2541 host->cmd_status = status;
2543 smp_wmb(); /* drain writebuffer */
2545 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2546 tasklet_schedule(&host->tasklet);
2549 static void dw_mci_handle_cd(struct dw_mci *host)
2553 for (i = 0; i < host->num_slots; i++) {
2554 struct dw_mci_slot *slot = host->slot[i];
2559 if (slot->mmc->ops->card_event)
2560 slot->mmc->ops->card_event(slot->mmc);
2561 mmc_detect_change(slot->mmc,
2562 msecs_to_jiffies(host->pdata->detect_delay_ms));
2566 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2568 struct dw_mci *host = dev_id;
2572 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2575 /* Check volt switch first, since it can look like an error */
2576 if ((host->state == STATE_SENDING_CMD11) &&
2577 (pending & SDMMC_INT_VOLT_SWITCH)) {
2578 unsigned long irqflags;
2580 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2581 pending &= ~SDMMC_INT_VOLT_SWITCH;
2584 * Hold the lock; we know cmd11_timer can't be kicked
2585 * off after the lock is released, so safe to delete.
2587 spin_lock_irqsave(&host->irq_lock, irqflags);
2588 dw_mci_cmd_interrupt(host, pending);
2589 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2591 del_timer(&host->cmd11_timer);
2594 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2595 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2596 host->cmd_status = pending;
2597 smp_wmb(); /* drain writebuffer */
2598 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2601 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2602 /* if there is an error report DATA_ERROR */
2603 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2604 host->data_status = pending;
2605 smp_wmb(); /* drain writebuffer */
2606 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2607 tasklet_schedule(&host->tasklet);
2610 if (pending & SDMMC_INT_DATA_OVER) {
2611 del_timer(&host->dto_timer);
2613 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2614 if (!host->data_status)
2615 host->data_status = pending;
2616 smp_wmb(); /* drain writebuffer */
2617 if (host->dir_status == DW_MCI_RECV_STATUS) {
2618 if (host->sg != NULL)
2619 dw_mci_read_data_pio(host, true);
2621 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2622 tasklet_schedule(&host->tasklet);
2625 if (pending & SDMMC_INT_RXDR) {
2626 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2627 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2628 dw_mci_read_data_pio(host, false);
2631 if (pending & SDMMC_INT_TXDR) {
2632 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2633 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2634 dw_mci_write_data_pio(host);
2637 if (pending & SDMMC_INT_CMD_DONE) {
2638 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2639 dw_mci_cmd_interrupt(host, pending);
2642 if (pending & SDMMC_INT_CD) {
2643 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2644 dw_mci_handle_cd(host);
2647 /* Handle SDIO Interrupts */
2648 for (i = 0; i < host->num_slots; i++) {
2649 struct dw_mci_slot *slot = host->slot[i];
2654 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2655 mci_writel(host, RINTSTS,
2656 SDMMC_INT_SDIO(slot->sdio_id));
2657 mmc_signal_sdio_irq(slot->mmc);
2663 if (host->use_dma != TRANS_MODE_IDMAC)
2666 /* Handle IDMA interrupts */
2667 if (host->dma_64bit_address == 1) {
2668 pending = mci_readl(host, IDSTS64);
2669 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2670 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2671 SDMMC_IDMAC_INT_RI);
2672 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2673 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2674 host->dma_ops->complete((void *)host);
2677 pending = mci_readl(host, IDSTS);
2678 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2679 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2680 SDMMC_IDMAC_INT_RI);
2681 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2682 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2683 host->dma_ops->complete((void *)host);
2690 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2692 struct mmc_host *mmc;
2693 struct dw_mci_slot *slot;
2694 const struct dw_mci_drv_data *drv_data = host->drv_data;
2698 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2702 slot = mmc_priv(mmc);
2704 slot->sdio_id = host->sdio_id0 + id;
2707 host->slot[id] = slot;
2709 mmc->ops = &dw_mci_ops;
2710 if (of_property_read_u32_array(host->dev->of_node,
2711 "clock-freq-min-max", freq, 2)) {
2712 mmc->f_min = DW_MCI_FREQ_MIN;
2713 mmc->f_max = DW_MCI_FREQ_MAX;
2716 "'clock-freq-min-max' property was deprecated.\n");
2717 mmc->f_min = freq[0];
2718 mmc->f_max = freq[1];
2721 /*if there are external regulators, get them*/
2722 ret = mmc_regulator_get_supply(mmc);
2723 if (ret == -EPROBE_DEFER)
2724 goto err_host_allocated;
2726 if (!mmc->ocr_avail)
2727 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2729 if (host->pdata->caps)
2730 mmc->caps = host->pdata->caps;
2733 * Support MMC_CAP_ERASE by default.
