1 // SPDX-License-Identifier: GPL-2.0+
3 * Chromium OS cros_ec driver
5 * Copyright (c) 2012 The Chromium OS Authors.
9 * This is the interface to the Chrome OS EC. It provides keyboard functions,
10 * power control and battery management. Quite a few other functions are
11 * provided to enable the EC software to be updated, talk to the EC's I2C bus
12 * and store a small amount of data in a memory which persists while the EC
16 #define LOG_CATEGORY UCLASS_CROS_EC
28 #include <linux/delay.h>
29 #include <linux/errno.h>
31 #include <asm-generic/gpio.h>
32 #include <dm/device-internal.h>
33 #include <dm/of_extra.h>
34 #include <dm/uclass-internal.h>
37 #define debug_trace(fmt, b...) debug(fmt, #b)
39 #define debug_trace(fmt, b...)
43 /* Timeout waiting for a flash erase command to complete */
44 CROS_EC_CMD_TIMEOUT_MS = 5000,
45 /* Timeout waiting for a synchronous hash to be recomputed */
46 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
48 /* Wait 10 ms between attempts to check if EC's hash is ready */
49 CROS_EC_HASH_CHECK_DELAY_MS = 10,
53 #define INVALID_HCMD 0xFF
56 * Map UHEPI masks to non UHEPI commands in order to support old EC FW
57 * which does not support UHEPI command.
64 [EC_HOST_EVENT_MAIN] = {
65 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
69 INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
70 EC_CMD_HOST_EVENT_GET_B,
72 [EC_HOST_EVENT_SCI_MASK] = {
73 EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
74 EC_CMD_HOST_EVENT_GET_SCI_MASK,
76 [EC_HOST_EVENT_SMI_MASK] = {
77 EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
78 EC_CMD_HOST_EVENT_GET_SMI_MASK,
80 [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
81 INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
83 [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
84 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
85 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
87 [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
88 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
89 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
91 [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
92 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
93 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
95 [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
96 EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
97 EC_CMD_HOST_EVENT_GET_WAKE_MASK,
101 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
106 printf("%s: ", name);
108 printf("cmd=%#x: ", cmd);
109 for (i = 0; i < len; i++)
110 printf("%02x ", data[i]);
116 * Calculate a simple 8-bit checksum of a data block
118 * @param data Data block to checksum
119 * @param size Size of data block in bytes
120 * @return checksum value (0 to 255)
122 int cros_ec_calc_checksum(const uint8_t *data, int size)
126 for (i = csum = 0; i < size; i++)
132 * Create a request packet for protocol version 3.
134 * The packet is stored in the device's internal output buffer.
136 * @param dev CROS-EC device
137 * @param cmd Command to send (EC_CMD_...)
138 * @param cmd_version Version of command to send (EC_VER_...)
139 * @param dout Output data (may be NULL If dout_len=0)
140 * @param dout_len Size of output data in bytes
141 * @return packet size in bytes, or <0 if error.
143 static int create_proto3_request(struct cros_ec_dev *cdev,
144 int cmd, int cmd_version,
145 const void *dout, int dout_len)
147 struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
148 int out_bytes = dout_len + sizeof(*rq);
150 /* Fail if output size is too big */
151 if (out_bytes > (int)sizeof(cdev->dout)) {
152 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
153 return -EC_RES_REQUEST_TRUNCATED;
156 /* Fill in request packet */
157 rq->struct_version = EC_HOST_REQUEST_VERSION;
160 rq->command_version = cmd_version;
162 rq->data_len = dout_len;
164 /* Copy data after header */
165 memcpy(rq + 1, dout, dout_len);
167 /* Write checksum field so the entire packet sums to 0 */
168 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
170 cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
172 /* Return size of request packet */
177 * Prepare the device to receive a protocol version 3 response.
179 * @param dev CROS-EC device
180 * @param din_len Maximum size of response in bytes
181 * @return maximum expected number of bytes in response, or <0 if error.
183 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
185 int in_bytes = din_len + sizeof(struct ec_host_response);
187 /* Fail if input size is too big */
188 if (in_bytes > (int)sizeof(cdev->din)) {
189 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
190 return -EC_RES_RESPONSE_TOO_BIG;
193 /* Return expected size of response packet */
198 * Handle a protocol version 3 response packet.
200 * The packet must already be stored in the device's internal input buffer.
