Merge tag 'mfd-3.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <asm/hardware/gic.h>
36 #include <mach/hardware.h>
37 #include <mach/irqs.h>
38 #include <mach/db8500-regs.h>
39 #include <mach/id.h>
40 #include "dbx500-prcmu-regs.h"
41
42 /* Offset for the firmware version within the TCPM */
43 #define PRCMU_FW_VERSION_OFFSET 0xA4
44
45 /* Index of different voltages to be used when accessing AVSData */
46 #define PRCM_AVS_BASE           0x2FC
47 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
48 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
49 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
50 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
51 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
52 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
53 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
54 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
55 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
56 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
57 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
58 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
59 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
60
61 #define PRCM_AVS_VOLTAGE                0
62 #define PRCM_AVS_VOLTAGE_MASK           0x3f
63 #define PRCM_AVS_ISSLOWSTARTUP          6
64 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
65 #define PRCM_AVS_ISMODEENABLE           7
66 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
67
68 #define PRCM_BOOT_STATUS        0xFFF
69 #define PRCM_ROMCODE_A2P        0xFFE
70 #define PRCM_ROMCODE_P2A        0xFFD
71 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
72
73 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74
75 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
76 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
77 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
78 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
79 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
80 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
81 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
82 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
83
84 /* Req Mailboxes */
85 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
86 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
87 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
88 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
89 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
90 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
91
92 /* Ack Mailboxes */
93 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
94 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
95 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
96 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
97 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
98 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99
100 /* Mailbox 0 headers */
101 #define MB0H_POWER_STATE_TRANS          0
102 #define MB0H_CONFIG_WAKEUPS_EXE         1
103 #define MB0H_READ_WAKEUP_ACK            3
104 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
105
106 #define MB0H_WAKEUP_EXE 2
107 #define MB0H_WAKEUP_SLEEP 5
108
109 /* Mailbox 0 REQs */
110 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
111 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
112 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
113 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
114 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
115 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
116
117 /* Mailbox 0 ACKs */
118 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
119 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
120 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
121 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
122 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
123 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
124 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
125
126 /* Mailbox 1 headers */
127 #define MB1H_ARM_APE_OPP 0x0
128 #define MB1H_RESET_MODEM 0x2
129 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131 #define MB1H_RELEASE_USB_WAKEUP 0x5
132 #define MB1H_PLL_ON_OFF 0x6
133
134 /* Mailbox 1 Requests */
135 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
136 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
137 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
138 #define PLL_SOC0_OFF    0x1
139 #define PLL_SOC0_ON     0x2
140 #define PLL_SOC1_OFF    0x4
141 #define PLL_SOC1_ON     0x8
142
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
148
149 /* Mailbox 2 headers */
150 #define MB2H_DPS        0x0
151 #define MB2H_AUTO_PWR   0x1
152
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
164
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
168
169 /* Mailbox 3 headers */
170 #define MB3H_ANC        0x0
171 #define MB3H_SIDETONE   0x1
172 #define MB3H_SYSCLK     0xE
173
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
182
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT   0x0
185 #define MB4H_MEM_ST     0x1
186 #define MB4H_HOTDOG     0x12
187 #define MB4H_HOTMON     0x13
188 #define MB4H_HOT_PERIOD 0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN   0x17
191 #define MB4H_A9WDOG_DIS  0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
194
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW                       BIT(0)
205 #define HOTMON_CONFIG_HIGH                      BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS                     0
212 #define A9WDOG_ID_MASK                          0xf
213
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN               BIT(3)
224
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
230
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235 /*
236  * Wakeups/IRQs
237  */
238
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
268
269 static struct {
270         bool valid;
271         struct prcmu_fw_version version;
272 } fw_info;
273
274 static struct irq_domain *db8500_irq_domain;
275
276 /*
277  * This vector maps irq numbers to the bits in the bit field used in
278  * communication with the PRCMU firmware.
279  *
280  * The reason for having this is to keep the irq numbers contiguous even though
281  * the bits in the bit field are not. (The bits also have a tendency to move
282  * around, to further complicate matters.)
