1 // SPDX-License-Identifier: GPL-2.0
3 * Block driver for media (i.e., flash cards)
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
18 * Author: Andrew Christian
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
25 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
50 #include <linux/uaccess.h>
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "mmcblk."
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
79 static DEFINE_MUTEX(block_mutex);
82 * The defaults come from config options but can be overriden by module
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
92 static int max_devices;
94 #define MAX_DEVICES 256
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
99 struct mmc_blk_busy_data {
100 struct mmc_card *card;
105 * There is one mmc_blk_data per slot.
107 struct mmc_blk_data {
108 struct device *parent;
109 struct gendisk *disk;
110 struct mmc_queue queue;
111 struct list_head part;
112 struct list_head rpmbs;
115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119 unsigned int read_only;
120 unsigned int part_type;
121 unsigned int reset_done;
122 #define MMC_BLK_READ BIT(0)
123 #define MMC_BLK_WRITE BIT(1)
124 #define MMC_BLK_DISCARD BIT(2)
125 #define MMC_BLK_SECDISCARD BIT(3)
126 #define MMC_BLK_CQE_RECOVERY BIT(4)
127 #define MMC_BLK_TRIM BIT(5)
130 * Only set in main mmc_blk_data associated
131 * with mmc_card with dev_set_drvdata, and keeps
132 * track of the current selected device partition.
134 unsigned int part_curr;
135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
138 /* debugfs files (only in main mmc_blk_data) */
139 struct dentry *status_dentry;
140 struct dentry *ext_csd_dentry;
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
152 * struct mmc_rpmb_data - special RPMB device type for these areas
153 * @dev: the device for the RPMB area
154 * @chrdev: character device for the RPMB area
155 * @id: unique device ID number
156 * @part_index: partition index (0 on first)
157 * @md: parent MMC block device
158 * @node: list item, so we can put this device on a list
160 struct mmc_rpmb_data {
164 unsigned int part_index;
165 struct mmc_blk_data *md;
166 struct list_head node;
169 static DEFINE_MUTEX(open_lock);
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 struct mmc_card *card,
179 struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
186 struct mmc_blk_data *md;
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
192 mutex_unlock(&open_lock);
197 static inline int mmc_get_devidx(struct gendisk *disk)
199 int devidx = disk->first_minor / perdev_minors;
203 static void mmc_blk_kref_release(struct kref *ref)
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
219 static void mmc_blk_put(struct mmc_blk_data *md)
221 kref_put(&md->kref, mmc_blk_kref_release);
224 static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
244 static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
253 if (kstrtoul(buf, 0, &set))
259 md = mmc_blk_get(dev_to_disk(dev));
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
265 count = PTR_ERR(req);
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 blk_execute_rq(req, false);
271 ret = req_to_mmc_queue_req(req)->drv_op_result;
272 blk_mq_free_request(req);
275 pr_info("%s: Locking boot partition ro until next power on\n",
276 md->disk->disk_name);
277 set_disk_ro(md->disk, 1);
279 list_for_each_entry(part_md, &md->part, part)
280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 set_disk_ro(part_md->disk, 1);
290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 power_ro_lock_show, power_ro_lock_store);
293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
299 ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 get_disk_ro(dev_to_disk(dev)) ^
306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 const char *buf, size_t count)
311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 unsigned long set = simple_strtoul(buf, &end, 0);
318 set_disk_ro(dev_to_disk(dev), set || md->read_only);
325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
327 static struct attribute *mmc_disk_attrs[] = {
328 &dev_attr_force_ro.attr,
329 &dev_attr_ro_lock_until_next_power_on.attr,
333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 struct attribute *a, int n)
336 struct device *dev = kobj_to_dev(kobj);
337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 umode_t mode = a->mode;
340 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 md->queue.card->ext_csd.boot_ro_lockable) {
344 if (!(md->queue.card->ext_csd.boot_ro_lock &
345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
353 static const struct attribute_group mmc_disk_attr_group = {
354 .is_visible = mmc_disk_attrs_is_visible,
355 .attrs = mmc_disk_attrs,
358 static const struct attribute_group *mmc_disk_attr_groups[] = {
359 &mmc_disk_attr_group,
363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
365 struct mmc_blk_data *md = mmc_blk_get(disk);
368 mutex_lock(&block_mutex);
371 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
376 mutex_unlock(&block_mutex);
381 static void mmc_blk_release(struct gendisk *disk)
383 struct mmc_blk_data *md = disk->private_data;
385 mutex_lock(&block_mutex);
387 mutex_unlock(&block_mutex);
391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
399 struct mmc_blk_ioc_data {
400 struct mmc_ioc_cmd ic;
403 struct mmc_rpmb_data *rpmb;
406 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
407 struct mmc_ioc_cmd __user *user)
409 struct mmc_blk_ioc_data *idata;
412 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
418 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
424 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 if (!idata->buf_bytes) {
434 idata->buf = memdup_user((void __user *)(unsigned long)
435 idata->ic.data_ptr, idata->buf_bytes);
436 if (IS_ERR(idata->buf)) {
437 err = PTR_ERR(idata->buf);
449 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
450 struct mmc_blk_ioc_data *idata)
452 struct mmc_ioc_cmd *ic = &idata->ic;
454 if (copy_to_user(&(ic_ptr->response), ic->response,
455 sizeof(ic->response)))
458 if (!idata->ic.write_flag) {
459 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
460 idata->buf, idata->buf_bytes))
467 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
468 struct mmc_blk_ioc_data *idata)
470 struct mmc_command cmd = {}, sbc = {};
471 struct mmc_data data = {};
472 struct mmc_request mrq = {};
473 struct scatterlist sg;
475 unsigned int busy_timeout_ms;
477 unsigned int target_part;
479 if (!card || !md || !idata)
483 * The RPMB accesses comes in from the character device, so we
484 * need to target these explicitly. Else we just target the
485 * partition type for the block device the ioctl() was issued
489 /* Support multiple RPMB partitions */
490 target_part = idata->rpmb->part_index;
491 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
493 target_part = md->part_type;
496 cmd.opcode = idata->ic.opcode;
497 cmd.arg = idata->ic.arg;
498 cmd.flags = idata->ic.flags;
500 if (idata->buf_bytes) {
503 data.blksz = idata->ic.blksz;
504 data.blocks = idata->ic.blocks;
506 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
508 if (idata->ic.write_flag)
509 data.flags = MMC_DATA_WRITE;
511 data.flags = MMC_DATA_READ;
513 /* data.flags must already be set before doing this. */
514 mmc_set_data_timeout(&data, card);
516 /* Allow overriding the timeout_ns for empirical tuning. */
517 if (idata->ic.data_timeout_ns)
518 data.timeout_ns = idata->ic.data_timeout_ns;
525 err = mmc_blk_part_switch(card, target_part);
529 if (idata->ic.is_acmd) {
530 err = mmc_app_cmd(card->host, card);
536 sbc.opcode = MMC_SET_BLOCK_COUNT;
538 * We don't do any blockcount validation because the max size
539 * may be increased by a future standard. We just copy the
540 * 'Reliable Write' bit here.
542 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
543 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
547 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
548 (cmd.opcode == MMC_SWITCH))
549 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
551 /* If it's an R1B response we need some more preparations. */
552 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
553 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
555 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
557 mmc_wait_for_req(card->host, &mrq);
558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 __func__, cmd.error);
566 dev_err(mmc_dev(card->host), "%s: data error %d\n",
567 __func__, data.error);
572 * Make sure the cache of the PARTITION_CONFIG register and
573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
574 * changed it successfully.
576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
577 (cmd.opcode == MMC_SWITCH)) {
578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
582 * Update cache so the next mmc_blk_part_switch call operates
583 * on up-to-date data.
585 card->ext_csd.part_config = value;
586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
590 * Make sure to update CACHE_CTRL in case it was changed. The cache
591 * will get turned back on if the card is re-initialized, e.g.