2734 * It needs to use trim/discard/erase commands.
2736 mmc->caps |= MMC_CAP_ERASE;
2738 if (host->pdata->pm_caps)
2739 mmc->pm_caps = host->pdata->pm_caps;
2741 if (host->dev->of_node) {
2742 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2746 ctrl_id = to_platform_device(host->dev)->id;
2748 if (drv_data && drv_data->caps)
2749 mmc->caps |= drv_data->caps[ctrl_id];
2751 if (host->pdata->caps2)
2752 mmc->caps2 = host->pdata->caps2;
2754 ret = mmc_of_parse(mmc);
2756 goto err_host_allocated;
2758 /* Useful defaults if platform data is unset. */
2759 if (host->use_dma == TRANS_MODE_IDMAC) {
2760 mmc->max_segs = host->ring_size;
2761 mmc->max_blk_size = 65535;
2762 mmc->max_seg_size = 0x1000;
2763 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2764 mmc->max_blk_count = mmc->max_req_size / 512;
2765 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2767 mmc->max_blk_size = 65535;
2768 mmc->max_blk_count = 65535;
2770 mmc->max_blk_size * mmc->max_blk_count;
2771 mmc->max_seg_size = mmc->max_req_size;
2773 /* TRANS_MODE_PIO */
2775 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2776 mmc->max_blk_count = 512;
2777 mmc->max_req_size = mmc->max_blk_size *
2779 mmc->max_seg_size = mmc->max_req_size;
2784 ret = mmc_add_host(mmc);
2786 goto err_host_allocated;
2788 #if defined(CONFIG_DEBUG_FS)
2789 dw_mci_init_debugfs(slot);
2799 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2801 /* Debugfs stuff is cleaned up by mmc core */
2802 mmc_remove_host(slot->mmc);
2803 slot->host->slot[id] = NULL;
2804 mmc_free_host(slot->mmc);
2807 static void dw_mci_init_dma(struct dw_mci *host)
2810 struct device *dev = host->dev;
2811 struct device_node *np = dev->of_node;
2814 * Check tansfer mode from HCON[17:16]
2815 * Clear the ambiguous description of dw_mmc databook:
2816 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2817 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2818 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2819 * 2b'11: Non DW DMA Interface -> pio only
2820 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2821 * simpler request/acknowledge handshake mechanism and both of them
2822 * are regarded as external dma master for dw_mmc.
2824 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2825 if (host->use_dma == DMA_INTERFACE_IDMA) {
2826 host->use_dma = TRANS_MODE_IDMAC;
2827 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2828 host->use_dma == DMA_INTERFACE_GDMA) {
2829 host->use_dma = TRANS_MODE_EDMAC;
2834 /* Determine which DMA interface to use */
2835 if (host->use_dma == TRANS_MODE_IDMAC) {
2837 * Check ADDR_CONFIG bit in HCON to find
2838 * IDMAC address bus width
2840 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2842 if (addr_config == 1) {
2843 /* host supports IDMAC in 64-bit address mode */
2844 host->dma_64bit_address = 1;
2846 "IDMAC supports 64-bit address mode.\n");
2847 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2848 dma_set_coherent_mask(host->dev,
2851 /* host supports IDMAC in 32-bit address mode */
2852 host->dma_64bit_address = 0;
2854 "IDMAC supports 32-bit address mode.\n");
2857 /* Alloc memory for sg translation */
2858 host->sg_cpu = dmam_alloc_coherent(host->dev,
2860 &host->sg_dma, GFP_KERNEL);
2861 if (!host->sg_cpu) {
