lkdtm/heap: Hide allocation size from -Warray-bounds
[platform/kernel/linux-starfive.git] / drivers / misc / lkdtm / heap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/sched.h>
10
11 static struct kmem_cache *double_free_cache;
12 static struct kmem_cache *a_cache;
13 static struct kmem_cache *b_cache;
14
15 /*
16  * Using volatile here means the compiler cannot ever make assumptions
17  * about this value. This means compile-time length checks involving
18  * this variable cannot be performed; only run-time checks.
19  */
20 static volatile int __offset = 1;
21
22 /*
23  * If there aren't guard pages, it's likely that a consecutive allocation will
24  * let us overflow into the second allocation without overwriting something real.
25  *
26  * This should always be caught because there is an unconditional unmapped
27  * page after vmap allocations.
28  */
29 static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
30 {
31         char *one, *two;
32
33         one = vzalloc(PAGE_SIZE);
34         two = vzalloc(PAGE_SIZE);
35
36         pr_info("Attempting vmalloc linear overflow ...\n");
37         memset(one, 0xAA, PAGE_SIZE + __offset);
38
39         vfree(two);
40         vfree(one);
41 }
42
43 /*
44  * This tries to stay within the next largest power-of-2 kmalloc cache
45  * to avoid actually overwriting anything important if it's not detected
46  * correctly.
47  *
48  * This should get caught by either memory tagging, KASan, or by using
49  * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
50  */
51 static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
52 {
53         size_t len = 1020;
54         u32 *data = kmalloc(len, GFP_KERNEL);
55         if (!data)
56                 return;
57
58         pr_info("Attempting slab linear overflow ...\n");
59         OPTIMIZER_HIDE_VAR(data);
60         data[1024 / sizeof(u32)] = 0x12345678;
61         kfree(data);
62 }
63
64 static void lkdtm_WRITE_AFTER_FREE(void)
65 {
66         int *base, *again;
67         size_t len = 1024;
68         /*
69          * The slub allocator uses the first word to store the free
70          * pointer in some configurations. Use the middle of the
71          * allocation to avoid running into the freelist
72          */
73         size_t offset = (len / sizeof(*base)) / 2;
74
75         base = kmalloc(len, GFP_KERNEL);
76         if (!base)
77                 return;
78         pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
79         pr_info("Attempting bad write to freed memory at %p\n",
80                 &base[offset]);
81         kfree(base);
82         base[offset] = 0x0abcdef0;
83         /* Attempt to notice the overwrite. */
84         again = kmalloc(len, GFP_KERNEL);
85         kfree(again);
86         if (again != base)
87                 pr_info("Hmm, didn't get the same memory range.\n");
88 }
89
90 static void lkdtm_READ_AFTER_FREE(void)
91 {
92         int *base, *val, saw;
93         size_t len = 1024;
94         /*
95          * The slub allocator will use the either the first word or
96          * the middle of the allocation to store the free pointer,
97          * depending on configurations. Store in the second word to
98          * avoid running into the freelist.
99          */
100         size_t offset = sizeof(*base);
101
102         base = kmalloc(len, GFP_KERNEL);
103         if (!base) {
104                 pr_info("Unable to allocate base memory.\n");
105                 return;
106         }
107
108         val = kmalloc(len, GFP_KERNEL);
109         if (!val) {
110                 pr_info("Unable to allocate val memory.\n");
111                 kfree(base);
112                 return;
113         }
114
115         *val = 0x12345678;
116         base[offset] = *val;
117         pr_info("Value in memory before free: %x\n", base[offset]);
118
119         kfree(base);
120
121         pr_info("Attempting bad read from freed memory\n");
122         saw = base[offset];
123         if (saw != *val) {
124                 /* Good! Poisoning happened, so declare a win. */
125                 pr_info("Memory correctly poisoned (%x)\n", saw);
126         } else {
127                 pr_err("FAIL: Memory was not poisoned!\n");
128                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
129         }
130
131         kfree(val);
132 }
133
134 static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
135 {
136         unsigned long p = __get_free_page(GFP_KERNEL);
137         if (!p) {
138                 pr_info("Unable to allocate free page\n");
139                 return;
140         }
141
142         pr_info("Writing to the buddy page before free\n");
143         memset((void *)p, 0x3, PAGE_SIZE);
144         free_page(p);
145         schedule();
146         pr_info("Attempting bad write to the buddy page after free\n");
147         memset((void *)p, 0x78, PAGE_SIZE);
148         /* Attempt to notice the overwrite. */
149         p = __get_free_page(GFP_KERNEL);
150         free_page(p);
151         schedule();
152 }
153
154 static void lkdtm_READ_BUDDY_AFTER_FREE(void)
155 {
156         unsigned long p = __get_free_page(GFP_KERNEL);
157         int saw, *val;
158         int *base;
159
160         if (!p) {
161                 pr_info("Unable to allocate free page\n");
162                 return;
163         }
164
165         val = kmalloc(1024, GFP_KERNEL);
166         if (!val) {
167                 pr_info("Unable to allocate val memory.\n");
168                 free_page(p);
169                 return;
170         }