592 * suspend/resume or hw reset in recovery.
594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
595 (cmd.opcode == MMC_SWITCH)) {
596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
598 card->ext_csd.cache_ctrl = value;
602 * According to the SD specs, some commands require a delay after
603 * issuing the command.
605 if (idata->ic.postsleep_min_us)
606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
608 if (mmc_host_is_spi(card->host)) {
609 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
610 return mmc_spi_err_check(card);
615 * Ensure RPMB, writes and R1B responses are completed by polling with
616 * CMD13. Note that, usually we don't need to poll when using HW busy
617 * detection, but here it's needed since some commands may indicate the
618 * error through the R1 status bits.
620 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
621 struct mmc_blk_busy_data cb_data = {
625 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
626 &mmc_blk_busy_cb, &cb_data);
628 idata->ic.response[0] = cb_data.status;
634 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
635 struct mmc_ioc_cmd __user *ic_ptr,
636 struct mmc_rpmb_data *rpmb)
638 struct mmc_blk_ioc_data *idata;
639 struct mmc_blk_ioc_data *idatas[1];
640 struct mmc_queue *mq;
641 struct mmc_card *card;
642 int err = 0, ioc_err = 0;
645 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
647 return PTR_ERR(idata);
648 /* This will be NULL on non-RPMB ioctl():s */
651 card = md->queue.card;
658 * Dispatch the ioctl() into the block request queue.
661 req = blk_mq_alloc_request(mq->queue,
662 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
668 req_to_mmc_queue_req(req)->drv_op =
669 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
670 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
671 req_to_mmc_queue_req(req)->drv_op_data = idatas;
672 req_to_mmc_queue_req(req)->ioc_count = 1;
673 blk_execute_rq(req, false);
674 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
675 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
676 blk_mq_free_request(req);
681 return ioc_err ? ioc_err : err;
684 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
685 struct mmc_ioc_multi_cmd __user *user,
686 struct mmc_rpmb_data *rpmb)
688 struct mmc_blk_ioc_data **idata = NULL;
689 struct mmc_ioc_cmd __user *cmds = user->cmds;
690 struct mmc_card *card;
691 struct mmc_queue *mq;
692 int err = 0, ioc_err = 0;
697 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
698 sizeof(num_of_cmds)))
704 if (num_of_cmds > MMC_IOC_MAX_CMDS)
708 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
712 for (i = 0; i < n; i++) {
713 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
714 if (IS_ERR(idata[i])) {
715 err = PTR_ERR(idata[i]);
719 /* This will be NULL on non-RPMB ioctl():s */
720 idata[i]->rpmb = rpmb;
723 card = md->queue.card;
731 * Dispatch the ioctl()s into the block request queue.
734 req = blk_mq_alloc_request(mq->queue,
735 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
740 req_to_mmc_queue_req(req)->drv_op =
741 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
742 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
743 req_to_mmc_queue_req(req)->drv_op_data = idata;
744 req_to_mmc_queue_req(req)->ioc_count = n;
745 blk_execute_rq(req, false);
746 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
748 /* copy to user if data and response */
749 for (i = 0; i < n && !err; i++)
750 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
752 blk_mq_free_request(req);
755 for (i = 0; i < n; i++) {
756 kfree(idata[i]->buf);
760 return ioc_err ? ioc_err : err;
763 static int mmc_blk_check_blkdev(struct block_device *bdev)
766 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
767 * whole block device, not on a partition. This prevents overspray
768 * between sibling partitions.
770 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
775 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
776 unsigned int cmd, unsigned long arg)
778 struct mmc_blk_data *md;
783 ret = mmc_blk_check_blkdev(bdev);
786 md = mmc_blk_get(bdev->bd_disk);
789 ret = mmc_blk_ioctl_cmd(md,
790 (struct mmc_ioc_cmd __user *)arg,
794 case MMC_IOC_MULTI_CMD:
795 ret = mmc_blk_check_blkdev(bdev);
798 md = mmc_blk_get(bdev->bd_disk);
801 ret = mmc_blk_ioctl_multi_cmd(md,
802 (struct mmc_ioc_multi_cmd __user *)arg,
812 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
813 unsigned int cmd, unsigned long arg)
815 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
819 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
822 struct mmc_blk_data *md;
825 md = mmc_blk_get(disk);
830 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
839 static const struct block_device_operations mmc_bdops = {
840 .open = mmc_blk_open,
841 .release = mmc_blk_release,
842 .getgeo = mmc_blk_getgeo,
843 .owner = THIS_MODULE,
844 .ioctl = mmc_blk_ioctl,
846 .compat_ioctl = mmc_blk_compat_ioctl,
848 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
851 static int mmc_blk_part_switch_pre(struct mmc_card *card,
852 unsigned int part_type)
856 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
857 if (card->ext_csd.cmdq_en) {
858 ret = mmc_cmdq_disable(card);
862 mmc_retune_pause(card->host);
868 static int mmc_blk_part_switch_post(struct mmc_card *card,
869 unsigned int part_type)
873 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
874 mmc_retune_unpause(card->host);
875 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
876 ret = mmc_cmdq_enable(card);
882 static inline int mmc_blk_part_switch(struct mmc_card *card,
883 unsigned int part_type)
886 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
888 if (main_md->part_curr == part_type)
891 if (mmc_card_mmc(card)) {
892 u8 part_config = card->ext_csd.part_config;
894 ret = mmc_blk_part_switch_pre(card, part_type);
898 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
899 part_config |= part_type;
901 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
902 EXT_CSD_PART_CONFIG, part_config,
903 card->ext_csd.part_time);
905 mmc_blk_part_switch_post(card, part_type);
909 card->ext_csd.part_config = part_config;
911 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
914 main_md->part_curr = part_type;
918 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
924 struct mmc_request mrq = {};
925 struct mmc_command cmd = {};
926 struct mmc_data data = {};
928 struct scatterlist sg;
930 err = mmc_app_cmd(card->host, card);
934 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
936 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
940 data.flags = MMC_DATA_READ;
943 mmc_set_data_timeout(&data, card);
948 blocks = kmalloc(4, GFP_KERNEL);
952 sg_init_one(&sg, blocks, 4);
954 mmc_wait_for_req(card->host, &mrq);
956 result = ntohl(*blocks);
959 if (cmd.error || data.error)
962 *written_blocks = result;
967 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
969 if (host->actual_clock)
970 return host->actual_clock / 1000;
972 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
974 return host->ios.clock / 2000;
976 /* How can there be no clock */
978 return 100; /* 100 kHz is minimum possible value */
981 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
982 struct mmc_data *data)
984 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
987 if (data->timeout_clks) {
988 khz = mmc_blk_clock_khz(host);
989 ms += DIV_ROUND_UP(data->timeout_clks, khz);
996 * Attempts to reset the card and get back to the requested partition.
997 * Therefore any error here must result in cancelling the block layer
998 * request, it must not be reattempted without going through the mmc_blk
999 * partition sanity checks.
1001 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1005 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1007 if (md->reset_done & type)
1010 md->reset_done |= type;
1011 err = mmc_hw_reset(host->card);
1013 * A successful reset will leave the card in the main partition, but
1014 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1017 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1020 /* Ensure we switch back to the correct partition */
1021 if (mmc_blk_part_switch(host->card, md->part_type))
1023 * We have failed to get back into the correct
1024 * partition, so we need to abort the whole request.