283  */
284 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
285 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
286 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
287         IRQ_ENTRY(RTC),
288         IRQ_ENTRY(RTT0),
289         IRQ_ENTRY(RTT1),
290         IRQ_ENTRY(HSI0),
291         IRQ_ENTRY(HSI1),
292         IRQ_ENTRY(CA_WAKE),
293         IRQ_ENTRY(USB),
294         IRQ_ENTRY(ABB),
295         IRQ_ENTRY(ABB_FIFO),
296         IRQ_ENTRY(CA_SLEEP),
297         IRQ_ENTRY(ARM),
298         IRQ_ENTRY(HOTMON_LOW),
299         IRQ_ENTRY(HOTMON_HIGH),
300         IRQ_ENTRY(MODEM_SW_RESET_REQ),
301         IRQ_ENTRY(GPIO0),
302         IRQ_ENTRY(GPIO1),
303         IRQ_ENTRY(GPIO2),
304         IRQ_ENTRY(GPIO3),
305         IRQ_ENTRY(GPIO4),
306         IRQ_ENTRY(GPIO5),
307         IRQ_ENTRY(GPIO6),
308         IRQ_ENTRY(GPIO7),
309         IRQ_ENTRY(GPIO8)
310 };
311
312 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
313 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
314 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
315         WAKEUP_ENTRY(RTC),
316         WAKEUP_ENTRY(RTT0),
317         WAKEUP_ENTRY(RTT1),
318         WAKEUP_ENTRY(HSI0),
319         WAKEUP_ENTRY(HSI1),
320         WAKEUP_ENTRY(USB),
321         WAKEUP_ENTRY(ABB),
322         WAKEUP_ENTRY(ABB_FIFO),
323         WAKEUP_ENTRY(ARM)
324 };
325
326 /*
327  * mb0_transfer - state needed for mailbox 0 communication.
328  * @lock:               The transaction lock.
329  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
330  *                      the request data.
331  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
332  * @req:                Request data that need to persist between requests.
333  */
334 static struct {
335         spinlock_t lock;
336         spinlock_t dbb_irqs_lock;
337         struct work_struct mask_work;
338         struct mutex ac_wake_lock;
339         struct completion ac_wake_work;
340         struct {
341                 u32 dbb_irqs;
342                 u32 dbb_wakeups;
343                 u32 abb_events;
344         } req;
345 } mb0_transfer;
346
347 /*
348  * mb1_transfer - state needed for mailbox 1 communication.
349  * @lock:       The transaction lock.
350  * @work:       The transaction completion structure.
351  * @ape_opp:    The current APE OPP.
352  * @ack:        Reply ("acknowledge") data.
353  */
354 static struct {
355         struct mutex lock;
356         struct completion work;
357         u8 ape_opp;
358         struct {
359                 u8 header;
360                 u8 arm_opp;
361                 u8 ape_opp;
362                 u8 ape_voltage_status;
363         } ack;
364 } mb1_transfer;
365
366 /*
367  * mb2_transfer - state needed for mailbox 2 communication.
368  * @lock:            The transaction lock.
369  * @work:            The transaction completion structure.
370  * @auto_pm_lock:    The autonomous power management configuration lock.
371  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
372  * @req:             Request data that need to persist between requests.
373  * @ack:             Reply ("acknowledge") data.
374  */
375 static struct {
376         struct mutex lock;
377         struct completion work;
378         spinlock_t auto_pm_lock;
379         bool auto_pm_enabled;
380         struct {
381                 u8 status;
382         } ack;
383 } mb2_transfer;
384
385 /*
386  * mb3_transfer - state needed for mailbox 3 communication.
387  * @lock:               The request lock.
388  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
389  * @sysclk_work:        Work structure used for sysclk requests.
390  */
391 static struct {
392         spinlock_t lock;
393         struct mutex sysclk_lock;
394         struct completion sysclk_work;
395 } mb3_transfer;
396
397 /*
398  * mb4_transfer - state needed for mailbox 4 communication.
399  * @lock:       The transaction lock.
400  * @work:       The transaction completion structure.
