2 * (C) Copyright 2013 ADVANSEE
3 * Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
5 * Based on Dirk Behme's
6 * https://github.com/dirkbehme/u-boot-imx6/blob/28b17e9/drivers/misc/imx_otp.c,
7 * which is based on Freescale's
8 * http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/tree/drivers/misc/imx_otp.c?h=imx_v2009.08_1.1.0&id=9aa74e6,
10 * Copyright (C) 2011 Freescale Semiconductor, Inc.
12 * SPDX-License-Identifier: GPL-2.0+
17 #include <linux/errno.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
23 #define BO_CTRL_WR_UNLOCK 16
24 #define BM_CTRL_WR_UNLOCK 0xffff0000
25 #define BV_CTRL_WR_UNLOCK_KEY 0x3e77
26 #define BM_CTRL_ERROR 0x00000200
27 #define BM_CTRL_BUSY 0x00000100
28 #define BO_CTRL_ADDR 0
30 #define BM_CTRL_ADDR 0x0000000f
31 #define BM_CTRL_RELOAD 0x00000400
33 #define BM_CTRL_ADDR 0x0000007f
37 #define BO_TIMING_FSOURCE 12
38 #define BM_TIMING_FSOURCE 0x0007f000
39 #define BV_TIMING_FSOURCE_NS 1001
40 #define BO_TIMING_PROG 0
41 #define BM_TIMING_PROG 0x00000fff
42 #define BV_TIMING_PROG_US 10
44 #define BO_TIMING_STROBE_READ 16
45 #define BM_TIMING_STROBE_READ 0x003f0000
46 #define BV_TIMING_STROBE_READ_NS 37
47 #define BO_TIMING_RELAX 12
48 #define BM_TIMING_RELAX 0x0000f000
49 #define BV_TIMING_RELAX_NS 17
50 #define BO_TIMING_STROBE_PROG 0
51 #define BM_TIMING_STROBE_PROG 0x00000fff
52 #define BV_TIMING_STROBE_PROG_US 10
55 #define BM_READ_CTRL_READ_FUSE 0x00000001
57 #define BF(value, field) (((value) << BO_##field) & BM_##field)
59 #define WRITE_POSTAMBLE_US 2
61 #if defined(CONFIG_MX6) || defined(CONFIG_VF610)
62 #define FUSE_BANK_SIZE 0x80
65 #elif defined(CONFIG_MX6ULL)
70 #elif defined CONFIG_MX7
71 #define FUSE_BANK_SIZE 0x40
74 #error "Unsupported architecture\n"
77 #if defined(CONFIG_MX6)
80 * There is a hole in shadow registers address map of size 0x100
81 * between bank 5 and bank 6 on iMX6QP, iMX6DQ, iMX6SDL, iMX6SX,
82 * iMX6UL and i.MX6ULL.
83 * Bank 5 ends at 0x6F0 and Bank 6 starts at 0x800. When reading the fuses,
84 * we should account for this hole in address space.
86 * Similar hole exists between bank 14 and bank 15 of size
87 * 0x80 on iMX6QP, iMX6DQ, iMX6SDL and iMX6SX.
88 * Note: iMX6SL has only 0-7 banks and there is no hole.
89 * Note: iMX6UL doesn't have this one.
91 * This function is to covert user input to physical bank index.
92 * Only needed when read fuse, because we use register offset, so
93 * need to calculate real register offset.
94 * When write, no need to consider hole, always use the bank/word
95 * index from fuse map.
97 u32 fuse_bank_physical(int index)
103 } else if (is_mx6ul() || is_mx6ull()) {
104 if (is_mx6ull() && index == 8)
108 phy_index = fuse_bank_physical(5) + (index - 6) + 3;
113 phy_index = fuse_bank_physical(14) + (index - 15) + 2;
115 phy_index = fuse_bank_physical(5) + (index - 6) + 3;
122 u32 fuse_word_physical(u32 bank, u32 word_index)
126 word_index = word_index + 4;
132 u32 fuse_bank_physical(int index)
137 u32 fuse_word_physical(u32 bank, u32 word_index)
144 static void wait_busy(struct ocotp_regs *regs, unsigned int delay_us)
146 while (readl(®s->ctrl) & BM_CTRL_BUSY)
150 static void clear_error(struct ocotp_regs *regs)
152 writel(BM_CTRL_ERROR, ®s->ctrl_clr);
155 static int prepare_access(struct ocotp_regs **regs, u32 bank, u32 word,
156 int assert, const char *caller)
158 *regs = (struct ocotp_regs *)OCOTP_BASE_ADDR;
160 if (bank >= FUSE_BANKS ||
161 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 2 ||
163 printf("mxc_ocotp %s(): Invalid argument\n", caller);
168 if ((bank == 7 || bank == 8) &&
169 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 3) {
170 printf("mxc_ocotp %s(): Invalid argument on 6ULL\n", caller);
