Merge tag 'linux-kselftest-fixes-5.15-rc5' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-rpi.git] / drivers / misc / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51
52         /* There are no internal queues if H/W queues are being used */
53         if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54                 return;
55
56         /* We must increment CI for every queue that will never get a
57          * completion, there are 2 scenarios this can happen:
58          * 1. All queues of a non completion CS will never get a completion.
59          * 2. Internal queues never gets completion.
60          */
61         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62                 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64         }
65 }
66
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84                 u32 ctl, u32 len, u64 ptr)
85 {
86         struct hl_bd *bd;
87
88         bd = q->kernel_address;
89         bd += hl_pi_2_offset(q->pi);
90         bd->ctl = cpu_to_le32(ctl);
91         bd->len = cpu_to_le32(len);
92         bd->ptr = cpu_to_le64(ptr);
93
94         q->pi = hl_queue_inc_ptr(q->pi);
95         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 : pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  : whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117                                 struct hl_hw_queue *q, int num_of_entries,
118                                 bool reserve_cq_entry)
119 {
120         atomic_t *free_slots =
121                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
122         int free_slots_cnt;
123
124         /* Check we have enough space in the queue */
125         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127         if (free_slots_cnt < num_of_entries) {
128                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129                         q->hw_queue_id, num_of_entries);
130                 return -EAGAIN;
131         }
132
133         if (reserve_cq_entry) {
134                 /*
135                  * Check we have enough space in the completion queue
136                  * Add -1 to counter (decrement) unless counter was already 0
137                  * In that case, CQ is full so we can't submit a new CB because
138                  * we won't get ack on its completion
139                  * atomic_add_unless will return 0 if counter was already 0
140                  */
141                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143                                 num_of_entries, q->hw_queue_id);
144                         atomic_add(num_of_entries, free_slots);
145                         return -EAGAIN;
146                 }
147         }
148
149         return 0;
150 }
151
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 : pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166                                         struct hl_hw_queue *q,
167                                         int num_of_entries)
168 {
169         int free_slots_cnt;
170
171         if (num_of_entries > q->int_queue_len) {
172                 dev_err(hdev->dev,
173                         "Cannot populate queue %u with %u jobs\n",
174                         q->hw_queue_id, num_of_entries);
175                 return -ENOMEM;
176         }
177
178         /* Check we have enough space in the queue */
179         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181         if (free_slots_cnt < num_of_entries) {
182                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183                         q->hw_queue_id, num_of_entries);
184                 return -EAGAIN;
185         }
186
187         return 0;
188 }
189
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201                                         int num_of_entries)
202 {
203         int free_slots_cnt;
204
205         /* Check we have enough space in the queue */
206         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208         if (free_slots_cnt < num_of_entries) {
209                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210                         q->hw_queue_id, num_of_entries);
211                 return -EAGAIN;
212         }
213
214         return 0;
215 }
216
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry.
226  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229                                 u32 cb_size, u64 cb_ptr)
230 {
231         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232         int rc = 0;
233
234         hdev->asic_funcs->hw_queues_lock(hdev);
235
236         if (hdev->disabled) {
237                 rc = -EPERM;
238                 goto out;
239         }
240
241         /*
242          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243          * type only on init phase, when the queues are empty and being tested,
244          * so there is no need for sanity checks.