2863 "%s: could not alloc DMA memory\n",
2868 host->dma_ops = &dw_mci_idmac_ops;
2869 dev_info(host->dev, "Using internal DMA controller.\n");
2871 /* TRANS_MODE_EDMAC: check dma bindings again */
2872 if ((of_property_count_strings(np, "dma-names") < 0) ||
2873 (!of_find_property(np, "dmas", NULL))) {
2876 host->dma_ops = &dw_mci_edmac_ops;
2877 dev_info(host->dev, "Using external DMA controller.\n");
2880 if (host->dma_ops->init && host->dma_ops->start &&
2881 host->dma_ops->stop && host->dma_ops->cleanup) {
2882 if (host->dma_ops->init(host)) {
2883 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2888 dev_err(host->dev, "DMA initialization not found.\n");
2895 dev_info(host->dev, "Using PIO mode.\n");
2896 host->use_dma = TRANS_MODE_PIO;
2899 static void dw_mci_cmd11_timer(unsigned long arg)
2901 struct dw_mci *host = (struct dw_mci *)arg;
2903 if (host->state != STATE_SENDING_CMD11) {
2904 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2908 host->cmd_status = SDMMC_INT_RTO;
2909 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2910 tasklet_schedule(&host->tasklet);
2913 static void dw_mci_dto_timer(unsigned long arg)
2915 struct dw_mci *host = (struct dw_mci *)arg;
2917 switch (host->state) {
2918 case STATE_SENDING_DATA:
2919 case STATE_DATA_BUSY:
2921 * If DTO interrupt does NOT come in sending data state,
2922 * we should notify the driver to terminate current transfer
2923 * and report a data timeout to the core.
2925 host->data_status = SDMMC_INT_DRTO;
2926 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2927 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2928 tasklet_schedule(&host->tasklet);
2936 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2938 struct dw_mci_board *pdata;
2939 struct device *dev = host->dev;
2940 struct device_node *np = dev->of_node;
2941 const struct dw_mci_drv_data *drv_data = host->drv_data;
2943 u32 clock_frequency;
2945 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2947 return ERR_PTR(-ENOMEM);
2949 /* find reset controller when exist */
2950 pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2951 if (IS_ERR(pdata->rstc)) {
2952 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2953 return ERR_PTR(-EPROBE_DEFER);
2956 /* find out number of slots supported */
2957 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2959 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2961 "fifo-depth property not found, using value of FIFOTH register as default\n");
2963 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2965 of_property_read_u32(np, "data-addr", &host->data_addr_override);
2967 if (of_get_property(np, "fifo-watermark-aligned", NULL))
2968 host->wm_aligned = true;
2970 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2971 pdata->bus_hz = clock_frequency;
2973 if (drv_data && drv_data->parse_dt) {
2974 ret = drv_data->parse_dt(host);
2976 return ERR_PTR(ret);
2982 #else /* CONFIG_OF */
2983 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2985 return ERR_PTR(-EINVAL);
2987 #endif /* CONFIG_OF */
2989 static void dw_mci_enable_cd(struct dw_mci *host)
2991 unsigned long irqflags;
2994 struct dw_mci_slot *slot;
2997 * No need for CD if all slots have a non-error GPIO
2998 * as well as broken card detection is found.