401  */
402 static struct {
403         struct mutex lock;
404         struct completion work;
405 } mb4_transfer;
406
407 /*
408  * mb5_transfer - state needed for mailbox 5 communication.
409  * @lock:       The transaction lock.
410  * @work:       The transaction completion structure.
411  * @ack:        Reply ("acknowledge") data.
412  */
413 static struct {
414         struct mutex lock;
415         struct completion work;
416         struct {
417                 u8 status;
418                 u8 value;
419         } ack;
420 } mb5_transfer;
421
422 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
423
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
427
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
430
431 struct clk_mgt {
432         void __iomem *reg;
433         u32 pllsw;
434         int branch;
435         bool clk38div;
436 };
437
438 enum {
439         PLL_RAW,
440         PLL_FIX,
441         PLL_DIV
442 };
443
444 static DEFINE_SPINLOCK(clk_mgt_lock);
445
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 };
479
480 struct dsiclk {
481         u32 divsel_mask;
482         u32 divsel_shift;
483         u32 divsel;
484 };
485
486 static struct dsiclk dsiclk[2] = {
487         {
488                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491         },
492         {
493                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496         }
497 };
498
499 struct dsiescclk {
500         u32 en;
501         u32 div_mask;
502         u32 div_shift;
503 };
504
505 static struct dsiescclk dsiescclk[3] = {
506         {
507                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510         },
511         {
512                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515         },
516         {
517                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520         }
521 };
522
523
524 /*
525 * Used by MCDE to setup all necessary PRCMU registers
526 */
527 #define PRCMU_RESET_DSIPLL              0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
529
530 #define PRCMU_CLK_PLL_DIV_SHIFT         0
531 #define PRCMU_CLK_PLL_SW_SHIFT          5
532 #define PRCMU_CLK_38                    (1 << 9)
533 #define PRCMU_CLK_38_SRC                (1 << 10)
534 #define PRCMU_CLK_38_DIV                (1 << 11)
535
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
538
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
543
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
546
547 #define PRCMU_ENABLE_PLLDSI             0x00000001
548 #define PRCMU_DISABLE_PLLDSI            0x00000000
549 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
554 #define PRCMU_DSI_RESET_SW              0x00000007
555
556 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
557
558 int db8500_prcmu_enable_dsipll(void)
559 {
560         int i;
561
562         /* Clear DSIPLL_RESETN */
563         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564         /* Unclamp DSIPLL in/out */
565         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566
567         /* Set DSI PLL FREQ */
568         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570         /* Enable Escape clocks */
571         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572
573         /* Start DSI PLL */
574         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575         /* Reset DSI PLL */
576         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577         for (i = 0; i < 10; i++) {
578                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
580                         break;
581                 udelay(100);
582         }
583         /* Set DSIPLL_RESETN */
584         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585         return 0;
586 }
587
588 int db8500_prcmu_disable_dsipll(void)
589 {
590         /* Disable dsi pll */
591         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592         /* Disable  escapeclock */
593         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594         return 0;
595 }
596
597 int db8500_prcmu_set_display_clocks(void)
598 {
599         unsigned long flags;
600
601         spin_lock_irqsave(&clk_mgt_lock, flags);
602
603         /* Grab the HW semaphore. */
604         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605                 cpu_relax();
606
607         writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610
611         /* Release the HW semaphore. */
612         writel(0, PRCM_SEM);
613
614         spin_unlock_irqrestore(&clk_mgt_lock, flags);
615
616         return 0;
617 }
618
619 u32 db8500_prcmu_read(unsigned int reg)
620 {
621         return readl(_PRCMU_BASE + reg);
622 }
623
624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 {
626         unsigned long flags;
627
628         spin_lock_irqsave(&prcmu_lock, flags);
629         writel(value, (_PRCMU_BASE + reg));
630         spin_unlock_irqrestore(&prcmu_lock, flags);
631 }
632
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 {
635         u32 val;
636         unsigned long flags;
637
638         spin_lock_irqsave(&prcmu_lock, flags);
639         val = readl(_PRCMU_BASE + reg);
640         val = ((val & ~mask) | (value & mask));
641         writel(val, (_PRCMU_BASE + reg));
642         spin_unlock_irqrestore(&prcmu_lock, flags);
643 }
644
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 {
647         return fw_info.valid ? &fw_info.version : NULL;
648 }
649
650 bool prcmu_has_arm_maxopp(void)
651 {
652         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 }
655
656 /**
657  * prcmu_get_boot_status - PRCMU boot status checking
658  * Returns: the current PRCMU boot status