245          */
246         if (q->queue_type != QUEUE_TYPE_HW) {
247                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
248                 if (rc)
249                         goto out;
250         }
251
252         hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253
254 out:
255         hdev->asic_funcs->hw_queues_unlock(hdev);
256
257         return rc;
258 }
259
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270         struct hl_device *hdev = job->cs->ctx->hdev;
271         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272         struct hl_cq_entry cq_pkt;
273         struct hl_cq *cq;
274         u64 cq_addr;
275         struct hl_cb *cb;
276         u32 ctl;
277         u32 len;
278         u64 ptr;
279
280         /*
281          * Update the JOB ID inside the BD CTL so the device would know what
282          * to write in the completion queue
283          */
284         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286         cb = job->patched_cb;
287         len = job->job_cb_size;
288         ptr = cb->bus_address;
289
290         /* Skip completion flow in case this is a non completion CS */
291         if (!cs_needs_completion(job->cs))
292                 goto submit_bd;
293
294         cq_pkt.data = cpu_to_le32(
295                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
297                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299
300         /*
301          * No need to protect pi_offset because scheduling to the
302          * H/W queues is done under the scheduler mutex
303          *
304          * No need to check if CQ is full because it was already
305          * checked in ext_queue_sanity_checks
306          */
307         cq = &hdev->completion_queue[q->cq_id];
308         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309
310         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311                                                 cq_addr,
312                                                 le32_to_cpu(cq_pkt.data),
313                                                 q->msi_vec,
314                                                 job->contains_dma_pkt);
315
316         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
317
318         cq->pi = hl_cq_inc_ptr(cq->pi);
319
320 submit_bd:
321         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
322 }
323
324 /*
325  * int_queue_schedule_job - submit a JOB to an internal queue
326  *
327  * @job: pointer to the job that needs to be submitted to the queue
328  *
329  * This function must be called when the scheduler mutex is taken
330  *
331  */
332 static void int_queue_schedule_job(struct hl_cs_job *job)
333 {
334         struct hl_device *hdev = job->cs->ctx->hdev;
335         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
336         struct hl_bd bd;
337         __le64 *pi;
338
339         bd.ctl = 0;
340         bd.len = cpu_to_le32(job->job_cb_size);
341
342         if (job->is_kernel_allocated_cb)
343                 /* bus_address is actually a mmu mapped address
344                  * allocated from an internal pool
345                  */
346                 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
347         else
348                 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
349
350         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
351
352         q->pi++;
353         q->pi &= ((q->int_queue_len << 1) - 1);
354
355         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
356
357         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
358 }
359
360 /*
361  * hw_queue_schedule_job - submit a JOB to a H/W queue
362  *
363  * @job: pointer to the job that needs to be submitted to the queue
364  *
365  * This function must be called when the scheduler mutex is taken
366  *
367  */
368 static void hw_queue_schedule_job(struct hl_cs_job *job)
369 {
370         struct hl_device *hdev = job->cs->ctx->hdev;
371         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
372         u64 ptr;
373         u32 offset, ctl, len;
374
375         /*
376          * Upon PQE completion, COMP_DATA is used as the write data to the
377          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
378          * write address offset in the SM block (QMAN LBW message).
379          * The write address offset is calculated as "COMP_OFFSET << 2".
380          */
381         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
382         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
383                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
384
385         len = job->job_cb_size;
386
387         /*
388          * A patched CB is created only if a user CB was allocated by driver and
389          * MMU is disabled. If MMU is enabled, the user CB should be used
390          * instead. If the user CB wasn't allocated by driver, assume that it
391          * holds an address.
392          */
393         if (job->patched_cb)
394                 ptr = job->patched_cb->bus_address;
395         else if (job->is_kernel_allocated_cb)
396                 ptr = job->user_cb->bus_address;
397         else
398                 ptr = (u64) (uintptr_t) job->user_cb;
399
400         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
401 }
402
403 static int init_signal_cs(struct hl_device *hdev,
404                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
405 {
406         struct hl_sync_stream_properties *prop;
407         struct hl_hw_sob *hw_sob;
408         u32 q_idx;
409         int rc = 0;
410
411         q_idx = job->hw_queue_id;
412         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
413         hw_sob = &prop->hw_sob[prop->curr_sob_offset];
414
415         cs_cmpl->hw_sob = hw_sob;
416         cs_cmpl->sob_val = prop->next_sob_val;
417
418         dev_dbg(hdev->dev,
419                 "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
420                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
421                 cs_cmpl->cs_seq);
422
423         /* we set an EB since we must make sure all oeprations are done
424          * when sending the signal
425          */
426         hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
427                                 cs_cmpl->hw_sob->sob_id, 0, true);
428
429         rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
430                                                                 false);
431
432         return rc;
433 }
434
435 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
436                         struct hl_cs *cs, struct hl_cs_job *job,
437                         struct hl_cs_compl *cs_cmpl)
438 {
439         struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
440         u32 offset = 0;
441
442         cs_cmpl->hw_sob = handle->hw_sob;
443
444         /* Note that encaps_sig_wait_offset was validated earlier in the flow
445          * for offset value which exceeds the max reserved signal count.
446          * always decrement 1 of the offset since when the user
447          * set offset 1 for example he mean to wait only for the first
448          * signal only, which will be pre_sob_val, and if he set offset 2
449          * then the value required is (pre_sob_val + 1) and so on...