1030 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1032 md->reset_done &= ~type;
1036 * The non-block commands come back from the block layer after it queued it and
1037 * processed it with all other requests and then they get issued in this
1040 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1042 struct mmc_queue_req *mq_rq;
1043 struct mmc_card *card = mq->card;
1044 struct mmc_blk_data *md = mq->blkdata;
1045 struct mmc_blk_ioc_data **idata;
1052 mq_rq = req_to_mmc_queue_req(req);
1053 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1055 switch (mq_rq->drv_op) {
1056 case MMC_DRV_OP_IOCTL:
1057 if (card->ext_csd.cmdq_en) {
1058 ret = mmc_cmdq_disable(card);
1063 case MMC_DRV_OP_IOCTL_RPMB:
1064 idata = mq_rq->drv_op_data;
1065 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1066 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1070 /* Always switch back to main area after RPMB access */
1072 mmc_blk_part_switch(card, 0);
1073 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1074 mmc_cmdq_enable(card);
1076 case MMC_DRV_OP_BOOT_WP:
1077 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1078 card->ext_csd.boot_ro_lock |
1079 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1080 card->ext_csd.part_time);
1082 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1083 md->disk->disk_name, ret);
1085 card->ext_csd.boot_ro_lock |=
1086 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1088 case MMC_DRV_OP_GET_CARD_STATUS:
1089 ret = mmc_send_status(card, &status);
1093 case MMC_DRV_OP_GET_EXT_CSD:
1094 ext_csd = mq_rq->drv_op_data;
1095 ret = mmc_get_ext_csd(card, ext_csd);
1098 pr_err("%s: unknown driver specific operation\n",
1099 md->disk->disk_name);
1103 mq_rq->drv_op_result = ret;
1104 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1107 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1108 int type, unsigned int erase_arg)
1110 struct mmc_blk_data *md = mq->blkdata;
1111 struct mmc_card *card = md->queue.card;
1112 unsigned int from, nr;
1114 blk_status_t status = BLK_STS_OK;
1116 if (!mmc_can_erase(card)) {
1117 status = BLK_STS_NOTSUPP;
1121 from = blk_rq_pos(req);
1122 nr = blk_rq_sectors(req);
1126 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1127 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1128 INAND_CMD38_ARG_EXT_CSD,
1129 erase_arg == MMC_TRIM_ARG ?
1130 INAND_CMD38_ARG_TRIM :
1131 INAND_CMD38_ARG_ERASE,
1132 card->ext_csd.generic_cmd6_time);
1135 err = mmc_erase(card, from, nr, erase_arg);
1136 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1138 status = BLK_STS_IOERR;
1140 mmc_blk_reset_success(md, type);
1142 blk_mq_end_request(req, status);
1145 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1147 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1150 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1152 struct mmc_blk_data *md = mq->blkdata;
1153 struct mmc_card *card = md->queue.card;
1154 unsigned int arg = card->erase_arg;
1156 if (mmc_card_broken_sd_discard(card))
1159 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1163 struct request *req)
1165 struct mmc_blk_data *md = mq->blkdata;
1166 struct mmc_card *card = md->queue.card;
1167 unsigned int from, nr, arg;
1168 int err = 0, type = MMC_BLK_SECDISCARD;
1169 blk_status_t status = BLK_STS_OK;
1171 if (!(mmc_can_secure_erase_trim(card))) {
1172 status = BLK_STS_NOTSUPP;
1176 from = blk_rq_pos(req);
1177 nr = blk_rq_sectors(req);
1179 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1180 arg = MMC_SECURE_TRIM1_ARG;
1182 arg = MMC_SECURE_ERASE_ARG;
1185 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1186 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1187 INAND_CMD38_ARG_EXT_CSD,
1188 arg == MMC_SECURE_TRIM1_ARG ?
1189 INAND_CMD38_ARG_SECTRIM1 :
1190 INAND_CMD38_ARG_SECERASE,
1191 card->ext_csd.generic_cmd6_time);
1196 err = mmc_erase(card, from, nr, arg);
1200 status = BLK_STS_IOERR;
1204 if (arg == MMC_SECURE_TRIM1_ARG) {
1205 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1206 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1207 INAND_CMD38_ARG_EXT_CSD,
1208 INAND_CMD38_ARG_SECTRIM2,
1209 card->ext_csd.generic_cmd6_time);
1214 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1218 status = BLK_STS_IOERR;
1224 if (err && !mmc_blk_reset(md, card->host, type))
1227 mmc_blk_reset_success(md, type);
1229 blk_mq_end_request(req, status);
1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1234 struct mmc_blk_data *md = mq->blkdata;
1235 struct mmc_card *card = md->queue.card;
1238 ret = mmc_flush_cache(card->host);
1239 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1243 * Reformat current write as a reliable write, supporting
1244 * both legacy and the enhanced reliable write MMC cards.
1245 * In each transfer we'll handle only as much as a single
1246 * reliable write can handle, thus finish the request in
1247 * partial completions.
1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1250 struct mmc_card *card,
1251 struct request *req)
1253 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1254 /* Legacy mode imposes restrictions on transfers. */
1255 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1256 brq->data.blocks = 1;
1258 if (brq->data.blocks > card->ext_csd.rel_sectors)
1259 brq->data.blocks = card->ext_csd.rel_sectors;
1260 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1261 brq->data.blocks = 1;
1265 #define CMD_ERRORS_EXCL_OOR \
1266 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1267 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1268 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1269 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1270 R1_CC_ERROR | /* Card controller error */ \
1271 R1_ERROR) /* General/unknown error */
1273 #define CMD_ERRORS \
1274 (CMD_ERRORS_EXCL_OOR | \
1275 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1282 * Per the SD specification(physical layer version 4.10)[1],
1283 * section 4.3.3, it explicitly states that "When the last
1284 * block of user area is read using CMD18, the host should
1285 * ignore OUT_OF_RANGE error that may occur even the sequence
1286 * is correct". And JESD84-B51 for eMMC also has a similar
1287 * statement on section 6.8.3.
1289 * Multiple block read/write could be done by either predefined
1290 * method, namely CMD23, or open-ending mode. For open-ending mode,
1291 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1293 * However the spec[1] doesn't tell us whether we should also
1294 * ignore that for predefined method. But per the spec[1], section
1295 * 4.15 Set Block Count Command, it says"If illegal block count
1296 * is set, out of range error will be indicated during read/write
1297 * operation (For example, data transfer is stopped at user area
1298 * boundary)." In another word, we could expect a out of range error
1299 * in the response for the following CMD18/25. And if argument of
1300 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1301 * we could also expect to get a -ETIMEDOUT or any error number from
1302 * the host drivers due to missing data response(for write)/data(for
1303 * read), as the cards will stop the data transfer by itself per the
1304 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1307 if (!brq->stop.error) {
1308 bool oor_with_open_end;
1309 /* If there is no error yet, check R1 response */
1311 val = brq->stop.resp[0] & CMD_ERRORS;
1312 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1314 if (val && !oor_with_open_end)
1315 brq->stop.error = -EIO;
1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1320 int recovery_mode, bool *do_rel_wr_p,
1321 bool *do_data_tag_p)
1323 struct mmc_blk_data *md = mq->blkdata;
1324 struct mmc_card *card = md->queue.card;
1325 struct mmc_blk_request *brq = &mqrq->brq;
1326 struct request *req = mmc_queue_req_to_req(mqrq);
1327 bool do_rel_wr, do_data_tag;
1330 * Reliable writes are used to implement Forced Unit Access and
1331 * are supported only on MMCs.
1333 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1334 rq_data_dir(req) == WRITE &&
1335 (md->flags & MMC_BLK_REL_WR);
1337 memset(brq, 0, sizeof(struct mmc_blk_request));
1339 mmc_crypto_prepare_req(mqrq);
1341 brq->mrq.data = &brq->data;
1342 brq->mrq.tag = req->tag;
1344 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1347 if (rq_data_dir(req) == READ) {
1348 brq->data.flags = MMC_DATA_READ;
1349 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1351 brq->data.flags = MMC_DATA_WRITE;
1352 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1355 brq->data.blksz = 512;
1356 brq->data.blocks = blk_rq_sectors(req);
1357 brq->data.blk_addr = blk_rq_pos(req);
1360 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1361 * The eMMC will give "high" priority tasks priority over "simple"
1362 * priority tasks. Here we always set "simple" priority by not setting
1367 * The block layer doesn't support all sector count
1368 * restrictions, so we need to be prepared for too big
1371 if (brq->data.blocks > card->host->max_blk_count)
1372 brq->data.blocks = card->host->max_blk_count;
1374 if (brq->data.blocks > 1) {
1376 * Some SD cards in SPI mode return a CRC error or even lock up
1377 * completely when trying to read the last block using a
1378 * multiblock read command.