202 * @param dev CROS-EC device
203 * @param dinp Returns pointer to response data
204 * @param din_len Maximum size of response in bytes
205 * @return number of bytes of response data, or <0 if error. Note that error
206 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
209 static int handle_proto3_response(struct cros_ec_dev *dev,
210 uint8_t **dinp, int din_len)
212 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
216 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
218 /* Check input data */
219 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
220 debug("%s: EC response version mismatch\n", __func__);
221 return -EC_RES_INVALID_RESPONSE;
225 debug("%s: EC response reserved != 0\n", __func__);
226 return -EC_RES_INVALID_RESPONSE;
229 if (rs->data_len > din_len) {
230 debug("%s: EC returned too much data\n", __func__);
231 return -EC_RES_RESPONSE_TOO_BIG;
234 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
236 /* Update in_bytes to actual data size */
237 in_bytes = sizeof(*rs) + rs->data_len;
239 /* Verify checksum */
240 csum = cros_ec_calc_checksum(dev->din, in_bytes);
242 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
244 return -EC_RES_INVALID_CHECKSUM;
247 /* Return error result, if any */
249 return -(int)rs->result;
251 /* If we're still here, set response data pointer and return length */
252 *dinp = (uint8_t *)(rs + 1);
257 static int send_command_proto3(struct cros_ec_dev *cdev,
258 int cmd, int cmd_version,
259 const void *dout, int dout_len,
260 uint8_t **dinp, int din_len)
262 struct dm_cros_ec_ops *ops;
263 int out_bytes, in_bytes;
266 /* Create request packet */
267 out_bytes = create_proto3_request(cdev, cmd, cmd_version,
272 /* Prepare response buffer */
273 in_bytes = prepare_proto3_response_buffer(cdev, din_len);
277 ops = dm_cros_ec_get_ops(cdev->dev);
278 rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
283 /* Process the response */
284 return handle_proto3_response(cdev, dinp, din_len);
287 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
288 const void *dout, int dout_len,
289 uint8_t **dinp, int din_len)
291 struct dm_cros_ec_ops *ops;
294 /* Handle protocol version 3 support */
295 if (dev->protocol_version == 3) {
296 return send_command_proto3(dev, cmd, cmd_version,
297 dout, dout_len, dinp, din_len);
300 ops = dm_cros_ec_get_ops(dev->dev);
301 ret = ops->command(dev->dev, cmd, cmd_version,
302 (const uint8_t *)dout, dout_len, dinp, din_len);
308 * Send a command to the CROS-EC device and return the reply.
310 * The device's internal input/output buffers are used.
312 * @param dev CROS-EC device
313 * @param cmd Command to send (EC_CMD_...)
314 * @param cmd_version Version of command to send (EC_VER_...)
315 * @param dout Output data (may be NULL If dout_len=0)
316 * @param dout_len Size of output data in bytes
317 * @param dinp Response data (may be NULL If din_len=0).
318 * If not NULL, it will be updated to point to the data
319 * and will always be double word aligned (64-bits)
320 * @param din_len Maximum size of response in bytes
321 * @return number of bytes in response, or -ve on error
323 static int ec_command_inptr(struct udevice *dev, uint cmd,
324 int cmd_version, const void *dout, int dout_len,
325 uint8_t **dinp, int din_len)
327 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
331 len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
334 /* If the command doesn't complete, wait a while */
335 if (len == -EC_RES_IN_PROGRESS) {
336 struct ec_response_get_comms_status *resp = NULL;
339 /* Wait for command to complete */
340 start = get_timer(0);
344 mdelay(50); /* Insert some reasonable delay */
345 ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
347 (uint8_t **)&resp, sizeof(*resp));
351 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
352 debug("%s: Command %#02x timeout\n",
354 return -EC_RES_TIMEOUT;
356 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
358 /* OK it completed, so read the status response */
359 /* not sure why it was 0 for the last argument */
360 len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
364 debug("%s: len=%d, din=%p\n", __func__, len, din);
366 /* If we have any data to return, it must be 64bit-aligned */
367 assert(len <= 0 || !((uintptr_t)din & 7));
375 * Send a command to the CROS-EC device and return the reply.
377 * The device's internal input/output buffers are used.
379 * @param dev CROS-EC device
380 * @param cmd Command to send (EC_CMD_...)
381 * @param cmd_version Version of command to send (EC_VER_...)
382 * @param dout Output data (may be NULL If dout_len=0)
383 * @param dout_len Size of output data in bytes
384 * @param din Response data (may be NULL If din_len=0).