3000 for (i = 0; i < host->num_slots; i++) {
3001 slot = host->slot[i];
3002 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3005 if (mmc_gpio_get_cd(slot->mmc) < 0)
3008 if (i == host->num_slots)
3011 spin_lock_irqsave(&host->irq_lock, irqflags);
3012 temp = mci_readl(host, INTMASK);
3013 temp |= SDMMC_INT_CD;
3014 mci_writel(host, INTMASK, temp);
3015 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3018 int dw_mci_probe(struct dw_mci *host)
3020 const struct dw_mci_drv_data *drv_data = host->drv_data;
3021 int width, i, ret = 0;
3026 host->pdata = dw_mci_parse_dt(host);
3027 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3028 return -EPROBE_DEFER;
3029 } else if (IS_ERR(host->pdata)) {
3030 dev_err(host->dev, "platform data not available\n");
3035 host->biu_clk = devm_clk_get(host->dev, "biu");
3036 if (IS_ERR(host->biu_clk)) {
3037 dev_dbg(host->dev, "biu clock not available\n");
3039 ret = clk_prepare_enable(host->biu_clk);
3041 dev_err(host->dev, "failed to enable biu clock\n");
3046 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3047 if (IS_ERR(host->ciu_clk)) {
3048 dev_dbg(host->dev, "ciu clock not available\n");
3049 host->bus_hz = host->pdata->bus_hz;
3051 ret = clk_prepare_enable(host->ciu_clk);
3053 dev_err(host->dev, "failed to enable ciu clock\n");
3057 if (host->pdata->bus_hz) {
3058 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3061 "Unable to set bus rate to %uHz\n",
3062 host->pdata->bus_hz);
3064 host->bus_hz = clk_get_rate(host->ciu_clk);
3067 if (!host->bus_hz) {
3069 "Platform data must supply bus speed\n");
3074 if (drv_data && drv_data->init) {
3075 ret = drv_data->init(host);
3078 "implementation specific init failed\n");
3083 if (!IS_ERR(host->pdata->rstc)) {
3084 reset_control_assert(host->pdata->rstc);
3085 usleep_range(10, 50);
3086 reset_control_deassert(host->pdata->rstc);
3089 setup_timer(&host->cmd11_timer,
3090 dw_mci_cmd11_timer, (unsigned long)host);
3092 setup_timer(&host->dto_timer,
3093 dw_mci_dto_timer, (unsigned long)host);
3095 spin_lock_init(&host->lock);
3096 spin_lock_init(&host->irq_lock);
3097 INIT_LIST_HEAD(&host->queue);
3100 * Get the host data width - this assumes that HCON has been set with
3101 * the correct values.
3103 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3105 host->push_data = dw_mci_push_data16;
3106 host->pull_data = dw_mci_pull_data16;
3108 host->data_shift = 1;
3109 } else if (i == 2) {
3110 host->push_data = dw_mci_push_data64;
3111 host->pull_data = dw_mci_pull_data64;
3113 host->data_shift = 3;
3115 /* Check for a reserved value, and warn if it is */
3117 "HCON reports a reserved host data width!\n"
3118 "Defaulting to 32-bit access.\n");
3119 host->push_data = dw_mci_push_data32;
3120 host->pull_data = dw_mci_pull_data32;
3122 host->data_shift = 2;
3125 /* Reset all blocks */
3126 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3131 host->dma_ops = host->pdata->dma_ops;
3132 dw_mci_init_dma(host);
3134 /* Clear the interrupts for the host controller */
3135 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3136 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3138 /* Put in max timeout */
3139 mci_writel(host, TMOUT, 0xFFFFFFFF);
3142 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3143 * Tx Mark = fifo_size / 2 DMA Size = 8
3145 if (!host->pdata->fifo_depth) {
3147 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3148 * have been overwritten by the bootloader, just like we're
3149 * about to do, so if you know the value for your hardware, you
3150 * should put it in the platform data.
3152 fifo_size = mci_readl(host, FIFOTH);
3153 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3155 fifo_size = host->pdata->fifo_depth;
3157 host->fifo_depth = fifo_size;
3159 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3160 mci_writel(host, FIFOTH, host->fifoth_val);
3162 /* disable clock to CIU */
3163 mci_writel(host, CLKENA, 0);
3164 mci_writel(host, CLKSRC, 0);
3167 * In 2.40a spec, Data offset is changed.
3168 * Need to check the version-id and set data-offset for DATA register.