1380 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1381 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1382 get_capacity(md->disk)))
1386 * After a read error, we redo the request one (native) sector
1387 * at a time in order to accurately determine which
1388 * sectors can be read successfully.
1391 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1394 * Some controllers have HW issues while operating
1395 * in multiple I/O mode
1397 if (card->host->ops->multi_io_quirk)
1398 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1399 (rq_data_dir(req) == READ) ?
1400 MMC_DATA_READ : MMC_DATA_WRITE,
1405 mmc_apply_rel_rw(brq, card, req);
1406 brq->data.flags |= MMC_DATA_REL_WR;
1410 * Data tag is used only during writing meta data to speed
1411 * up write and any subsequent read of this meta data
1413 do_data_tag = card->ext_csd.data_tag_unit_size &&
1414 (req->cmd_flags & REQ_META) &&
1415 (rq_data_dir(req) == WRITE) &&
1416 ((brq->data.blocks * brq->data.blksz) >=
1417 card->ext_csd.data_tag_unit_size);
1420 brq->data.flags |= MMC_DATA_DAT_TAG;
1422 mmc_set_data_timeout(&brq->data, card);
1424 brq->data.sg = mqrq->sg;
1425 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1428 * Adjust the sg list so it is the same size as the
1431 if (brq->data.blocks != blk_rq_sectors(req)) {
1432 int i, data_size = brq->data.blocks << 9;
1433 struct scatterlist *sg;
1435 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1436 data_size -= sg->length;
1437 if (data_size <= 0) {
1438 sg->length += data_size;
1443 brq->data.sg_len = i;
1447 *do_rel_wr_p = do_rel_wr;
1450 *do_data_tag_p = do_data_tag;
1453 #define MMC_CQE_RETRIES 2
1455 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1457 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1458 struct mmc_request *mrq = &mqrq->brq.mrq;
1459 struct request_queue *q = req->q;
1460 struct mmc_host *host = mq->card->host;
1461 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1462 unsigned long flags;
1466 mmc_cqe_post_req(host, mrq);
1468 if (mrq->cmd && mrq->cmd->error)
1469 err = mrq->cmd->error;
1470 else if (mrq->data && mrq->data->error)
1471 err = mrq->data->error;
1476 if (mqrq->retries++ < MMC_CQE_RETRIES)
1477 blk_mq_requeue_request(req, true);
1479 blk_mq_end_request(req, BLK_STS_IOERR);
1480 } else if (mrq->data) {
1481 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1482 blk_mq_requeue_request(req, true);
1484 __blk_mq_end_request(req, BLK_STS_OK);
1486 blk_mq_end_request(req, BLK_STS_OK);
1489 spin_lock_irqsave(&mq->lock, flags);
1491 mq->in_flight[issue_type] -= 1;
1493 put_card = (mmc_tot_in_flight(mq) == 0);
1495 mmc_cqe_check_busy(mq);
1497 spin_unlock_irqrestore(&mq->lock, flags);
1500 blk_mq_run_hw_queues(q, true);
1503 mmc_put_card(mq->card, &mq->ctx);
1506 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1508 struct mmc_card *card = mq->card;
1509 struct mmc_host *host = card->host;
1512 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1514 err = mmc_cqe_recovery(host);
1516 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1517 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1519 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1522 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1524 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1526 struct request *req = mmc_queue_req_to_req(mqrq);
1527 struct request_queue *q = req->q;
1528 struct mmc_queue *mq = q->queuedata;
1531 * Block layer timeouts race with completions which means the normal
1532 * completion path cannot be used during recovery.
1534 if (mq->in_recovery)
1535 mmc_blk_cqe_complete_rq(mq, req);
1536 else if (likely(!blk_should_fake_timeout(req->q)))
1537 blk_mq_complete_request(req);
1540 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1542 mrq->done = mmc_blk_cqe_req_done;
1543 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1545 return mmc_cqe_start_req(host, mrq);
1548 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1549 struct request *req)
1551 struct mmc_blk_request *brq = &mqrq->brq;
1553 memset(brq, 0, sizeof(*brq));
1555 brq->mrq.cmd = &brq->cmd;
1556 brq->mrq.tag = req->tag;
1561 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1563 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1564 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1566 mrq->cmd->opcode = MMC_SWITCH;
1567 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1568 (EXT_CSD_FLUSH_CACHE << 16) |
1570 EXT_CSD_CMD_SET_NORMAL;
1571 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1573 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1576 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1578 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1579 struct mmc_host *host = mq->card->host;
1582 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1583 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1584 mmc_pre_req(host, &mqrq->brq.mrq);
1586 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1588 mmc_post_req(host, &mqrq->brq.mrq, err);
1593 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1595 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1596 struct mmc_host *host = mq->card->host;
1598 if (host->hsq_enabled)
1599 return mmc_blk_hsq_issue_rw_rq(mq, req);
1601 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1603 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1606 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1607 struct mmc_card *card,
1609 struct mmc_queue *mq)
1611 u32 readcmd, writecmd;
1612 struct mmc_blk_request *brq = &mqrq->brq;
1613 struct request *req = mmc_queue_req_to_req(mqrq);
1614 struct mmc_blk_data *md = mq->blkdata;
1615 bool do_rel_wr, do_data_tag;
1617 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1619 brq->mrq.cmd = &brq->cmd;
1621 brq->cmd.arg = blk_rq_pos(req);
1622 if (!mmc_card_blockaddr(card))
1624 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1626 if (brq->data.blocks > 1 || do_rel_wr) {
1627 /* SPI multiblock writes terminate using a special
1628 * token, not a STOP_TRANSMISSION request.
1630 if (!mmc_host_is_spi(card->host) ||
1631 rq_data_dir(req) == READ)
1632 brq->mrq.stop = &brq->stop;
1633 readcmd = MMC_READ_MULTIPLE_BLOCK;
1634 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1636 brq->mrq.stop = NULL;
1637 readcmd = MMC_READ_SINGLE_BLOCK;
1638 writecmd = MMC_WRITE_BLOCK;
1640 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1643 * Pre-defined multi-block transfers are preferable to
1644 * open ended-ones (and necessary for reliable writes).
1645 * However, it is not sufficient to just send CMD23,
1646 * and avoid the final CMD12, as on an error condition
1647 * CMD12 (stop) needs to be sent anyway. This, coupled
1648 * with Auto-CMD23 enhancements provided by some
1649 * hosts, means that the complexity of dealing
1650 * with this is best left to the host. If CMD23 is
1651 * supported by card and host, we'll fill sbc in and let
1652 * the host deal with handling it correctly. This means
1653 * that for hosts that don't expose MMC_CAP_CMD23, no
1654 * change of behavior will be observed.
1656 * N.B: Some MMC cards experience perf degradation.
1657 * We'll avoid using CMD23-bounded multiblock writes for
1658 * these, while retaining features like reliable writes.