385 * It not NULL, it is a place for ec_command() to copy the
387 * @param din_len Maximum size of response in bytes
388 * @return number of bytes in response, or -ve on error
390 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
391 const void *dout, int dout_len,
392 void *din, int din_len)
397 assert((din_len == 0) || din);
398 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
399 &in_buffer, din_len);
402 * If we were asked to put it somewhere, do so, otherwise just
403 * disregard the result.
405 if (din && in_buffer) {
406 assert(len <= din_len);
409 memmove(din, in_buffer, len);
415 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
417 if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 sizeof(scan->data)) != sizeof(scan->data))
424 int cros_ec_get_next_event(struct udevice *dev,
425 struct ec_response_get_next_event *event)
429 ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
430 event, sizeof(*event));
433 else if (ret != sizeof(*event))
434 return -EC_RES_INVALID_RESPONSE;
439 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
441 struct ec_response_get_version *r;
444 ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
445 (uint8_t **)&r, sizeof(*r));
446 if (ret != sizeof(*r)) {
447 log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
451 if (maxlen > (int)sizeof(r->version_string_ro))
452 maxlen = sizeof(r->version_string_ro);
454 switch (r->current_image) {
456 memcpy(id, r->version_string_ro, maxlen);
459 memcpy(id, r->version_string_rw, maxlen);
462 log_err("Invalid EC image %d\n", r->current_image);
466 id[maxlen - 1] = '\0';
470 int cros_ec_read_version(struct udevice *dev,
471 struct ec_response_get_version **versionp)
473 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
474 (uint8_t **)versionp, sizeof(**versionp))
475 != sizeof(**versionp))
481 int cros_ec_read_build_info(struct udevice *dev, char **strp)
483 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
484 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
490 int cros_ec_read_current_image(struct udevice *dev,
491 enum ec_current_image *image)
493 struct ec_response_get_version *r;
495 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
496 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
499 *image = r->current_image;
503 static int cros_ec_wait_on_hash_done(struct udevice *dev,
504 struct ec_params_vboot_hash *p,
505 struct ec_response_vboot_hash *hash)
509 start = get_timer(0);
510 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
511 mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
513 p->cmd = EC_VBOOT_HASH_GET;
515 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
519 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
520 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
521 return -EC_RES_TIMEOUT;
527 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
528 struct ec_response_vboot_hash *hash)
530 struct ec_params_vboot_hash p;
533 p.cmd = EC_VBOOT_HASH_GET;
534 p.offset = hash_offset;
535 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
536 hash, sizeof(*hash)) < 0)
539 /* If the EC is busy calculating the hash, fidget until it's done. */
540 rv = cros_ec_wait_on_hash_done(dev, &p, hash);
544 /* If the hash is valid, we're done. Otherwise, we have to kick it off
545 * again and wait for it to complete. Note that we explicitly assume
546 * that hashing zero bytes is always wrong, even though that would
547 * produce a valid hash value. */
548 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
551 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
552 __func__, hash->status, hash->size);
554 p.cmd = EC_VBOOT_HASH_START;
555 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
557 p.offset = hash_offset;
559 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
560 hash, sizeof(*hash)) < 0)
563 rv = cros_ec_wait_on_hash_done(dev, &p, hash);
566 if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
567 log_err("Hash did not complete, status=%d\n", hash->status);
571 debug("%s: hash done\n", __func__);
576 static int cros_ec_invalidate_hash(struct udevice *dev)
578 struct ec_params_vboot_hash p;
579 struct ec_response_vboot_hash *hash;
581 /* We don't have an explict command for the EC to discard its current
582 * hash value, so we'll just tell it to calculate one that we know is
583 * wrong (we claim that hashing zero bytes is always invalid).