171
172         base = (int *)p;
173
174         *val = 0x12345678;
175         base[0] = *val;
176         pr_info("Value in memory before free: %x\n", base[0]);
177         free_page(p);
178         pr_info("Attempting to read from freed memory\n");
179         saw = base[0];
180         if (saw != *val) {
181                 /* Good! Poisoning happened, so declare a win. */
182                 pr_info("Memory correctly poisoned (%x)\n", saw);
183         } else {
184                 pr_err("FAIL: Buddy page was not poisoned!\n");
185                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
186         }
187
188         kfree(val);
189 }
190
191 static void lkdtm_SLAB_INIT_ON_ALLOC(void)
192 {
193         u8 *first;
194         u8 *val;
195
196         first = kmalloc(512, GFP_KERNEL);
197         if (!first) {
198                 pr_info("Unable to allocate 512 bytes the first time.\n");
199                 return;
200         }
201
202         memset(first, 0xAB, 512);
203         kfree(first);
204
205         val = kmalloc(512, GFP_KERNEL);
206         if (!val) {
207                 pr_info("Unable to allocate 512 bytes the second time.\n");
208                 return;
209         }
210         if (val != first) {
211                 pr_warn("Reallocation missed clobbered memory.\n");
212         }
213
214         if (memchr(val, 0xAB, 512) == NULL) {
215                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
216         } else {
217                 pr_err("FAIL: Slab was not initialized\n");
218                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
219         }
220         kfree(val);
221 }
222
223 static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
224 {
225         u8 *first;
226         u8 *val;
227
228         first = (u8 *)__get_free_page(GFP_KERNEL);
229         if (!first) {
230                 pr_info("Unable to allocate first free page\n");
231                 return;
232         }
233
234         memset(first, 0xAB, PAGE_SIZE);
235         free_page((unsigned long)first);
236
237         val = (u8 *)__get_free_page(GFP_KERNEL);
238         if (!val) {
239                 pr_info("Unable to allocate second free page\n");
240                 return;
241         }
242
243         if (val != first) {
244                 pr_warn("Reallocation missed clobbered memory.\n");
245         }
246
247         if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
248                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
249         } else {
250                 pr_err("FAIL: Slab was not initialized\n");
251                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
252         }
253         free_page((unsigned long)val);
254 }
255
256 static void lkdtm_SLAB_FREE_DOUBLE(void)
257 {
258         int *val;
259
260         val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
261         if (!val) {
262                 pr_info("Unable to allocate double_free_cache memory.\n");
263                 return;
264         }
265
266         /* Just make sure we got real memory. */
267         *val = 0x12345678;
268         pr_info("Attempting double slab free ...\n");
269         kmem_cache_free(double_free_cache, val);
270         kmem_cache_free(double_free_cache, val);
271 }
272
273 static void lkdtm_SLAB_FREE_CROSS(void)
274 {
275         int *val;
276
277         val = kmem_cache_alloc(a_cache, GFP_KERNEL);
278         if (!val) {
279                 pr_info("Unable to allocate a_cache memory.\n");
280                 return;
281         }
282
283         /* Just make sure we got real memory. */
284         *val = 0x12345679;
285         pr_info("Attempting cross-cache slab free ...\n");
286         kmem_cache_free(b_cache, val);
287 }
288
289 static void lkdtm_SLAB_FREE_PAGE(void)
290 {
291         unsigned long p = __get_free_page(GFP_KERNEL);
292
293         pr_info("Attempting non-Slab slab free ...\n");
294         kmem_cache_free(NULL, (void *)p);
295         free_page(p);
296 }
297
298 /*
299  * We have constructors to keep the caches distinctly separated without
300  * needing to boot with "slab_nomerge".
301  */
302 static void ctor_double_free(void *region)
303 { }
304 static void ctor_a(void *region)
305 { }
306 static void ctor_b(void *region)
307 { }
308
309 void __init lkdtm_heap_init(void)
310 {
311         double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
312                                               64, 0, 0, ctor_double_free);
313         a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
314         b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
315 }
316
317 void __exit lkdtm_heap_exit(void)
318 {
319         kmem_cache_destroy(double_free_cache);
320         kmem_cache_destroy(a_cache);
321         kmem_cache_destroy(b_cache);
322 }
323
324 static struct crashtype crashtypes[] = {
325         CRASHTYPE(SLAB_LINEAR_OVERFLOW),
326         CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
327         CRASHTYPE(WRITE_AFTER_FREE),
328         CRASHTYPE(READ_AFTER_FREE),
329         CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
330         CRASHTYPE(READ_BUDDY_AFTER_FREE),
331         CRASHTYPE(SLAB_INIT_ON_ALLOC),
332         CRASHTYPE(BUDDY_INIT_ON_ALLOC),
333         CRASHTYPE(SLAB_FREE_DOUBLE),
334         CRASHTYPE(SLAB_FREE_CROSS),
335         CRASHTYPE(SLAB_FREE_PAGE),
336 };
337
338 struct crashtype_category heap_crashtypes = {
339         .crashtypes = crashtypes,
340         .len        = ARRAY_SIZE(crashtypes),
341 };