450          * if user set wait offset to 0, then treat it as legacy wait cs,
451          * wait for the next signal.
452          */
453         if (job->encaps_sig_wait_offset)
454                 offset = job->encaps_sig_wait_offset - 1;
455
456         cs_cmpl->sob_val = handle->pre_sob_val + offset;
457 }
458
459 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
460                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
461 {
462         struct hl_gen_wait_properties wait_prop;
463         struct hl_sync_stream_properties *prop;
464         struct hl_cs_compl *signal_cs_cmpl;
465         u32 q_idx;
466
467         q_idx = job->hw_queue_id;
468         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
469
470         signal_cs_cmpl = container_of(cs->signal_fence,
471                                         struct hl_cs_compl,
472                                         base_fence);
473
474         if (cs->encaps_signals) {
475                 /* use the encaps signal handle stored earlier in the flow
476                  * and set the SOB information from the encaps
477                  * signals handle
478                  */
479                 hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
480
481                 dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
482                                 cs->encaps_sig_hdl->q_idx,
483                                 cs->encaps_sig_hdl->cs_seq,
484                                 cs_cmpl->sob_val,
485                                 job->encaps_sig_wait_offset);
486         } else {
487                 /* Copy the SOB id and value of the signal CS */
488                 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
489                 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
490         }
491
492         /* check again if the signal cs already completed.
493          * if yes then don't send any wait cs since the hw_sob
494          * could be in reset already. if signal is not completed
495          * then get refcount to hw_sob to prevent resetting the sob
496          * while wait cs is not submitted.
497          * note that this check is protected by two locks,
498          * hw queue lock and completion object lock,
499          * and the same completion object lock also protects
500          * the hw_sob reset handler function.
501          * The hw_queue lock prevent out of sync of hw_sob
502          * refcount value, changed by signal/wait flows.
503          */
504         spin_lock(&signal_cs_cmpl->lock);
505
506         if (completion_done(&cs->signal_fence->completion)) {
507                 spin_unlock(&signal_cs_cmpl->lock);
508                 return -EINVAL;
509         }
510
511         kref_get(&cs_cmpl->hw_sob->kref);
512
513         spin_unlock(&signal_cs_cmpl->lock);
514
515         dev_dbg(hdev->dev,
516                 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
517                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
518                 prop->base_mon_id, q_idx, cs->sequence);
519
520         wait_prop.data = (void *) job->patched_cb;
521         wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
522         wait_prop.sob_mask = 0x1;
523         wait_prop.sob_val = cs_cmpl->sob_val;
524         wait_prop.mon_id = prop->base_mon_id;
525         wait_prop.q_idx = q_idx;
526         wait_prop.size = 0;
527
528         hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
529
530         mb();
531         hl_fence_put(cs->signal_fence);
532         cs->signal_fence = NULL;
533
534         return 0;
535 }
536
537 /*
538  * init_signal_wait_cs - initialize a signal/wait CS
539  * @cs: pointer to the signal/wait CS
540  *
541  * H/W queues spinlock should be taken before calling this function
542  */
543 static int init_signal_wait_cs(struct hl_cs *cs)
544 {
545         struct hl_ctx *ctx = cs->ctx;
546         struct hl_device *hdev = ctx->hdev;
547         struct hl_cs_job *job;
548         struct hl_cs_compl *cs_cmpl =
549                         container_of(cs->fence, struct hl_cs_compl, base_fence);
550         int rc = 0;
551
552         /* There is only one job in a signal/wait CS */
553         job = list_first_entry(&cs->job_list, struct hl_cs_job,
554                                 cs_node);
555
556         if (cs->type & CS_TYPE_SIGNAL)
557                 rc = init_signal_cs(hdev, job, cs_cmpl);
558         else if (cs->type & CS_TYPE_WAIT)
559                 rc = init_wait_cs(hdev, cs, job, cs_cmpl);
560
561         return rc;
562 }
563
564 static int encaps_sig_first_staged_cs_handler
565                         (struct hl_device *hdev, struct hl_cs *cs)
566 {
567         struct hl_cs_compl *cs_cmpl =
568                         container_of(cs->fence,
569                                         struct hl_cs_compl, base_fence);
570         struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
571         struct hl_encaps_signals_mgr *mgr;
572         int rc = 0;
573
574         mgr = &hdev->compute_ctx->sig_mgr;
575
576         spin_lock(&mgr->lock);
577         encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
578         if (encaps_sig_hdl) {
579                 /*
580                  * Set handler CS sequence,
581                  * the CS which contains the encapsulated signals.