659  */
660 int prcmu_get_boot_status(void)
661 {
662         return readb(tcdm_base + PRCM_BOOT_STATUS);
663 }
664
665 /**
666  * prcmu_set_rc_a2p - This function is used to run few power state sequences
667  * @val: Value to be set, i.e. transition requested
668  * Returns: 0 on success, -EINVAL on invalid argument
669  *
670  * This function is used to run the following power state sequences -
671  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672  */
673 int prcmu_set_rc_a2p(enum romcode_write val)
674 {
675         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676                 return -EINVAL;
677         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678         return 0;
679 }
680
681 /**
682  * prcmu_get_rc_p2a - This function is used to get power state sequences
683  * Returns: the power transition that has last happened
684  *
685  * This function can return the following transitions-
686  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687  */
688 enum romcode_read prcmu_get_rc_p2a(void)
689 {
690         return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 }
692
693 /**
694  * prcmu_get_current_mode - Return the current XP70 power mode
695  * Returns: Returns the current AP(ARM) power mode: init,
696  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697  */
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 {
700         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 }
702
703 /**
704  * prcmu_config_clkout - Configure one of the programmable clock outputs.
705  * @clkout:     The CLKOUT number (0 or 1).
706  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
707  * @div:        The divider to be applied.
708  *
709  * Configures one of the programmable clock outputs (CLKOUTs).
710  * @div should be in the range [1,63] to request a configuration, or 0 to
711  * inform that the configuration is no longer requested.
712  */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 {
715         static int requests[2];
716         int r = 0;
717         unsigned long flags;
718         u32 val;
719         u32 bits;
720         u32 mask;
721         u32 div_mask;
722
723         BUG_ON(clkout > 1);
724         BUG_ON(div > 63);
725         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726
727         if (!div && !requests[clkout])
728                 return -EINVAL;
729
730         switch (clkout) {
731         case 0:
732                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736                 break;
737         case 1:
738                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740                         PRCM_CLKOCR_CLK1TYPE);
741                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743                 break;
744         }
745         bits &= mask;
746
747         spin_lock_irqsave(&clkout_lock, flags);
748
749         val = readl(PRCM_CLKOCR);
750         if (val & div_mask) {
751                 if (div) {
752                         if ((val & mask) != bits) {
753                                 r = -EBUSY;
754                                 goto unlock_and_return;
755                         }
756                 } else {
757                         if ((val & mask & ~div_mask) != bits) {
758                                 r = -EINVAL;
759                                 goto unlock_and_return;
760                         }
761                 }
762         }
763         writel((bits | (val & ~mask)), PRCM_CLKOCR);
764         requests[clkout] += (div ? 1 : -1);
765
766 unlock_and_return:
767         spin_unlock_irqrestore(&clkout_lock, flags);
768
769         return r;
770 }
771
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 {
774         unsigned long flags;
775
776         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777
778         spin_lock_irqsave(&mb0_transfer.lock, flags);
779
780         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781                 cpu_relax();
782
783         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786         writeb((keep_ulp_clk ? 1 : 0),
787                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790
791         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792
793         return 0;
794 }
795
796 u8 db8500_prcmu_get_power_state_result(void)
797 {
798         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 }
800
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
803 {
804         u32 val = readl(PRCM_A9_MASK_REQ);
805
806         /* Set bit 0 register value to 1 */
807         writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808                PRCM_A9_MASK_REQ);
809
810         /* Make sure the register is updated */
811         readl(PRCM_A9_MASK_REQ);
812
813         /* Wait a few cycles for the gic mask completion */
814         udelay(1);
815
816         return 0;
817 }
818
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
821 {
822         u32 val = readl(PRCM_A9_MASK_REQ);
823
824         /* Set bit 0 register value to 0 */
825         writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826
827         return 0;
828 }
829
830 #define PRCMU_GIC_NUMBER_REGS 5
831
832 /*
833  * This function checks if there are pending irq on the gic. It only
834  * makes sense if the gic has been decoupled before with the
835  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836  * disables the forwarding of the interrupt to any CPU interface. It
837  * does not prevent the interrupt from changing state, for example
838  * becoming pending, or active and pending if it is already
839  * active. Hence, we have to check the interrupt is pending *and* is
840  * active.