1660 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1661 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1663 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1664 brq->sbc.arg = brq->data.blocks |
1665 (do_rel_wr ? (1 << 31) : 0) |
1666 (do_data_tag ? (1 << 29) : 0);
1667 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1668 brq->mrq.sbc = &brq->sbc;
1672 #define MMC_MAX_RETRIES 5
1673 #define MMC_DATA_RETRIES 2
1674 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1676 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1678 struct mmc_command cmd = {
1679 .opcode = MMC_STOP_TRANSMISSION,
1680 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1681 /* Some hosts wait for busy anyway, so provide a busy timeout */
1682 .busy_timeout = timeout,
1685 return mmc_wait_for_cmd(card->host, &cmd, 5);
1688 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1690 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1691 struct mmc_blk_request *brq = &mqrq->brq;
1692 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1695 mmc_retune_hold_now(card->host);
1697 mmc_blk_send_stop(card, timeout);
1699 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1701 mmc_retune_release(card->host);
1706 #define MMC_READ_SINGLE_RETRIES 2
1708 /* Single (native) sector read during recovery */
1709 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1711 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1712 struct mmc_request *mrq = &mqrq->brq.mrq;
1713 struct mmc_card *card = mq->card;
1714 struct mmc_host *host = card->host;
1715 blk_status_t error = BLK_STS_OK;
1716 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1723 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1724 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1726 mmc_wait_for_req(host, mrq);
1728 err = mmc_send_status(card, &status);
1732 if (!mmc_host_is_spi(host) &&
1733 !mmc_ready_for_data(status)) {
1734 err = mmc_blk_fix_state(card, req);
1739 if (!mrq->cmd->error)
1743 if (mrq->cmd->error ||
1745 (!mmc_host_is_spi(host) &&
1746 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1747 error = BLK_STS_IOERR;
1751 } while (blk_update_request(req, error, bytes_per_read));
1756 mrq->data->bytes_xfered = 0;
1757 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1758 /* Let it try the remaining request again */
1759 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1760 mqrq->retries = MMC_MAX_RETRIES - 1;
1763 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1765 return !!brq->mrq.sbc;
1768 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1770 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1774 * Check for errors the host controller driver might not have seen such as
1775 * response mode errors or invalid card state.
1777 static bool mmc_blk_status_error(struct request *req, u32 status)
1779 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1780 struct mmc_blk_request *brq = &mqrq->brq;
1781 struct mmc_queue *mq = req->q->queuedata;
1784 if (mmc_host_is_spi(mq->card->host))
1787 stop_err_bits = mmc_blk_stop_err_bits(brq);
1789 return brq->cmd.resp[0] & CMD_ERRORS ||
1790 brq->stop.resp[0] & stop_err_bits ||
1791 status & stop_err_bits ||
1792 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1795 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1797 return !brq->sbc.error && !brq->cmd.error &&
1798 !(brq->cmd.resp[0] & CMD_ERRORS);
1802 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1804 * 1. A request that has transferred at least some data is considered
1805 * successful and will be requeued if there is remaining data to
1807 * 2. Otherwise the number of retries is incremented and the request
1808 * will be requeued if there are remaining retries.
1809 * 3. Otherwise the request will be errored out.
1810 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1811 * mqrq->retries. So there are only 4 possible actions here:
1812 * 1. do not accept the bytes_xfered value i.e. set it to zero
1813 * 2. change mqrq->retries to determine the number of retries
1814 * 3. try to reset the card
1815 * 4. read one sector at a time
1817 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1819 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1820 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1821 struct mmc_blk_request *brq = &mqrq->brq;
1822 struct mmc_blk_data *md = mq->blkdata;
1823 struct mmc_card *card = mq->card;
1829 * Some errors the host driver might not have seen. Set the number of
1830 * bytes transferred to zero in that case.
1832 err = __mmc_send_status(card, &status, 0);
1833 if (err || mmc_blk_status_error(req, status))
1834 brq->data.bytes_xfered = 0;
1836 mmc_retune_release(card->host);
1839 * Try again to get the status. This also provides an opportunity for
1843 err = __mmc_send_status(card, &status, 0);
1846 * Nothing more to do after the number of bytes transferred has been
1847 * updated and there is no card.
1849 if (err && mmc_detect_card_removed(card->host))
1852 /* Try to get back to "tran" state */
1853 if (!mmc_host_is_spi(mq->card->host) &&
1854 (err || !mmc_ready_for_data(status)))
1855 err = mmc_blk_fix_state(mq->card, req);
1858 * Special case for SD cards where the card might record the number of
1861 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1862 rq_data_dir(req) == WRITE) {
1863 if (mmc_sd_num_wr_blocks(card, &blocks))
1864 brq->data.bytes_xfered = 0;
1866 brq->data.bytes_xfered = blocks << 9;
1869 /* Reset if the card is in a bad state */
1870 if (!mmc_host_is_spi(mq->card->host) &&
1871 err && mmc_blk_reset(md, card->host, type)) {
1872 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1873 mqrq->retries = MMC_NO_RETRIES;
1878 * If anything was done, just return and if there is anything remaining
1879 * on the request it will get requeued.
1881 if (brq->data.bytes_xfered)
1884 /* Reset before last retry */
1885 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1886 mmc_blk_reset(md, card->host, type))
1889 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1890 if (brq->sbc.error || brq->cmd.error)
1893 /* Reduce the remaining retries for data errors */
1894 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1895 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1899 if (rq_data_dir(req) == READ && brq->data.blocks >
1900 queue_physical_block_size(mq->queue) >> 9) {
1901 /* Read one (native) sector at a time */
1902 mmc_blk_read_single(mq, req);
1907 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1909 mmc_blk_eval_resp_error(brq);
1911 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1912 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1915 static int mmc_spi_err_check(struct mmc_card *card)
1921 * SPI does not have a TRAN state we have to wait on, instead the
1922 * card is ready again when it no longer holds the line LOW.
1923 * We still have to ensure two things here before we know the write
1925 * 1. The card has not disconnected during busy and we actually read our
1926 * own pull-up, thinking it was still connected, so ensure it
1928 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1929 * just reconnected card after being disconnected during busy.
1931 err = __mmc_send_status(card, &status, 0);
1934 /* All R1 and R2 bits of SPI are errors in our case */
1940 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1942 struct mmc_blk_busy_data *data = cb_data;
1946 err = mmc_send_status(data->card, &status);
1950 /* Accumulate response error bits. */
1951 data->status |= status;
1953 *busy = !mmc_ready_for_data(status);
1957 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1959 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1960 struct mmc_blk_busy_data cb_data;
1963 if (rq_data_dir(req) == READ)
1966 if (mmc_host_is_spi(card->host)) {
1967 err = mmc_spi_err_check(card);
1969 mqrq->brq.data.bytes_xfered = 0;
1973 cb_data.card = card;
1975 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1976 &mmc_blk_busy_cb, &cb_data);
1979 * Do not assume data transferred correctly if there are any error bits
1982 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1983 mqrq->brq.data.bytes_xfered = 0;
1984 err = err ? err : -EIO;
1987 /* Copy the exception bit so it will be seen later on */
1988 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1989 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1994 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1995 struct request *req)
1997 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1999 mmc_blk_reset_success(mq->blkdata, type);
2002 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2004 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2005 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2008 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2009 blk_mq_requeue_request(req, true);
2011 __blk_mq_end_request(req, BLK_STS_OK);
2012 } else if (!blk_rq_bytes(req)) {
2013 __blk_mq_end_request(req, BLK_STS_IOERR);
2014 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2015 blk_mq_requeue_request(req, true);
2017 if (mmc_card_removed(mq->card))
2018 req->rq_flags |= RQF_QUIET;
2019 blk_mq_end_request(req, BLK_STS_IOERR);
2023 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2024 struct mmc_queue_req *mqrq)
2026 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2027 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2028 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2031 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2032 struct mmc_queue_req *mqrq)
2034 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2035 mmc_run_bkops(mq->card);
2038 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2040 struct mmc_queue_req *mqrq =
2041 container_of(mrq, struct mmc_queue_req, brq.mrq);
2042 struct request *req = mmc_queue_req_to_req(mqrq);
2043 struct request_queue *q = req->q;
2044 struct mmc_queue *mq = q->queuedata;
2045 struct mmc_host *host = mq->card->host;
2046 unsigned long flags;
2048 if (mmc_blk_rq_error(&mqrq->brq) ||
2049 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2050 spin_lock_irqsave(&mq->lock, flags);
2051 mq->recovery_needed = true;
2052 mq->recovery_req = req;
2053 spin_unlock_irqrestore(&mq->lock, flags);
2055 host->cqe_ops->cqe_recovery_start(host);
2057 schedule_work(&mq->recovery_work);
2061 mmc_blk_rw_reset_success(mq, req);
2064 * Block layer timeouts race with completions which means the normal
2065 * completion path cannot be used during recovery.