582                  */
583                 encaps_sig_hdl->cs_seq = cs->sequence;
584                 /* store the handle and set encaps signal indication,
585                  * to be used later in cs_do_release to put the last
586                  * reference to encaps signals handlers.
587                  */
588                 cs_cmpl->encaps_signals = true;
589                 cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
590
591                 /* set hw_sob pointer in completion object
592                  * since it's used in cs_do_release flow to put
593                  * refcount to sob
594                  */
595                 cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
596                 cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
597                                                 encaps_sig_hdl->count;
598
599                 dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
600                                 cs->sequence, encaps_sig_hdl->id,
601                                 encaps_sig_hdl->count,
602                                 encaps_sig_hdl->q_idx,
603                                 cs_cmpl->hw_sob->sob_id,
604                                 cs_cmpl->sob_val);
605
606         } else {
607                 dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
608                                 cs->encaps_sig_hdl_id);
609                 rc = -EINVAL;
610         }
611
612         spin_unlock(&mgr->lock);
613
614         return rc;
615 }
616
617 /*
618  * hl_hw_queue_schedule_cs - schedule a command submission
619  * @cs: pointer to the CS
620  */
621 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
622 {
623         enum hl_device_status status;
624         struct hl_cs_counters_atomic *cntr;
625         struct hl_ctx *ctx = cs->ctx;
626         struct hl_device *hdev = ctx->hdev;
627         struct hl_cs_job *job, *tmp;
628         struct hl_hw_queue *q;
629         int rc = 0, i, cq_cnt;
630         bool first_entry;
631         u32 max_queues;
632
633         cntr = &hdev->aggregated_cs_counters;
634
635         hdev->asic_funcs->hw_queues_lock(hdev);
636
637         if (!hl_device_operational(hdev, &status)) {
638                 atomic64_inc(&cntr->device_in_reset_drop_cnt);
639                 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
640                 dev_err(hdev->dev,
641                         "device is %s, CS rejected!\n", hdev->status[status]);
642                 rc = -EPERM;
643                 goto out;
644         }
645
646         max_queues = hdev->asic_prop.max_queues;
647
648         q = &hdev->kernel_queues[0];
649         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
650                 if (cs->jobs_in_queue_cnt[i]) {
651                         switch (q->queue_type) {
652                         case QUEUE_TYPE_EXT:
653                                 rc = ext_queue_sanity_checks(hdev, q,
654                                                 cs->jobs_in_queue_cnt[i],
655                                                 cs_needs_completion(cs) ?
656                                                                 true : false);
657                                 break;
658                         case QUEUE_TYPE_INT:
659                                 rc = int_queue_sanity_checks(hdev, q,
660                                                 cs->jobs_in_queue_cnt[i]);
661                                 break;
662                         case QUEUE_TYPE_HW:
663                                 rc = hw_queue_sanity_checks(hdev, q,
664                                                 cs->jobs_in_queue_cnt[i]);
665                                 break;
666                         default:
667                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
668                                         q->queue_type);
669                                 rc = -EINVAL;
670                                 break;
671                         }
672
673                         if (rc) {
674                                 atomic64_inc(
675                                         &ctx->cs_counters.queue_full_drop_cnt);
676                                 atomic64_inc(&cntr->queue_full_drop_cnt);
677                                 goto unroll_cq_resv;
678                         }
679
680                         if (q->queue_type == QUEUE_TYPE_EXT)
681                                 cq_cnt++;
682                 }
683         }
684
685         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
686                 rc = init_signal_wait_cs(cs);
687                 if (rc)
688                         goto unroll_cq_resv;
689         } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
690                 rc = hdev->asic_funcs->collective_wait_init_cs(cs);
691                 if (rc)
692                         goto unroll_cq_resv;
693         }
694
695
696         if (cs->encaps_signals && cs->staged_first) {
697                 rc = encaps_sig_first_staged_cs_handler(hdev, cs);
698                 if (rc)
699                         goto unroll_cq_resv;
700         }
701
702         spin_lock(&hdev->cs_mirror_lock);
703
704         /* Verify staged CS exists and add to the staged list */
705         if (cs->staged_cs && !cs->staged_first) {
706                 struct hl_cs *staged_cs;
707
708                 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
709                 if (!staged_cs) {
710                         dev_err(hdev->dev,
711                                 "Cannot find staged submission sequence %llu",
712                                 cs->staged_sequence);
713                         rc = -EINVAL;
714                         goto unlock_cs_mirror;
715                 }
716
717                 if (is_staged_cs_last_exists(hdev, staged_cs)) {
718                         dev_err(hdev->dev,
719                                 "Staged submission sequence %llu already submitted",
720                                 cs->staged_sequence);
721                         rc = -EINVAL;
722                         goto unlock_cs_mirror;
723                 }
724
725                 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
726
727                 /* update stream map of the first CS */
728                 if (hdev->supports_wait_for_multi_cs)
729                         staged_cs->fence->stream_master_qid_map |=
730                                         cs->fence->stream_master_qid_map;