585 p.cmd = EC_VBOOT_HASH_RECALC;
586 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
591 debug("%s:\n", __func__);
593 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
594 (uint8_t **)&hash, sizeof(*hash)) < 0)
597 /* No need to wait for it to finish */
601 int cros_ec_hello(struct udevice *dev, uint *handshakep)
603 struct ec_params_hello req;
604 struct ec_response_hello *resp;
606 req.in_data = 0x12345678;
607 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
608 (uint8_t **)&resp, sizeof(*resp)) < 0)
610 if (resp->out_data != req.in_data + 0x01020304) {
611 printf("Received invalid handshake %x\n", resp->out_data);
613 *handshakep = req.in_data;
620 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
622 struct ec_params_reboot_ec p;
627 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
631 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
635 * EC reboot will take place immediately so delay to allow it
636 * to complete. Note that some reboot types (EC_REBOOT_COLD)
637 * will reboot the AP as well, in which case we won't actually
641 start = get_timer(0);
642 while (cros_ec_hello(dev, NULL)) {
643 if (get_timer(start) > 3000) {
644 log_err("EC did not return from reboot\n");
654 int cros_ec_interrupt_pending(struct udevice *dev)
656 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
658 /* no interrupt support : always poll */
659 if (!dm_gpio_is_valid(&cdev->ec_int))
662 return dm_gpio_get_value(&cdev->ec_int);
665 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
667 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
668 sizeof(*info)) != sizeof(*info))
674 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
676 struct ec_response_host_event_mask rsp;
679 ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
682 else if (ret != sizeof(rsp))
690 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
692 struct ec_params_host_event_mask req;
697 ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
704 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
706 struct ec_response_host_event_mask *resp;
709 * Use the B copy of the event flags, because the main copy is already
712 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
713 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
716 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
719 *events_ptr = resp->mask;
723 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
725 struct ec_params_host_event_mask params;
727 params.mask = events;
730 * Use the B copy of the event flags, so it affects the data returned
731 * by cros_ec_get_host_events().
733 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
734 ¶ms, sizeof(params), NULL, 0) < 0)
740 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
742 struct ec_response_flash_protect *resp)
744 struct ec_params_flash_protect params;
746 params.mask = set_mask;
747 params.flags = set_flags;
749 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
750 ¶ms, sizeof(params),
751 resp, sizeof(*resp)) != sizeof(*resp))
757 int cros_ec_entering_mode(struct udevice *dev, int mode)
761 rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode),
768 static int cros_ec_check_version(struct udevice *dev)
770 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
771 struct ec_params_hello req;
773 struct dm_cros_ec_ops *ops;
776 ops = dm_cros_ec_get_ops(dev);
777 if (ops->check_version) {
778 ret = ops->check_version(dev);
784 * TODO(sjg@chromium.org).
785 * There is a strange oddity here with the EC. We could just ignore
786 * the response, i.e. pass the last two parameters as NULL and 0.
787 * In this case we won't read back very many bytes from the EC.
788 * On the I2C bus the EC gets upset about this and will try to send
789 * the bytes anyway. This means that we will have to wait for that
790 * to complete before continuing with a new EC command.
792 * This problem is probably unique to the I2C bus.
794 * So for now, just read all the data anyway.
797 /* Try sending a version 3 packet */
798 cdev->protocol_version = 3;
800 ret = cros_ec_hello(dev, NULL);
801 if (!ret || ret == -ENOTSYNC)
804 /* Try sending a version 2 packet */
805 cdev->protocol_version = 2;
806 ret = cros_ec_hello(dev, NULL);
807 if (!ret || ret == -ENOTSYNC)
811 * Fail if we're still here, since the EC doesn't understand any
812 * protcol version we speak. Version 1 interface without command
813 * version is no longer supported, and we don't know about any new
816 cdev->protocol_version = 0;
817 printf("%s: ERROR: old EC interface not supported\n", __func__);
821 int cros_ec_test(struct udevice *dev)
826 ret = cros_ec_hello(dev, &out_data);
827 if (ret == -ENOTSYNC) {
828 printf("Received invalid handshake %x\n", out_data);
831 printf("ec_command_inptr() returned error\n");
838 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
839 uint32_t *offset, uint32_t *size)
841 struct ec_params_flash_region_info p;
842 struct ec_response_flash_region_info *r;
846 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
847 EC_VER_FLASH_REGION_INFO,
848 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
849 if (ret != sizeof(*r))
860 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
862 struct ec_params_flash_erase p;
866 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
871 * Write a single block to the flash
873 * Write a block of data to the EC flash. The size must not exceed the flash
874 * write block size which you can obtain from cros_ec_flash_write_burst_size().
876 * The offset starts at 0. You can obtain the region information from
877 * cros_ec_flash_offset() to find out where to write for a particular region.
879 * Attempting to write to the region where the EC is currently running from
880 * will result in an error.
882 * @param dev CROS-EC device
883 * @param data Pointer to data buffer to write
884 * @param offset Offset within flash to write to.