2067 if (mq->in_recovery)
2068 mmc_blk_cqe_complete_rq(mq, req);
2069 else if (likely(!blk_should_fake_timeout(req->q)))
2070 blk_mq_complete_request(req);
2073 void mmc_blk_mq_complete(struct request *req)
2075 struct mmc_queue *mq = req->q->queuedata;
2076 struct mmc_host *host = mq->card->host;
2078 if (host->cqe_enabled)
2079 mmc_blk_cqe_complete_rq(mq, req);
2080 else if (likely(!blk_should_fake_timeout(req->q)))
2081 mmc_blk_mq_complete_rq(mq, req);
2084 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2085 struct request *req)
2087 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2088 struct mmc_host *host = mq->card->host;
2090 if (mmc_blk_rq_error(&mqrq->brq) ||
2091 mmc_blk_card_busy(mq->card, req)) {
2092 mmc_blk_mq_rw_recovery(mq, req);
2094 mmc_blk_rw_reset_success(mq, req);
2095 mmc_retune_release(host);
2098 mmc_blk_urgent_bkops(mq, mqrq);
2101 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2103 unsigned long flags;
2106 spin_lock_irqsave(&mq->lock, flags);
2108 mq->in_flight[issue_type] -= 1;
2110 put_card = (mmc_tot_in_flight(mq) == 0);
2112 spin_unlock_irqrestore(&mq->lock, flags);
2115 mmc_put_card(mq->card, &mq->ctx);
2118 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2121 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2122 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2123 struct mmc_request *mrq = &mqrq->brq.mrq;
2124 struct mmc_host *host = mq->card->host;
2126 mmc_post_req(host, mrq, 0);
2129 * Block layer timeouts race with completions which means the normal
2130 * completion path cannot be used during recovery.
2132 if (mq->in_recovery) {
2133 mmc_blk_mq_complete_rq(mq, req);
2134 } else if (likely(!blk_should_fake_timeout(req->q))) {
2136 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2138 blk_mq_complete_request(req);
2141 mmc_blk_mq_dec_in_flight(mq, issue_type);
2144 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2146 struct request *req = mq->recovery_req;
2147 struct mmc_host *host = mq->card->host;
2148 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2150 mq->recovery_req = NULL;
2151 mq->rw_wait = false;
2153 if (mmc_blk_rq_error(&mqrq->brq)) {
2154 mmc_retune_hold_now(host);
2155 mmc_blk_mq_rw_recovery(mq, req);
2158 mmc_blk_urgent_bkops(mq, mqrq);
2160 mmc_blk_mq_post_req(mq, req, true);
2163 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2164 struct request **prev_req)
2166 if (mmc_host_done_complete(mq->card->host))
2169 mutex_lock(&mq->complete_lock);
2171 if (!mq->complete_req)
2174 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2177 *prev_req = mq->complete_req;
2179 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2181 mq->complete_req = NULL;
2184 mutex_unlock(&mq->complete_lock);
2187 void mmc_blk_mq_complete_work(struct work_struct *work)
2189 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2192 mmc_blk_mq_complete_prev_req(mq, NULL);
2195 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2197 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2199 struct request *req = mmc_queue_req_to_req(mqrq);
2200 struct request_queue *q = req->q;
2201 struct mmc_queue *mq = q->queuedata;
2202 struct mmc_host *host = mq->card->host;
2203 unsigned long flags;
2205 if (!mmc_host_done_complete(host)) {
2209 * We cannot complete the request in this context, so record
2210 * that there is a request to complete, and that a following
2211 * request does not need to wait (although it does need to
2212 * complete complete_req first).
2214 spin_lock_irqsave(&mq->lock, flags);
2215 mq->complete_req = req;
2216 mq->rw_wait = false;
2217 waiting = mq->waiting;
2218 spin_unlock_irqrestore(&mq->lock, flags);
2221 * If 'waiting' then the waiting task will complete this
2222 * request, otherwise queue a work to do it. Note that
2223 * complete_work may still race with the dispatch of a following
2229 queue_work(mq->card->complete_wq, &mq->complete_work);
2234 /* Take the recovery path for errors or urgent background operations */
2235 if (mmc_blk_rq_error(&mqrq->brq) ||
2236 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2237 spin_lock_irqsave(&mq->lock, flags);
2238 mq->recovery_needed = true;
2239 mq->recovery_req = req;
2240 spin_unlock_irqrestore(&mq->lock, flags);
2242 schedule_work(&mq->recovery_work);
2246 mmc_blk_rw_reset_success(mq, req);
2248 mq->rw_wait = false;
2251 /* context unknown */
2252 mmc_blk_mq_post_req(mq, req, false);
2255 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2257 unsigned long flags;
2261 * Wait while there is another request in progress, but not if recovery
2262 * is needed. Also indicate whether there is a request waiting to start.
2264 spin_lock_irqsave(&mq->lock, flags);
2265 if (mq->recovery_needed) {
2269 done = !mq->rw_wait;
2271 mq->waiting = !done;
2272 spin_unlock_irqrestore(&mq->lock, flags);
2277 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2281 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2283 /* Always complete the previous request if there is one */
2284 mmc_blk_mq_complete_prev_req(mq, prev_req);
2289 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2290 struct request *req)
2292 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2293 struct mmc_host *host = mq->card->host;
2294 struct request *prev_req = NULL;
2297 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2299 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2301 mmc_pre_req(host, &mqrq->brq.mrq);
2303 err = mmc_blk_rw_wait(mq, &prev_req);
2309 err = mmc_start_request(host, &mqrq->brq.mrq);
2312 mmc_blk_mq_post_req(mq, prev_req, true);
2315 mq->rw_wait = false;
2317 /* Release re-tuning here where there is no synchronization required */
2318 if (err || mmc_host_done_complete(host))
2319 mmc_retune_release(host);
2323 mmc_post_req(host, &mqrq->brq.mrq, err);
2328 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2330 if (host->cqe_enabled)
2331 return host->cqe_ops->cqe_wait_for_idle(host);
2333 return mmc_blk_rw_wait(mq, NULL);
2336 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2338 struct mmc_blk_data *md = mq->blkdata;
2339 struct mmc_card *card = md->queue.card;
2340 struct mmc_host *host = card->host;
2343 ret = mmc_blk_part_switch(card, md->part_type);
2345 return MMC_REQ_FAILED_TO_START;
2347 switch (mmc_issue_type(mq, req)) {
2348 case MMC_ISSUE_SYNC:
2349 ret = mmc_blk_wait_for_idle(mq, host);
2351 return MMC_REQ_BUSY;
2352 switch (req_op(req)) {
2354 case REQ_OP_DRV_OUT:
2355 mmc_blk_issue_drv_op(mq, req);
2357 case REQ_OP_DISCARD:
2358 mmc_blk_issue_discard_rq(mq, req);
2360 case REQ_OP_SECURE_ERASE:
2361 mmc_blk_issue_secdiscard_rq(mq, req);
2363 case REQ_OP_WRITE_ZEROES:
2364 mmc_blk_issue_trim_rq(mq, req);
2367 mmc_blk_issue_flush(mq, req);
2371 return MMC_REQ_FAILED_TO_START;
2373 return MMC_REQ_FINISHED;
2374 case MMC_ISSUE_DCMD:
2375 case MMC_ISSUE_ASYNC:
2376 switch (req_op(req)) {
2378 if (!mmc_cache_enabled(host)) {
2379 blk_mq_end_request(req, BLK_STS_OK);
2380 return MMC_REQ_FINISHED;
2382 ret = mmc_blk_cqe_issue_flush(mq, req);
2386 if (host->cqe_enabled)
2387 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2389 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2396 return MMC_REQ_STARTED;
2397 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2400 return MMC_REQ_FAILED_TO_START;
2404 static inline int mmc_blk_readonly(struct mmc_card *card)
2406 return mmc_card_readonly(card) ||
2407 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2410 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2411 struct device *parent,
2414 const char *subname,
2416 unsigned int part_type)
2418 struct mmc_blk_data *md;
2421 bool cache_enabled = false;
2422 bool fua_enabled = false;
2424 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2427 * We get -ENOSPC because there are no more any available
2428 * devidx. The reason may be that, either userspace haven't yet
2429 * unmounted the partitions, which postpones mmc_blk_release()
2430 * from being called, or the device has more partitions than
2433 if (devidx == -ENOSPC)
2434 dev_err(mmc_dev(card->host),
2435 "no more device IDs available\n");
2437 return ERR_PTR(devidx);
2440 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2446 md->area_type = area_type;
2449 * Set the read-only status based on the supported commands
2450 * and the write protect switch.