731         }
732
733         list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
734
735         /* Queue TDR if the CS is the first entry and if timeout is wanted */
736         first_entry = list_first_entry(&hdev->cs_mirror_list,
737                                         struct hl_cs, mirror_node) == cs;
738         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
739                                 first_entry && cs_needs_timeout(cs)) {
740                 cs->tdr_active = true;
741                 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
742
743         }
744
745         spin_unlock(&hdev->cs_mirror_lock);
746
747         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
748                 switch (job->queue_type) {
749                 case QUEUE_TYPE_EXT:
750                         ext_queue_schedule_job(job);
751                         break;
752                 case QUEUE_TYPE_INT:
753                         int_queue_schedule_job(job);
754                         break;
755                 case QUEUE_TYPE_HW:
756                         hw_queue_schedule_job(job);
757                         break;
758                 default:
759                         break;
760                 }
761
762         cs->submitted = true;
763
764         goto out;
765
766 unlock_cs_mirror:
767         spin_unlock(&hdev->cs_mirror_lock);
768 unroll_cq_resv:
769         q = &hdev->kernel_queues[0];
770         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
771                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
772                                                 (cs->jobs_in_queue_cnt[i])) {
773                         atomic_t *free_slots =
774                                 &hdev->completion_queue[i].free_slots_cnt;
775                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
776                         cq_cnt--;
777                 }
778         }
779
780 out:
781         hdev->asic_funcs->hw_queues_unlock(hdev);
782
783         return rc;
784 }
785
786 /*
787  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
788  *
789  * @hdev: pointer to hl_device structure
790  * @hw_queue_id: which queue to increment its ci
791  */
792 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
793 {
794         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
795
796         atomic_inc(&q->ci);
797 }
798
799 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
800                                         bool is_cpu_queue)
801 {
802         void *p;
803         int rc;
804
805         if (is_cpu_queue)
806                 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
807                                                         HL_QUEUE_SIZE_IN_BYTES,
808                                                         &q->bus_address);
809         else
810                 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
811                                                 HL_QUEUE_SIZE_IN_BYTES,
812                                                 &q->bus_address,
813                                                 GFP_KERNEL | __GFP_ZERO);
814         if (!p)
815                 return -ENOMEM;
816
817         q->kernel_address = p;
818
819         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
820                                         sizeof(*q->shadow_queue),
821                                         GFP_KERNEL);
822         if (!q->shadow_queue) {
823                 dev_err(hdev->dev,
824                         "Failed to allocate shadow queue for H/W queue %d\n",
825                         q->hw_queue_id);
826                 rc = -ENOMEM;
827                 goto free_queue;
828         }
829
830         /* Make sure read/write pointers are initialized to start of queue */
831         atomic_set(&q->ci, 0);
832         q->pi = 0;
833
834         return 0;
835
836 free_queue:
837         if (is_cpu_queue)
838                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
839                                         HL_QUEUE_SIZE_IN_BYTES,
840                                         q->kernel_address);
841         else
842                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
843                                         HL_QUEUE_SIZE_IN_BYTES,
844                                         q->kernel_address,
845                                         q->bus_address);
846
847         return rc;
848 }
849
850 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
851 {
852         void *p;
853
854         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
855                                         &q->bus_address, &q->int_queue_len);
856         if (!p) {
857                 dev_err(hdev->dev,
858                         "Failed to get base address for internal queue %d\n",
859                         q->hw_queue_id);
860                 return -EFAULT;
861         }
862
863         q->kernel_address = p;
864         q->pi = 0;
865         atomic_set(&q->ci, 0);
866
867         return 0;
868 }
869
870 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
871 {
872         return ext_and_cpu_queue_init(hdev, q, true);
873 }
874
875 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
876 {
877         return ext_and_cpu_queue_init(hdev, q, false);
878 }
879
880 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
881 {
882         void *p;
883
884         p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
885                                                 HL_QUEUE_SIZE_IN_BYTES,
886                                                 &q->bus_address,
887                                                 GFP_KERNEL | __GFP_ZERO);
888         if (!p)
889                 return -ENOMEM;
890
891         q->kernel_address = p;
892
893         /* Make sure read/write pointers are initialized to start of queue */
894         atomic_set(&q->ci, 0);
895         q->pi = 0;
896
897         return 0;
898 }
899
900 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
901 {
902         struct hl_sync_stream_properties *sync_stream_prop;
903         struct asic_fixed_properties *prop = &hdev->asic_prop;
904         struct hl_hw_sob *hw_sob;
905         int sob, reserved_mon_idx, queue_idx;
906
907         sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
908
909         /* We use 'collective_mon_idx' as a running index in order to reserve
910          * monitors for collective master/slave queues.