885 * @param size Number of bytes to write
886 * @return 0 if ok, -1 on error
888 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
889 uint32_t offset, uint32_t size)
891 struct ec_params_flash_write *p;
894 p = malloc(sizeof(*p) + size);
900 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
901 memcpy(p + 1, data, p->size);
903 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
904 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
912 * Return optimal flash write burst size
914 static int cros_ec_flash_write_burst_size(struct udevice *dev)
916 return EC_FLASH_WRITE_VER0_SIZE;
920 * Check if a block of data is erased (all 0xff)
922 * This function is useful when dealing with flash, for checking whether a
923 * data block is erased and thus does not need to be programmed.
925 * @param data Pointer to data to check (must be word-aligned)
926 * @param size Number of bytes to check (must be word-aligned)
927 * @return 0 if erased, non-zero if any word is not erased
929 static int cros_ec_data_is_erased(const uint32_t *data, int size)
932 size /= sizeof(uint32_t);
933 for (; size > 0; size -= 4, data++)
941 * Read back flash parameters
943 * This function reads back parameters of the flash as reported by the EC
945 * @param dev Pointer to device
946 * @param info Pointer to output flash info struct
948 int cros_ec_read_flashinfo(struct udevice *dev,
949 struct ec_response_flash_info *info)
953 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
954 NULL, 0, info, sizeof(*info));
958 return ret < sizeof(*info) ? -1 : 0;
961 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
962 uint32_t offset, uint32_t size)
964 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
965 uint32_t burst = cros_ec_flash_write_burst_size(dev);
973 * TODO: round up to the nearest multiple of write size. Can get away
974 * without that on link right now because its write size is 4 bytes.
977 for (off = offset; off < end; off += burst, data += burst) {
980 /* If the data is empty, there is no point in programming it */
981 todo = min(end - off, burst);
982 if (cdev->optimise_flash_write &&
983 cros_ec_data_is_erased((uint32_t *)data, todo))
986 ret = cros_ec_flash_write_block(dev, data, off, todo);
995 * Run verification on a slot
997 * @param me CrosEc instance
998 * @param region Region to run verification on
999 * @return 0 if success or not applicable. Non-zero if verification failed.
1001 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
1003 struct ec_params_efs_verify p;
1006 log_info("EFS: EC is verifying updated image...\n");
1009 rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
1011 log_info("EFS: Verification success\n");
1014 if (rv == -EC_RES_INVALID_COMMAND) {
1015 log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1018 log_info("EFS: Verification failed\n");
1024 * Read a single block from the flash
1026 * Read a block of data from the EC flash. The size must not exceed the flash
1027 * write block size which you can obtain from cros_ec_flash_write_burst_size().
1029 * The offset starts at 0. You can obtain the region information from
1030 * cros_ec_flash_offset() to find out where to read for a particular region.
1032 * @param dev CROS-EC device
1033 * @param data Pointer to data buffer to read into
1034 * @param offset Offset within flash to read from
1035 * @param size Number of bytes to read
1036 * @return 0 if ok, -1 on error
1038 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1039 uint32_t offset, uint32_t size)
1041 struct ec_params_flash_read p;
1046 return ec_command(dev, EC_CMD_FLASH_READ, 0,
1047 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1050 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1053 uint32_t burst = cros_ec_flash_write_burst_size(dev);
1057 end = offset + size;
1058 for (off = offset; off < end; off += burst, data += burst) {
1059 ret = cros_ec_flash_read_block(dev, data, off,
1060 min(end - off, burst));
1068 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1071 uint32_t rw_offset, rw_size;
1074 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1077 if (image_size > (int)rw_size)
1080 /* Invalidate the existing hash, just in case the AP reboots
1081 * unexpectedly during the update. If that happened, the EC RW firmware
1082 * would be invalid, but the EC would still have the original hash.
1084 ret = cros_ec_invalidate_hash(dev);
1089 * Erase the entire RW section, so that the EC doesn't see any garbage
1090 * past the new image if it's smaller than the current image.
1092 * TODO: could optimize this to erase just the current image, since
1093 * presumably everything past that is 0xff's. But would still need to
1094 * round up to the nearest multiple of erase size.