841  */
842 bool db8500_prcmu_gic_pending_irq(void)
843 {
844         u32 pr; /* Pending register */
845         u32 er; /* Enable register */
846         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847         int i;
848
849         /* 5 registers. STI & PPI not skipped */
850         for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851
852                 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853                 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854
855                 if (pr & er)
856                         return true; /* There is a pending interrupt */
857         }
858
859         return false;
860 }
861
862 /*
863  * This function checks if there are pending interrupt on the
864  * prcmu which has been delegated to monitor the irqs with the
865  * db8500_prcmu_copy_gic_settings function.
866  */
867 bool db8500_prcmu_pending_irq(void)
868 {
869         u32 it, im;
870         int i;
871
872         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873                 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874                 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875                 if (it & im)
876                         return true; /* There is a pending interrupt */
877         }
878
879         return false;
880 }
881
882 /*
883  * This function checks if the specified cpu is in in WFI. It's usage
884  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885  * function. Of course passing smp_processor_id() to this function will
886  * always return false...
887  */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 {
890         return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891                      PRCM_ARM_WFI_STANDBY_WFI0;
892 }
893
894 /*
895  * This function copies the gic SPI settings to the prcmu in order to
896  * monitor them and abort/finish the retention/off sequence or state.
897  */
898 int db8500_prcmu_copy_gic_settings(void)
899 {
900         u32 er; /* Enable register */
901         void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902         int i;
903
904         /* We skip the STI and PPI */
905         for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906                 er = readl_relaxed(dist_base +
907                                    GIC_DIST_ENABLE_SET + (i + 1) * 4);
908                 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909         }
910
911         return 0;
912 }
913
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
916 {
917         const u8 header[2] = {
918                 MB0H_CONFIG_WAKEUPS_EXE,
919                 MB0H_CONFIG_WAKEUPS_SLEEP
920         };
921         static u32 last_dbb_events;
922         static u32 last_abb_events;
923         u32 dbb_events;
924         u32 abb_events;
925         unsigned int i;
926
927         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929
930         abb_events = mb0_transfer.req.abb_events;
931
932         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933                 return;
934
935         for (i = 0; i < 2; i++) {
936                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937                         cpu_relax();
938                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942         }
943         last_dbb_events = dbb_events;
944         last_abb_events = abb_events;
945 }
946
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 {
949         unsigned long flags;
950         u32 bits;
951         int i;
952
953         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954
955         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956                 if (wakeups & BIT(i))
957                         bits |= prcmu_wakeup_bit[i];
958         }
959
960         spin_lock_irqsave(&mb0_transfer.lock, flags);
961
962         mb0_transfer.req.dbb_wakeups = bits;
963         config_wakeups();
964
965         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 }
967
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 {
970         unsigned long flags;
971
972         spin_lock_irqsave(&mb0_transfer.lock, flags);
973
974         mb0_transfer.req.abb_events = abb_events;
975         config_wakeups();
976
977         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 }
979
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 {
982         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984         else
985                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 }
987
988 /**
989  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990  * @opp: The new ARM operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the the operating point of the ARM.