911          * collective master queue gets 2 reserved monitors
912          * collective slave queue gets 1 reserved monitor
913          */
914         if (hdev->kernel_queues[q_idx].collective_mode ==
915                         HL_COLLECTIVE_MASTER) {
916                 reserved_mon_idx = hdev->collective_mon_idx;
917
918                 /* reserve the first monitor for collective master queue */
919                 sync_stream_prop->collective_mstr_mon_id[0] =
920                         prop->collective_first_mon + reserved_mon_idx;
921
922                 /* reserve the second monitor for collective master queue */
923                 sync_stream_prop->collective_mstr_mon_id[1] =
924                         prop->collective_first_mon + reserved_mon_idx + 1;
925
926                 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
927         } else if (hdev->kernel_queues[q_idx].collective_mode ==
928                         HL_COLLECTIVE_SLAVE) {
929                 reserved_mon_idx = hdev->collective_mon_idx++;
930
931                 /* reserve a monitor for collective slave queue */
932                 sync_stream_prop->collective_slave_mon_id =
933                         prop->collective_first_mon + reserved_mon_idx;
934         }
935
936         if (!hdev->kernel_queues[q_idx].supports_sync_stream)
937                 return;
938
939         queue_idx = hdev->sync_stream_queue_idx++;
940
941         sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
942                         (queue_idx * HL_RSVD_SOBS);
943         sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
944                         (queue_idx * HL_RSVD_MONS);
945         sync_stream_prop->next_sob_val = 1;
946         sync_stream_prop->curr_sob_offset = 0;
947
948         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
949                 hw_sob = &sync_stream_prop->hw_sob[sob];
950                 hw_sob->hdev = hdev;
951                 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
952                 hw_sob->sob_addr =
953                         hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
954                 hw_sob->q_idx = q_idx;
955                 kref_init(&hw_sob->kref);
956         }
957 }
958
959 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
960 {
961         struct hl_sync_stream_properties *prop =
962                         &hdev->kernel_queues[q_idx].sync_stream_prop;
963
964         /*
965          * In case we got here due to a stuck CS, the refcnt might be bigger
966          * than 1 and therefore we reset it.