1096 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1100 /* Write the image */
1101 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1108 int cros_ec_get_sku_id(struct udevice *dev)
1110 struct ec_sku_id_info *r;
1113 ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1114 (uint8_t **)&r, sizeof(*r));
1115 if (ret != sizeof(*r))
1121 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1123 struct ec_params_vbnvcontext p;
1126 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1129 p.op = EC_VBNV_CONTEXT_OP_READ;
1131 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1132 &p, sizeof(uint32_t) + size, block, size);
1134 log_err("Expected %d bytes, got %d\n", size, len);
1141 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1143 struct ec_params_vbnvcontext p;
1146 if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1148 p.op = EC_VBNV_CONTEXT_OP_WRITE;
1149 memcpy(p.block, block, size);
1151 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1152 &p, sizeof(uint32_t) + size, NULL, 0);
1159 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1161 struct ec_params_battery_cutoff p;
1165 len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1173 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1175 struct ec_params_ldo_set params;
1177 params.index = index;
1178 params.state = state;
1180 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params),
1187 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1189 struct ec_params_ldo_get params;
1190 struct ec_response_ldo_get *resp;
1192 params.index = index;
1194 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params),
1195 (uint8_t **)&resp, sizeof(*resp)) !=
1199 *state = resp->state;
1204 int cros_ec_register(struct udevice *dev)
1206 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1210 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1212 cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1214 if (cros_ec_check_version(dev)) {
1215 debug("%s: Could not detect CROS-EC version\n", __func__);
1216 return -CROS_EC_ERR_CHECK_VERSION;
1219 if (cros_ec_read_id(dev, id, sizeof(id))) {
1220 debug("%s: Could not read KBC ID\n", __func__);
1221 return -CROS_EC_ERR_READ_ID;
1224 /* Remember this device for use by the cros_ec command */
1225 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1226 cdev->protocol_version, id);
1231 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1233 ofnode flash_node, node;
1235 flash_node = dev_read_subnode(dev, "flash");
1236 if (!ofnode_valid(flash_node)) {
1237 debug("Failed to find flash node\n");
1241 if (ofnode_read_fmap_entry(flash_node, &config->flash)) {
1242 debug("Failed to decode flash node in chrome-ec\n");
1246 config->flash_erase_value = ofnode_read_s32_default(flash_node,
1248 ofnode_for_each_subnode(node, flash_node) {
1249 const char *name = ofnode_get_name(node);
1250 enum ec_flash_region region;
1252 if (0 == strcmp(name, "ro")) {
1253 region = EC_FLASH_REGION_RO;
1254 } else if (0 == strcmp(name, "rw")) {
1255 region = EC_FLASH_REGION_ACTIVE;
1256 } else if (0 == strcmp(name, "wp-ro")) {
1257 region = EC_FLASH_REGION_WP_RO;
1259 debug("Unknown EC flash region name '%s'\n", name);
1263 if (ofnode_read_fmap_entry(node, &config->region[region])) {
1264 debug("Failed to decode flash region in chrome-ec'\n");
1272 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1276 struct ec_params_i2c_passthru p;
1277 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1280 struct ec_response_i2c_passthru r;
1281 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1283 struct ec_params_i2c_passthru *p = ¶ms.p;
1284 struct ec_response_i2c_passthru *r = &response.r;
1285 struct ec_params_i2c_passthru_msg *msg;
1286 uint8_t *pdata, *read_ptr = NULL;
1294 p->num_msgs = nmsgs;
1295 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1297 /* Create a message to write the register address and optional data */
1298 pdata = (uint8_t *)p + size;
1301 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1302 bool is_read = in->flags & I2C_M_RD;
1304 msg->addr_flags = in->addr;
1307 msg->addr_flags |= EC_I2C_FLAG_READ;
1308 read_len += in->len;
1310 if (sizeof(*r) + read_len > sizeof(response)) {
1311 puts("Read length too big for buffer\n");
1315 if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1316 puts("Params too large for buffer\n");
1319 memcpy(pdata, in->buf, in->len);
1324 rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1325 r, sizeof(*r) + read_len);
1329 /* Parse response */
1330 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1331 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1335 if (rv < sizeof(*r) + read_len) {
1336 puts("Truncated read response\n");
1340 /* We only support a single read message for each transfer */
1342 memcpy(read_ptr, r->data, read_len);
1347 int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1349 struct ec_response_get_features r;
1352 rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1353 if (rv != sizeof(r))
1355 *featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1360 int cros_ec_check_feature(struct udevice *dev, uint feature)
1362 struct ec_response_get_features r;
1365 rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1366 if (rv != sizeof(r))
1369 if (feature >= 8 * sizeof(r.flags))
1372 return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1377 * Query the EC for specified mask indicating enabled events.