2452 md->read_only = mmc_blk_readonly(card);
2454 md->disk = mmc_init_queue(&md->queue, card);
2455 if (IS_ERR(md->disk)) {
2456 ret = PTR_ERR(md->disk);
2460 INIT_LIST_HEAD(&md->part);
2461 INIT_LIST_HEAD(&md->rpmbs);
2462 kref_init(&md->kref);
2464 md->queue.blkdata = md;
2465 md->part_type = part_type;
2467 md->disk->major = MMC_BLOCK_MAJOR;
2468 md->disk->minors = perdev_minors;
2469 md->disk->first_minor = devidx * perdev_minors;
2470 md->disk->fops = &mmc_bdops;
2471 md->disk->private_data = md;
2472 md->parent = parent;
2473 set_disk_ro(md->disk, md->read_only || default_ro);
2474 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2475 md->disk->flags |= GENHD_FL_NO_PART;
2478 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2480 * - be set for removable media with permanent block devices
2481 * - be unset for removable block devices with permanent media
2483 * Since MMC block devices clearly fall under the second
2484 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2485 * should use the block device creation/destruction hotplug
2486 * messages to tell when the card is present.
2489 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2490 "mmcblk%u%s", card->host->index, subname ? subname : "");
2492 set_capacity(md->disk, size);
2494 if (mmc_host_cmd23(card->host)) {
2495 if ((mmc_card_mmc(card) &&
2496 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2497 (mmc_card_sd(card) &&
2498 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2499 md->flags |= MMC_BLK_CMD23;
2502 if (md->flags & MMC_BLK_CMD23 &&
2503 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2504 card->ext_csd.rel_sectors)) {
2505 md->flags |= MMC_BLK_REL_WR;
2507 cache_enabled = true;
2509 if (mmc_cache_enabled(card->host))
2510 cache_enabled = true;
2512 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2514 string_get_size((u64)size, 512, STRING_UNITS_2,
2515 cap_str, sizeof(cap_str));
2516 pr_info("%s: %s %s %s%s\n",
2517 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2518 cap_str, md->read_only ? " (ro)" : "");
2520 /* used in ->open, must be set before add_disk: */
2521 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2522 dev_set_drvdata(&card->dev, md);
2523 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2530 blk_mq_free_tag_set(&md->queue.tag_set);
2534 ida_simple_remove(&mmc_blk_ida, devidx);
2535 return ERR_PTR(ret);
2538 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2542 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2544 * The EXT_CSD sector count is in number or 512 byte
2547 size = card->ext_csd.sectors;
2550 * The CSD capacity field is in units of read_blkbits.
2551 * set_capacity takes units of 512 bytes.
2553 size = (typeof(sector_t))card->csd.capacity
2554 << (card->csd.read_blkbits - 9);
2557 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2558 MMC_BLK_DATA_AREA_MAIN, 0);
2561 static int mmc_blk_alloc_part(struct mmc_card *card,
2562 struct mmc_blk_data *md,
2563 unsigned int part_type,
2566 const char *subname,
2569 struct mmc_blk_data *part_md;
2571 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2572 subname, area_type, part_type);
2573 if (IS_ERR(part_md))
2574 return PTR_ERR(part_md);
2575 list_add(&part_md->part, &md->part);
2581 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2582 * @filp: the character device file
2583 * @cmd: the ioctl() command
2584 * @arg: the argument from userspace
2586 * This will essentially just redirect the ioctl()s coming in over to
2587 * the main block device spawning the RPMB character device.
2589 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2592 struct mmc_rpmb_data *rpmb = filp->private_data;
2597 ret = mmc_blk_ioctl_cmd(rpmb->md,
2598 (struct mmc_ioc_cmd __user *)arg,
2601 case MMC_IOC_MULTI_CMD:
2602 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2603 (struct mmc_ioc_multi_cmd __user *)arg,
2614 #ifdef CONFIG_COMPAT
2615 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2618 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2622 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2624 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2625 struct mmc_rpmb_data, chrdev);
2627 get_device(&rpmb->dev);
2628 filp->private_data = rpmb;
2629 mmc_blk_get(rpmb->md->disk);
2631 return nonseekable_open(inode, filp);
2634 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2636 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2637 struct mmc_rpmb_data, chrdev);
2639 mmc_blk_put(rpmb->md);
2640 put_device(&rpmb->dev);
2645 static const struct file_operations mmc_rpmb_fileops = {
2646 .release = mmc_rpmb_chrdev_release,
2647 .open = mmc_rpmb_chrdev_open,
2648 .owner = THIS_MODULE,
2649 .llseek = no_llseek,
2650 .unlocked_ioctl = mmc_rpmb_ioctl,
2651 #ifdef CONFIG_COMPAT
2652 .compat_ioctl = mmc_rpmb_ioctl_compat,
2656 static void mmc_blk_rpmb_device_release(struct device *dev)
2658 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2660 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2664 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2665 struct mmc_blk_data *md,
2666 unsigned int part_index,
2668 const char *subname)
2671 char rpmb_name[DISK_NAME_LEN];
2673 struct mmc_rpmb_data *rpmb;
2675 /* This creates the minor number for the RPMB char device */
2676 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2680 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2682 ida_simple_remove(&mmc_rpmb_ida, devidx);
2686 snprintf(rpmb_name, sizeof(rpmb_name),
2687 "mmcblk%u%s", card->host->index, subname ? subname : "");
2690 rpmb->part_index = part_index;
2691 rpmb->dev.init_name = rpmb_name;
2692 rpmb->dev.bus = &mmc_rpmb_bus_type;
2693 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2694 rpmb->dev.parent = &card->dev;
2695 rpmb->dev.release = mmc_blk_rpmb_device_release;
2696 device_initialize(&rpmb->dev);
2697 dev_set_drvdata(&rpmb->dev, rpmb);
2700 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2701 rpmb->chrdev.owner = THIS_MODULE;
2702 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2704 pr_err("%s: could not add character device\n", rpmb_name);
2705 goto out_put_device;
2708 list_add(&rpmb->node, &md->rpmbs);
2710 string_get_size((u64)size, 512, STRING_UNITS_2,
2711 cap_str, sizeof(cap_str));
2713 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2714 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2715 MAJOR(mmc_rpmb_devt), rpmb->id);
2720 put_device(&rpmb->dev);
2724 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2727 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2728 put_device(&rpmb->dev);
2731 /* MMC Physical partitions consist of two boot partitions and
2732 * up to four general purpose partitions.
2733 * For each partition enabled in EXT_CSD a block device will be allocatedi
2734 * to provide access to the partition.
2737 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2741 if (!mmc_card_mmc(card))
2744 for (idx = 0; idx < card->nr_parts; idx++) {
2745 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2747 * RPMB partitions does not provide block access, they
2748 * are only accessed using ioctl():s. Thus create
2749 * special RPMB block devices that do not have a
2750 * backing block queue for these.