994  */
995 int db8500_prcmu_set_arm_opp(u8 opp)
996 {
997         int r;
998
999         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000                 return -EINVAL;
1001
1002         r = 0;
1003
1004         mutex_lock(&mb1_transfer.lock);
1005
1006         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007                 cpu_relax();
1008
1009         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012
1013         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014         wait_for_completion(&mb1_transfer.work);
1015
1016         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017                 (mb1_transfer.ack.arm_opp != opp))
1018                 r = -EIO;
1019
1020         mutex_unlock(&mb1_transfer.lock);
1021
1022         return r;
1023 }
1024
1025 /**
1026  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1027  *
1028  * Returns: the current ARM OPP
1029  */
1030 int db8500_prcmu_get_arm_opp(void)
1031 {
1032         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1033 }
1034
1035 /**
1036  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1037  *
1038  * Returns: the current DDR OPP
1039  */
1040 int db8500_prcmu_get_ddr_opp(void)
1041 {
1042         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1043 }
1044
1045 /**
1046  * db8500_set_ddr_opp - set the appropriate DDR OPP
1047  * @opp: The new DDR operating point to which transition is to be made
1048  * Returns: 0 on success, non-zero on failure
1049  *
1050  * This function sets the operating point of the DDR.
1051  */
1052 int db8500_prcmu_set_ddr_opp(u8 opp)
1053 {
1054         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055                 return -EINVAL;
1056         /* Changing the DDR OPP can hang the hardware pre-v21 */
1057         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1058                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1059
1060         return 0;
1061 }
1062
1063 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064 static void request_even_slower_clocks(bool enable)
1065 {
1066         void __iomem *clock_reg[] = {
1067                 PRCM_ACLK_MGT,
1068                 PRCM_DMACLK_MGT
1069         };
1070         unsigned long flags;
1071         unsigned int i;
1072
1073         spin_lock_irqsave(&clk_mgt_lock, flags);
1074
1075         /* Grab the HW semaphore. */
1076         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077                 cpu_relax();
1078
1079         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080                 u32 val;
1081                 u32 div;
1082
1083                 val = readl(clock_reg[i]);
1084                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085                 if (enable) {
1086                         if ((div <= 1) || (div > 15)) {
1087                                 pr_err("prcmu: Bad clock divider %d in %s\n",
1088                                         div, __func__);
1089                                 goto unlock_and_return;
1090                         }
1091                         div <<= 1;
1092                 } else {
1093                         if (div <= 2)
1094                                 goto unlock_and_return;
1095                         div >>= 1;
1096                 }
1097                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099                 writel(val, clock_reg[i]);
1100         }
1101
1102 unlock_and_return:
1103         /* Release the HW semaphore. */
1104         writel(0, PRCM_SEM);
1105
1106         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1107 }
1108
1109 /**
1110  * db8500_set_ape_opp - set the appropriate APE OPP
1111  * @opp: The new APE operating point to which transition is to be made
1112  * Returns: 0 on success, non-zero on failure
1113  *
1114  * This function sets the operating point of the APE.
1115  */
1116 int db8500_prcmu_set_ape_opp(u8 opp)
1117 {
1118         int r = 0;
1119
1120         if (opp == mb1_transfer.ape_opp)
1121                 return 0;
1122
1123         mutex_lock(&mb1_transfer.lock);
1124
1125         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1126                 request_even_slower_clocks(false);
1127
1128         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129                 goto skip_message;
1130
1131         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1132                 cpu_relax();
1133
1134         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1136         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1137                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1138
1139         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140         wait_for_completion(&mb1_transfer.work);
1141
1142         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143                 (mb1_transfer.ack.ape_opp != opp))
1144                 r = -EIO;
1145
1146 skip_message:
1147         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149                 request_even_slower_clocks(true);
1150         if (!r)
1151                 mb1_transfer.ape_opp = opp;
1152
1153         mutex_unlock(&mb1_transfer.lock);
1154
1155         return r;
1156 }
1157
1158 /**
1159  * db8500_prcmu_get_ape_opp - get the current APE OPP
1160  *
1161  * Returns: the current APE OPP
1162  */
1163 int db8500_prcmu_get_ape_opp(void)
1164 {
1165         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1166 }
1167
1168 /**
1169  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170  * @enable: true to request the higher voltage, false to drop a request.
1171  *
1172  * Calls to this function to enable and disable requests must be balanced.