3170 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3171 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3173 if (host->data_addr_override)
3174 host->fifo_reg = host->regs + host->data_addr_override;
3175 else if (host->verid < DW_MMC_240A)
3176 host->fifo_reg = host->regs + DATA_OFFSET;
3178 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3180 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3181 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3182 host->irq_flags, "dw-mci", host);
3186 if (host->pdata->num_slots)
3187 host->num_slots = host->pdata->num_slots;
3189 host->num_slots = 1;
3191 if (host->num_slots < 1 ||
3192 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3194 "Platform data must supply correct num_slots.\n");
3200 * Enable interrupts for command done, data over, data empty,
3201 * receive ready and error such as transmit, receive timeout, crc error
3203 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3204 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3205 DW_MCI_ERROR_FLAGS);
3206 /* Enable mci interrupt */
3207 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3210 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3211 host->irq, width, fifo_size);
3213 /* We need at least one slot to succeed */
3214 for (i = 0; i < host->num_slots; i++) {
3215 ret = dw_mci_init_slot(host, i);
3217 dev_dbg(host->dev, "slot %d init failed\n", i);
3223 dev_info(host->dev, "%d slots initialized\n", init_slots);
3226 "attempted to initialize %d slots, but failed on all\n",
3231 /* Now that slots are all setup, we can enable card detect */
3232 dw_mci_enable_cd(host);
3237 if (host->use_dma && host->dma_ops->exit)
3238 host->dma_ops->exit(host);
3240 if (!IS_ERR(host->pdata->rstc))
3241 reset_control_assert(host->pdata->rstc);
3244 clk_disable_unprepare(host->ciu_clk);
3247 clk_disable_unprepare(host->biu_clk);
3251 EXPORT_SYMBOL(dw_mci_probe);
3253 void dw_mci_remove(struct dw_mci *host)
3257 for (i = 0; i < host->num_slots; i++) {
3258 dev_dbg(host->dev, "remove slot %d\n", i);
3260 dw_mci_cleanup_slot(host->slot[i], i);
3263 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3264 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3266 /* disable clock to CIU */
3267 mci_writel(host, CLKENA, 0);
3268 mci_writel(host, CLKSRC, 0);
3270 if (host->use_dma && host->dma_ops->exit)
3271 host->dma_ops->exit(host);
3273 if (!IS_ERR(host->pdata->rstc))
3274 reset_control_assert(host->pdata->rstc);
3276 clk_disable_unprepare(host->ciu_clk);
3277 clk_disable_unprepare(host->biu_clk);
3279 EXPORT_SYMBOL(dw_mci_remove);
3284 int dw_mci_runtime_suspend(struct device *dev)
3286 struct dw_mci *host = dev_get_drvdata(dev);
3288 if (host->use_dma && host->dma_ops->exit)
3289 host->dma_ops->exit(host);
3291 clk_disable_unprepare(host->ciu_clk);
3293 if (host->cur_slot &&
3294 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3295 !mmc_card_is_removable(host->cur_slot->mmc)))
3296 clk_disable_unprepare(host->biu_clk);
3300 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3302 int dw_mci_runtime_resume(struct device *dev)
3305 struct dw_mci *host = dev_get_drvdata(dev);
3307 if (host->cur_slot &&
3308 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3309 !mmc_card_is_removable(host->cur_slot->mmc))) {
3310 ret = clk_prepare_enable(host->biu_clk);
3315 ret = clk_prepare_enable(host->ciu_clk);
3319 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3320 clk_disable_unprepare(host->ciu_clk);
3325 if (host->use_dma && host->dma_ops->init)
3326 host->dma_ops->init(host);
3329 * Restore the initial value at FIFOTH register
3330 * And Invalidate the prev_blksz with zero
3332 mci_writel(host, FIFOTH, host->fifoth_val);
3333 host->prev_blksz = 0;
3335 /* Put in max timeout */
3336 mci_writel(host, TMOUT, 0xFFFFFFFF);
3338 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3339 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3340 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3341 DW_MCI_ERROR_FLAGS);
3342 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3344 for (i = 0; i < host->num_slots; i++) {
3345 struct dw_mci_slot *slot = host->slot[i];
3349 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3350 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3352 /* Force setup bus to guarantee available clock output */
3353 dw_mci_setup_bus(slot, true);
3356 /* Now that slots are all setup, we can enable card detect */
3357 dw_mci_enable_cd(host);
3362 if (host->cur_slot &&
3363 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3364 !mmc_card_is_removable(host->cur_slot->mmc)))
3365 clk_disable_unprepare(host->biu_clk);
3369 EXPORT_SYMBOL(dw_mci_runtime_resume);
3370 #endif /* CONFIG_PM */
3372 static int __init dw_mci_init(void)
3374 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3378 static void __exit dw_mci_exit(void)
3382 module_init(dw_mci_init);
3383 module_exit(dw_mci_exit);
3385 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3386 MODULE_AUTHOR("NXP Semiconductor VietNam");
3387 MODULE_AUTHOR("Imagination Technologies Ltd");
3388 MODULE_LICENSE("GPL v2");