1378 * The EC maintains separate event masks for SMI, SCI and WAKE.
1380 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1384 struct ec_params_host_event req;
1385 struct ec_response_host_event rsp;
1387 req.action = action;
1388 req.mask_type = mask;
1389 if (action != EC_HOST_EVENT_GET)
1393 ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1396 if (action != EC_HOST_EVENT_GET)
1404 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1405 uint action, uint64_t *value)
1408 struct ec_params_host_event_mask req;
1409 struct ec_response_host_event_mask rsp;
1411 if (hcmd == INVALID_HCMD)
1414 if (action != EC_HOST_EVENT_GET)
1415 req.mask = (uint32_t)*value;
1419 ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1420 if (action != EC_HOST_EVENT_GET)
1428 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1430 #define UHEPI_SUPPORTED 1
1431 #define UHEPI_NOT_SUPPORTED 2
1432 static int uhepi_support;
1434 if (!uhepi_support) {
1435 uhepi_support = cros_ec_check_feature(dev,
1436 EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1437 UHEPI_NOT_SUPPORTED;
1438 log_debug("Chrome EC: UHEPI %s\n",
1439 uhepi_support == UHEPI_SUPPORTED ? "supported" :
1442 return uhepi_support == UHEPI_SUPPORTED;
1445 static int cros_ec_get_mask(struct udevice *dev, uint type)
1449 if (cros_ec_is_uhepi_supported(dev)) {
1450 cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1452 assert(type < ARRAY_SIZE(event_map));
1453 cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1454 EC_HOST_EVENT_GET, &value);
1459 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1461 if (cros_ec_is_uhepi_supported(dev))
1462 return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1464 assert(type < ARRAY_SIZE(event_map));
1466 return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1467 EC_HOST_EVENT_CLEAR, &mask);
1470 uint64_t cros_ec_get_events_b(struct udevice *dev)
1472 return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1475 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1477 log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1479 return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1482 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1484 struct ec_params_charge_state p;
1485 struct ec_response_charge_state r;
1488 p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1489 p.get_param.param = CS_PARAM_LIMIT_POWER;
1490 ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1494 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1495 * LIMIT_POWER is not requested.
1497 if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1498 log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1502 if (ret != sizeof(r.get_param))
1505 *limit_powerp = r.get_param.value;
1509 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1511 struct ec_params_config_power_button params;
1514 params.flags = flags;
1515 ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1516 ¶ms, sizeof(params), NULL, 0);
1523 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1528 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1533 return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1536 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1541 ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1546 /* Set lid close event state in the EC SMI event mask */
1548 mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1550 mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1552 ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1556 printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1560 int cros_ec_vstore_supported(struct udevice *dev)
1562 return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1565 int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1567 struct ec_response_vstore_info *resp;
1569 if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1570 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1574 *lockedp = resp->slot_locked;
1576 return resp->slot_count;
1580 * cros_ec_vstore_read - Read data from EC vstore slot
1582 * @slot: vstore slot to read from
1583 * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1585 int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1587 struct ec_params_vstore_read req;
1588 struct ec_response_vstore_read *resp;
1591 if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1592 (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1595 if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1598 memcpy(data, resp->data, sizeof(resp->data));
1604 * cros_ec_vstore_write - Save data into EC vstore slot
1606 * @slot: vstore slot to write into
1607 * @data: data to write
1608 * @size: size of data in bytes
1610 * Maximum size of data is EC_VSTORE_SLOT_SIZE. It is the callers
1611 * responsibility to check the number of implemented slots by
1612 * querying the vstore info.
1614 int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1617 struct ec_params_vstore_write req;
1619 if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1623 memcpy(req.data, data, size);
1625 if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1631 int cros_ec_get_switches(struct udevice *dev)
1633 struct dm_cros_ec_ops *ops;
1636 ops = dm_cros_ec_get_ops(dev);
1637 if (!ops->get_switches)
1640 ret = ops->get_switches(dev);
1642 return log_msg_ret("get", ret);
1647 UCLASS_DRIVER(cros_ec) = {
1648 .id = UCLASS_CROS_EC,
1650 .per_device_auto = sizeof(struct cros_ec_dev),
1651 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
1652 .post_bind = dm_scan_fdt_dev,
1654 .flags = DM_UC_FLAG_ALLOC_PRIV_DMA,