183 static int finish_access(struct ocotp_regs *regs, const char *caller)
187 err = !!(readl(®s->ctrl) & BM_CTRL_ERROR);
191 printf("mxc_ocotp %s(): Access protect error\n", caller);
198 static int prepare_read(struct ocotp_regs **regs, u32 bank, u32 word, u32 *val,
201 return prepare_access(regs, bank, word, val != NULL, caller);
204 int fuse_read(u32 bank, u32 word, u32 *val)
206 struct ocotp_regs *regs;
211 ret = prepare_read(®s, bank, word, val, __func__);
215 phy_bank = fuse_bank_physical(bank);
216 phy_word = fuse_word_physical(bank, word);
218 *val = readl(®s->bank[phy_bank].fuse_regs[phy_word << 2]);
220 return finish_access(regs, __func__);
224 static void set_timing(struct ocotp_regs *regs)
230 ipg_clk = mxc_get_clock(MXC_IPG_CLK);
232 fsource = DIV_ROUND_UP((ipg_clk / 1000) * BV_TIMING_FSOURCE_NS,
234 prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_PROG_US, 1000000) + 1;
236 timing = BF(fsource, TIMING_FSOURCE) | BF(prog, TIMING_PROG);
238 clrsetbits_le32(®s->timing, BM_TIMING_FSOURCE | BM_TIMING_PROG,
242 static void set_timing(struct ocotp_regs *regs)
245 u32 relax, strobe_read, strobe_prog;
248 ipg_clk = mxc_get_clock(MXC_IPG_CLK);
250 relax = DIV_ROUND_UP(ipg_clk * BV_TIMING_RELAX_NS, 1000000000) - 1;
251 strobe_read = DIV_ROUND_UP(ipg_clk * BV_TIMING_STROBE_READ_NS,
252 1000000000) + 2 * (relax + 1) - 1;
253 strobe_prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_STROBE_PROG_US,
254 1000000) + 2 * (relax + 1) - 1;
256 timing = BF(strobe_read, TIMING_STROBE_READ) |
257 BF(relax, TIMING_RELAX) |
258 BF(strobe_prog, TIMING_STROBE_PROG);
260 clrsetbits_le32(®s->timing, BM_TIMING_STROBE_READ | BM_TIMING_RELAX |
261 BM_TIMING_STROBE_PROG, timing);
265 static void setup_direct_access(struct ocotp_regs *regs, u32 bank, u32 word,
268 u32 wr_unlock = write ? BV_CTRL_WR_UNLOCK_KEY : 0;
273 /* Bank 7 and Bank 8 only supports 4 words each for i.MX6ULL */
274 if ((is_mx6ull()) && (bank > 7)) {
278 addr = bank << 3 | word;
282 clrsetbits_le32(®s->ctrl, BM_CTRL_WR_UNLOCK | BM_CTRL_ADDR,
283 BF(wr_unlock, CTRL_WR_UNLOCK) |
284 BF(addr, CTRL_ADDR));
287 int fuse_sense(u32 bank, u32 word, u32 *val)
289 struct ocotp_regs *regs;
292 ret = prepare_read(®s, bank, word, val, __func__);
296 setup_direct_access(regs, bank, word, false);
297 writel(BM_READ_CTRL_READ_FUSE, ®s->read_ctrl);
300 *val = readl((®s->read_fuse_data0) + (word << 2));
302 *val = readl(®s->read_fuse_data);
305 return finish_access(regs, __func__);
308 static int prepare_write(struct ocotp_regs **regs, u32 bank, u32 word,
311 return prepare_access(regs, bank, word, true, caller);
314 int fuse_prog(u32 bank, u32 word, u32 val)
316 struct ocotp_regs *regs;
319 ret = prepare_write(®s, bank, word, __func__);
323 setup_direct_access(regs, bank, word, true);
327 writel(0, ®s->data1);
328 writel(0, ®s->data2);
329 writel(0, ®s->data3);
330 writel(val, ®s->data0);
333 writel(val, ®s->data1);
334 writel(0, ®s->data2);
335 writel(0, ®s->data3);
336 writel(0, ®s->data0);
339 writel(0, ®s->data1);
340 writel(val, ®s->data2);
341 writel(0, ®s->data3);
342 writel(0, ®s->data0);
345 writel(0, ®s->data1);
346 writel(0, ®s->data2);
347 writel(val, ®s->data3);
348 writel(0, ®s->data0);
351 wait_busy(regs, BV_TIMING_PROG_US);
353 writel(val, ®s->data);
354 wait_busy(regs, BV_TIMING_STROBE_PROG_US);
356 udelay(WRITE_POSTAMBLE_US);
358 return finish_access(regs, __func__);
361 int fuse_override(u32 bank, u32 word, u32 val)
363 struct ocotp_regs *regs;
368 ret = prepare_write(®s, bank, word, __func__);
372 phy_bank = fuse_bank_physical(bank);
373 phy_word = fuse_word_physical(bank, word);
375 writel(val, ®s->bank[phy_bank].fuse_regs[phy_word << 2]);
377 return finish_access(regs, __func__);