967          */
968         kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
969         prop->curr_sob_offset = 0;
970         prop->next_sob_val = 1;
971 }
972
973 /*
974  * queue_init - main initialization function for H/W queue object
975  *
976  * @hdev: pointer to hl_device device structure
977  * @q: pointer to hl_hw_queue queue structure
978  * @hw_queue_id: The id of the H/W queue
979  *
980  * Allocate dma-able memory for the queue and initialize fields
981  * Returns 0 on success
982  */
983 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
984                         u32 hw_queue_id)
985 {
986         int rc;
987
988         q->hw_queue_id = hw_queue_id;
989
990         switch (q->queue_type) {
991         case QUEUE_TYPE_EXT:
992                 rc = ext_queue_init(hdev, q);
993                 break;
994         case QUEUE_TYPE_INT:
995                 rc = int_queue_init(hdev, q);
996                 break;
997         case QUEUE_TYPE_CPU:
998                 rc = cpu_queue_init(hdev, q);
999                 break;
1000         case QUEUE_TYPE_HW:
1001                 rc = hw_queue_init(hdev, q);
1002                 break;
1003         case QUEUE_TYPE_NA:
1004                 q->valid = 0;
1005                 return 0;
1006         default:
1007                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
1008                         q->queue_type);
1009                 rc = -EINVAL;
1010                 break;
1011         }
1012
1013         sync_stream_queue_init(hdev, q->hw_queue_id);
1014
1015         if (rc)
1016                 return rc;
1017
1018         q->valid = 1;
1019
1020         return 0;
1021 }
1022
1023 /*
1024  * hw_queue_fini - destroy queue
1025  *
1026  * @hdev: pointer to hl_device device structure
1027  * @q: pointer to hl_hw_queue queue structure
1028  *
1029  * Free the queue memory
1030  */
1031 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1032 {
1033         if (!q->valid)
1034                 return;
1035
1036         /*
1037          * If we arrived here, there are no jobs waiting on this queue
1038          * so we can safely remove it.
1039          * This is because this function can only called when:
1040          * 1. Either a context is deleted, which only can occur if all its
1041          *    jobs were finished
1042          * 2. A context wasn't able to be created due to failure or timeout,
1043          *    which means there are no jobs on the queue yet
1044          *
1045          * The only exception are the queues of the kernel context, but
1046          * if they are being destroyed, it means that the entire module is
1047          * being removed. If the module is removed, it means there is no open
1048          * user context. It also means that if a job was submitted by
1049          * the kernel driver (e.g. context creation), the job itself was
1050          * released by the kernel driver when a timeout occurred on its
1051          * Completion. Thus, we don't need to release it again.
1052          */
1053
1054         if (q->queue_type == QUEUE_TYPE_INT)
1055                 return;
1056
1057         kfree(q->shadow_queue);
1058
1059         if (q->queue_type == QUEUE_TYPE_CPU)
1060                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
1061                                         HL_QUEUE_SIZE_IN_BYTES,
1062                                         q->kernel_address);
1063         else
1064                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
1065                                         HL_QUEUE_SIZE_IN_BYTES,
1066                                         q->kernel_address,
1067                                         q->bus_address);
1068 }
1069
1070 int hl_hw_queues_create(struct hl_device *hdev)
1071 {
1072         struct asic_fixed_properties *asic = &hdev->asic_prop;
1073         struct hl_hw_queue *q;
1074         int i, rc, q_ready_cnt;
1075
1076         hdev->kernel_queues = kcalloc(asic->max_queues,
1077                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
1078
1079         if (!hdev->kernel_queues) {
1080                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1081                 return -ENOMEM;
1082         }
1083
1084         /* Initialize the H/W queues */
1085         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1086                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1087
1088                 q->queue_type = asic->hw_queues_props[i].type;
1089                 q->supports_sync_stream =
1090                                 asic->hw_queues_props[i].supports_sync_stream;
1091                 q->collective_mode = asic->hw_queues_props[i].collective_mode;
1092                 rc = queue_init(hdev, q, i);
1093                 if (rc) {
1094                         dev_err(hdev->dev,
1095                                 "failed to initialize queue %d\n", i);
1096                         goto release_queues;
1097                 }
1098         }
1099
1100         return 0;
1101
1102 release_queues:
1103         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1104                 queue_fini(hdev, q);
1105
1106         kfree(hdev->kernel_queues);
1107
1108         return rc;
1109 }
1110
1111 void hl_hw_queues_destroy(struct hl_device *hdev)
1112 {
1113         struct hl_hw_queue *q;
1114         u32 max_queues = hdev->asic_prop.max_queues;
1115         int i;
1116
1117         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1118                 queue_fini(hdev, q);
1119
1120         kfree(hdev->kernel_queues);
1121 }
1122
1123 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1124 {
1125         struct hl_hw_queue *q;
1126         u32 max_queues = hdev->asic_prop.max_queues;
1127         int i;
1128
1129         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1130                 if ((!q->valid) ||
1131                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1132                         continue;
1133                 q->pi = 0;
1134                 atomic_set(&q->ci, 0);
1135
1136                 if (q->supports_sync_stream)
1137                         sync_stream_queue_reset(hdev, q->hw_queue_id);
1138         }
1139 }