2752 ret = mmc_blk_alloc_rpmb_part(card, md,
2753 card->part[idx].part_cfg,
2754 card->part[idx].size >> 9,
2755 card->part[idx].name);
2758 } else if (card->part[idx].size) {
2759 ret = mmc_blk_alloc_part(card, md,
2760 card->part[idx].part_cfg,
2761 card->part[idx].size >> 9,
2762 card->part[idx].force_ro,
2763 card->part[idx].name,
2764 card->part[idx].area_type);
2773 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2776 * Flush remaining requests and free queues. It is freeing the queue
2777 * that stops new requests from being accepted.
2779 del_gendisk(md->disk);
2780 mmc_cleanup_queue(&md->queue);
2784 static void mmc_blk_remove_parts(struct mmc_card *card,
2785 struct mmc_blk_data *md)
2787 struct list_head *pos, *q;
2788 struct mmc_blk_data *part_md;
2789 struct mmc_rpmb_data *rpmb;
2791 /* Remove RPMB partitions */
2792 list_for_each_safe(pos, q, &md->rpmbs) {
2793 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2795 mmc_blk_remove_rpmb_part(rpmb);
2797 /* Remove block partitions */
2798 list_for_each_safe(pos, q, &md->part) {
2799 part_md = list_entry(pos, struct mmc_blk_data, part);
2801 mmc_blk_remove_req(part_md);
2805 #ifdef CONFIG_DEBUG_FS
2807 static int mmc_dbg_card_status_get(void *data, u64 *val)
2809 struct mmc_card *card = data;
2810 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2811 struct mmc_queue *mq = &md->queue;
2812 struct request *req;
2815 /* Ask the block layer about the card status */
2816 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2818 return PTR_ERR(req);
2819 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2820 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2821 blk_execute_rq(req, false);
2822 ret = req_to_mmc_queue_req(req)->drv_op_result;
2827 blk_mq_free_request(req);
2831 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2834 /* That is two digits * 512 + 1 for newline */
2835 #define EXT_CSD_STR_LEN 1025
2837 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2839 struct mmc_card *card = inode->i_private;
2840 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2841 struct mmc_queue *mq = &md->queue;
2842 struct request *req;
2848 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2852 /* Ask the block layer for the EXT CSD */
2853 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2858 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2859 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2860 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2861 blk_execute_rq(req, false);
2862 err = req_to_mmc_queue_req(req)->drv_op_result;
2863 blk_mq_free_request(req);
2865 pr_err("FAILED %d\n", err);
2869 for (i = 0; i < 512; i++)
2870 n += sprintf(buf + n, "%02x", ext_csd[i]);
2871 n += sprintf(buf + n, "\n");
2873 if (n != EXT_CSD_STR_LEN) {
2879 filp->private_data = buf;
2888 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2889 size_t cnt, loff_t *ppos)
2891 char *buf = filp->private_data;
2893 return simple_read_from_buffer(ubuf, cnt, ppos,
2894 buf, EXT_CSD_STR_LEN);
2897 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2899 kfree(file->private_data);
2903 static const struct file_operations mmc_dbg_ext_csd_fops = {
2904 .open = mmc_ext_csd_open,
2905 .read = mmc_ext_csd_read,
2906 .release = mmc_ext_csd_release,
2907 .llseek = default_llseek,
2910 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2912 struct dentry *root;
2914 if (!card->debugfs_root)
2917 root = card->debugfs_root;
2919 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2921 debugfs_create_file_unsafe("status", 0400, root,
2923 &mmc_dbg_card_status_fops);
2926 if (mmc_card_mmc(card)) {
2927 md->ext_csd_dentry =
2928 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2929 &mmc_dbg_ext_csd_fops);
2933 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2934 struct mmc_blk_data *md)
2936 if (!card->debugfs_root)
2939 debugfs_remove(md->status_dentry);
2940 md->status_dentry = NULL;
2942 debugfs_remove(md->ext_csd_dentry);
2943 md->ext_csd_dentry = NULL;
2948 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2952 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2953 struct mmc_blk_data *md)
2957 #endif /* CONFIG_DEBUG_FS */
2959 static int mmc_blk_probe(struct mmc_card *card)
2961 struct mmc_blk_data *md;
2965 * Check that the card supports the command class(es) we need.
2967 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2970 mmc_fixup_device(card, mmc_blk_fixups);
2972 card->complete_wq = alloc_workqueue("mmc_complete",
2973 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2974 if (!card->complete_wq) {
2975 pr_err("Failed to create mmc completion workqueue");
2979 md = mmc_blk_alloc(card);
2985 ret = mmc_blk_alloc_parts(card, md);
2989 /* Add two debugfs entries */
2990 mmc_blk_add_debugfs(card, md);
2992 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2993 pm_runtime_use_autosuspend(&card->dev);
2996 * Don't enable runtime PM for SD-combo cards here. Leave that
2997 * decision to be taken during the SDIO init sequence instead.
2999 if (!mmc_card_sd_combo(card)) {
3000 pm_runtime_set_active(&card->dev);
3001 pm_runtime_enable(&card->dev);
3007 mmc_blk_remove_parts(card, md);
3008 mmc_blk_remove_req(md);
3010 destroy_workqueue(card->complete_wq);
3014 static void mmc_blk_remove(struct mmc_card *card)
3016 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3018 mmc_blk_remove_debugfs(card, md);
3019 mmc_blk_remove_parts(card, md);
3020 pm_runtime_get_sync(&card->dev);
3021 if (md->part_curr != md->part_type) {
3022 mmc_claim_host(card->host);
3023 mmc_blk_part_switch(card, md->part_type);
3024 mmc_release_host(card->host);
3026 if (!mmc_card_sd_combo(card))
3027 pm_runtime_disable(&card->dev);
3028 pm_runtime_put_noidle(&card->dev);
3029 mmc_blk_remove_req(md);
3030 destroy_workqueue(card->complete_wq);
3033 static int _mmc_blk_suspend(struct mmc_card *card)
3035 struct mmc_blk_data *part_md;
3036 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3039 mmc_queue_suspend(&md->queue);
3040 list_for_each_entry(part_md, &md->part, part) {
3041 mmc_queue_suspend(&part_md->queue);
3047 static void mmc_blk_shutdown(struct mmc_card *card)
3049 _mmc_blk_suspend(card);
3052 #ifdef CONFIG_PM_SLEEP
3053 static int mmc_blk_suspend(struct device *dev)
3055 struct mmc_card *card = mmc_dev_to_card(dev);
3057 return _mmc_blk_suspend(card);
3060 static int mmc_blk_resume(struct device *dev)
3062 struct mmc_blk_data *part_md;
3063 struct mmc_blk_data *md = dev_get_drvdata(dev);
3067 * Resume involves the card going into idle state,
3068 * so current partition is always the main one.
3070 md->part_curr = md->part_type;
3071 mmc_queue_resume(&md->queue);
3072 list_for_each_entry(part_md, &md->part, part) {
3073 mmc_queue_resume(&part_md->queue);
3080 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3082 static struct mmc_driver mmc_driver = {
3085 .pm = &mmc_blk_pm_ops,
3087 .probe = mmc_blk_probe,
3088 .remove = mmc_blk_remove,
3089 .shutdown = mmc_blk_shutdown,
3092 static int __init mmc_blk_init(void)
3096 res = bus_register(&mmc_rpmb_bus_type);
3098 pr_err("mmcblk: could not register RPMB bus type\n");
3101 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3103 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3107 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3108 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3110 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3112 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3114 goto out_chrdev_unreg;
3116 res = mmc_register_driver(&mmc_driver);
3118 goto out_blkdev_unreg;
3123 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3125 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3127 bus_unregister(&mmc_rpmb_bus_type);
3131 static void __exit mmc_blk_exit(void)
3133 mmc_unregister_driver(&mmc_driver);
3134 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3135 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3136 bus_unregister(&mmc_rpmb_bus_type);
3139 module_init(mmc_blk_init);
3140 module_exit(mmc_blk_exit);
3142 MODULE_LICENSE("GPL");
3143 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");