5d3b92cd23bd612509ffda71f57f79e08d750214
[platform/kernel/linux-starfive.git] / drivers / misc / lkdtm / heap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/sched.h>
10
11 static struct kmem_cache *double_free_cache;
12 static struct kmem_cache *a_cache;
13 static struct kmem_cache *b_cache;
14
15 /*
16  * Using volatile here means the compiler cannot ever make assumptions
17  * about this value. This means compile-time length checks involving
18  * this variable cannot be performed; only run-time checks.
19  */
20 static volatile int __offset = 1;
21
22 /*
23  * If there aren't guard pages, it's likely that a consecutive allocation will
24  * let us overflow into the second allocation without overwriting something real.
25  *
26  * This should always be caught because there is an unconditional unmapped
27  * page after vmap allocations.
28  */
29 static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
30 {
31         char *one, *two;
32
33         one = vzalloc(PAGE_SIZE);
34         two = vzalloc(PAGE_SIZE);
35
36         pr_info("Attempting vmalloc linear overflow ...\n");
37         memset(one, 0xAA, PAGE_SIZE + __offset);
38
39         vfree(two);
40         vfree(one);
41 }
42
43 /*
44  * This tries to stay within the next largest power-of-2 kmalloc cache
45  * to avoid actually overwriting anything important if it's not detected
46  * correctly.
47  *
48  * This should get caught by either memory tagging, KASan, or by using
49  * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
50  */
51 static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
52 {
53         size_t len = 1020;
54         u32 *data = kmalloc(len, GFP_KERNEL);
55         if (!data)
56                 return;
57
58         pr_info("Attempting slab linear overflow ...\n");
59         data[1024 / sizeof(u32)] = 0x12345678;
60         kfree(data);
61 }
62
63 static void lkdtm_WRITE_AFTER_FREE(void)
64 {
65         int *base, *again;
66         size_t len = 1024;
67         /*
68          * The slub allocator uses the first word to store the free
69          * pointer in some configurations. Use the middle of the
70          * allocation to avoid running into the freelist
71          */
72         size_t offset = (len / sizeof(*base)) / 2;
73
74         base = kmalloc(len, GFP_KERNEL);
75         if (!base)
76                 return;
77         pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
78         pr_info("Attempting bad write to freed memory at %p\n",
79                 &base[offset]);
80         kfree(base);
81         base[offset] = 0x0abcdef0;
82         /* Attempt to notice the overwrite. */
83         again = kmalloc(len, GFP_KERNEL);
84         kfree(again);
85         if (again != base)
86                 pr_info("Hmm, didn't get the same memory range.\n");
87 }
88
89 static void lkdtm_READ_AFTER_FREE(void)
90 {
91         int *base, *val, saw;
92         size_t len = 1024;
93         /*
94          * The slub allocator will use the either the first word or
95          * the middle of the allocation to store the free pointer,
96          * depending on configurations. Store in the second word to
97          * avoid running into the freelist.
98          */
99         size_t offset = sizeof(*base);
100
101         base = kmalloc(len, GFP_KERNEL);
102         if (!base) {
103                 pr_info("Unable to allocate base memory.\n");
104                 return;
105         }
106
107         val = kmalloc(len, GFP_KERNEL);
108         if (!val) {
109                 pr_info("Unable to allocate val memory.\n");
110                 kfree(base);
111                 return;
112         }
113
114         *val = 0x12345678;
115         base[offset] = *val;
116         pr_info("Value in memory before free: %x\n", base[offset]);
117
118         kfree(base);
119
120         pr_info("Attempting bad read from freed memory\n");
121         saw = base[offset];
122         if (saw != *val) {
123                 /* Good! Poisoning happened, so declare a win. */
124                 pr_info("Memory correctly poisoned (%x)\n", saw);
125         } else {
126                 pr_err("FAIL: Memory was not poisoned!\n");
127                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
128         }
129
130         kfree(val);
131 }
132
133 static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
134 {
135         unsigned long p = __get_free_page(GFP_KERNEL);
136         if (!p) {
137                 pr_info("Unable to allocate free page\n");
138                 return;
139         }
140
141         pr_info("Writing to the buddy page before free\n");
142         memset((void *)p, 0x3, PAGE_SIZE);
143         free_page(p);
144         schedule();
145         pr_info("Attempting bad write to the buddy page after free\n");
146         memset((void *)p, 0x78, PAGE_SIZE);
147         /* Attempt to notice the overwrite. */
148         p = __get_free_page(GFP_KERNEL);
149         free_page(p);
150         schedule();
151 }
152
153 static void lkdtm_READ_BUDDY_AFTER_FREE(void)
154 {
155         unsigned long p = __get_free_page(GFP_KERNEL);
156         int saw, *val;
157         int *base;
158
159         if (!p) {
160                 pr_info("Unable to allocate free page\n");
161                 return;
162         }
163
164         val = kmalloc(1024, GFP_KERNEL);
165         if (!val) {
166                 pr_info("Unable to allocate val memory.\n");
167                 free_page(p);
168                 return;
169         }
170
171         base = (int *)p;
172
173         *val = 0x12345678;
174         base[0] = *val;
175         pr_info("Value in memory before free: %x\n", base[0]);
176         free_page(p);
177         pr_info("Attempting to read from freed memory\n");
178         saw = base[0];
179         if (saw != *val) {
180                 /* Good! Poisoning happened, so declare a win. */
181                 pr_info("Memory correctly poisoned (%x)\n", saw);
182         } else {
183                 pr_err("FAIL: Buddy page was not poisoned!\n");
184                 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
185         }
186
187         kfree(val);
188 }
189
190 static void lkdtm_SLAB_INIT_ON_ALLOC(void)
191 {
192         u8 *first;
193         u8 *val;
194
195         first = kmalloc(512, GFP_KERNEL);
196         if (!first) {
197                 pr_info("Unable to allocate 512 bytes the first time.\n");
198                 return;
199         }
200
201         memset(first, 0xAB, 512);
202         kfree(first);
203
204         val = kmalloc(512, GFP_KERNEL);
205         if (!val) {
206                 pr_info("Unable to allocate 512 bytes the second time.\n");
207                 return;
208         }
209         if (val != first) {
210                 pr_warn("Reallocation missed clobbered memory.\n");
211         }
212
213         if (memchr(val, 0xAB, 512) == NULL) {
214                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
215         } else {
216                 pr_err("FAIL: Slab was not initialized\n");
217                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
218         }
219         kfree(val);
220 }
221
222 static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
223 {
224         u8 *first;
225         u8 *val;
226
227         first = (u8 *)__get_free_page(GFP_KERNEL);
228         if (!first) {
229                 pr_info("Unable to allocate first free page\n");
230                 return;
231         }
232
233         memset(first, 0xAB, PAGE_SIZE);
234         free_page((unsigned long)first);
235
236         val = (u8 *)__get_free_page(GFP_KERNEL);
237         if (!val) {
238                 pr_info("Unable to allocate second free page\n");
239                 return;
240         }
241
242         if (val != first) {
243                 pr_warn("Reallocation missed clobbered memory.\n");
244         }
245
246         if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
247                 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
248         } else {
249                 pr_err("FAIL: Slab was not initialized\n");
250                 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
251         }
252         free_page((unsigned long)val);
253 }
254
255 static void lkdtm_SLAB_FREE_DOUBLE(void)
256 {
257         int *val;
258
259         val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
260         if (!val) {
261                 pr_info("Unable to allocate double_free_cache memory.\n");
262                 return;
263         }
264
265         /* Just make sure we got real memory. */
266         *val = 0x12345678;
267         pr_info("Attempting double slab free ...\n");
268         kmem_cache_free(double_free_cache, val);
269         kmem_cache_free(double_free_cache, val);
270 }
271
272 static void lkdtm_SLAB_FREE_CROSS(void)
273 {
274         int *val;
275
276         val = kmem_cache_alloc(a_cache, GFP_KERNEL);
277         if (!val) {
278                 pr_info("Unable to allocate a_cache memory.\n");
279                 return;
280         }
281
282         /* Just make sure we got real memory. */
283         *val = 0x12345679;
284         pr_info("Attempting cross-cache slab free ...\n");
285         kmem_cache_free(b_cache, val);
286 }
287
288 static void lkdtm_SLAB_FREE_PAGE(void)
289 {
290         unsigned long p = __get_free_page(GFP_KERNEL);
291
292         pr_info("Attempting non-Slab slab free ...\n");
293         kmem_cache_free(NULL, (void *)p);
294         free_page(p);
295 }
296
297 /*
298  * We have constructors to keep the caches distinctly separated without
299  * needing to boot with "slab_nomerge".
300  */
301 static void ctor_double_free(void *region)
302 { }
303 static void ctor_a(void *region)
304 { }
305 static void ctor_b(void *region)
306 { }
307
308 void __init lkdtm_heap_init(void)
309 {
310         double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
311                                               64, 0, 0, ctor_double_free);
312         a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
313         b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
314 }
315
316 void __exit lkdtm_heap_exit(void)
317 {
318         kmem_cache_destroy(double_free_cache);
319         kmem_cache_destroy(a_cache);
320         kmem_cache_destroy(b_cache);
321 }
322
323 static struct crashtype crashtypes[] = {
324         CRASHTYPE(SLAB_LINEAR_OVERFLOW),
325         CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
326         CRASHTYPE(WRITE_AFTER_FREE),
327         CRASHTYPE(READ_AFTER_FREE),
328         CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
329         CRASHTYPE(READ_BUDDY_AFTER_FREE),
330         CRASHTYPE(SLAB_INIT_ON_ALLOC),
331         CRASHTYPE(BUDDY_INIT_ON_ALLOC),
332         CRASHTYPE(SLAB_FREE_DOUBLE),
333         CRASHTYPE(SLAB_FREE_CROSS),
334         CRASHTYPE(SLAB_FREE_PAGE),
335 };
336
337 struct crashtype_category heap_crashtypes = {
338         .crashtypes = crashtypes,
339         .len        = ARRAY_SIZE(crashtypes),
340 };