1173  */
1174 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1175 {
1176         int r = 0;
1177         u8 header;
1178         static unsigned int requests;
1179
1180         mutex_lock(&mb1_transfer.lock);
1181
1182         if (enable) {
1183                 if (0 != requests++)
1184                         goto unlock_and_return;
1185                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1186         } else {
1187                 if (requests == 0) {
1188                         r = -EIO;
1189                         goto unlock_and_return;
1190                 } else if (1 != requests--) {
1191                         goto unlock_and_return;
1192                 }
1193                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1194         }
1195
1196         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1197                 cpu_relax();
1198
1199         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1200
1201         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1202         wait_for_completion(&mb1_transfer.work);
1203
1204         if ((mb1_transfer.ack.header != header) ||
1205                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1206                 r = -EIO;
1207
1208 unlock_and_return:
1209         mutex_unlock(&mb1_transfer.lock);
1210
1211         return r;
1212 }
1213
1214 /**
1215  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1216  *
1217  * This function releases the power state requirements of a USB wakeup.
1218  */
1219 int prcmu_release_usb_wakeup_state(void)
1220 {
1221         int r = 0;
1222
1223         mutex_lock(&mb1_transfer.lock);
1224
1225         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1226                 cpu_relax();
1227
1228         writeb(MB1H_RELEASE_USB_WAKEUP,
1229                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1230
1231         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1232         wait_for_completion(&mb1_transfer.work);
1233
1234         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1235                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1236                 r = -EIO;
1237
1238         mutex_unlock(&mb1_transfer.lock);
1239
1240         return r;
1241 }
1242
1243 static int request_pll(u8 clock, bool enable)
1244 {
1245         int r = 0;
1246
1247         if (clock == PRCMU_PLLSOC0)
1248                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249         else if (clock == PRCMU_PLLSOC1)
1250                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251         else
1252                 return -EINVAL;
1253
1254         mutex_lock(&mb1_transfer.lock);
1255
1256         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257                 cpu_relax();
1258
1259         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1261
1262         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263         wait_for_completion(&mb1_transfer.work);
1264
1265         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266                 r = -EIO;
1267
1268         mutex_unlock(&mb1_transfer.lock);
1269
1270         return r;
1271 }
1272
1273 /**
1274  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1275  * @epod_id: The EPOD to set
1276  * @epod_state: The new EPOD state
1277  *
1278  * This function sets the state of a EPOD (power domain). It may not be called
1279  * from interrupt context.
1280  */
1281 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1282 {
1283         int r = 0;
1284         bool ram_retention = false;
1285         int i;
1286
1287         /* check argument */
1288         BUG_ON(epod_id >= NUM_EPOD_ID);
1289
1290         /* set flag if retention is possible */
1291         switch (epod_id) {
1292         case EPOD_ID_SVAMMDSP:
1293         case EPOD_ID_SIAMMDSP:
1294         case EPOD_ID_ESRAM12:
1295         case EPOD_ID_ESRAM34:
1296                 ram_retention = true;
1297                 break;
1298         }
1299
1300         /* check argument */
1301         BUG_ON(epod_state > EPOD_STATE_ON);
1302         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1303
1304         /* get lock */
1305         mutex_lock(&mb2_transfer.lock);
1306
1307         /* wait for mailbox */
1308         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1309                 cpu_relax();
1310
1311         /* fill in mailbox */
1312         for (i = 0; i < NUM_EPOD_ID; i++)
1313                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1314         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1315
1316         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1317
1318         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1319
1320         /*
1321          * The current firmware version does not handle errors correctly,
1322          * and we cannot recover if there is an error.
1323          * This is expected to change when the firmware is updated.
1324          */
1325         if (!wait_for_completion_timeout(&mb2_transfer.work,
1326                         msecs_to_jiffies(20000))) {
1327                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1328                         __func__);
1329                 r = -EIO;
1330                 goto unlock_and_return;
1331         }
1332
1333         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1334                 r = -EIO;
1335
1336 unlock_and_return:
1337         mutex_unlock(&mb2_transfer.lock);
1338         return r;
1339 }
1340
1341 /**
1342  * prcmu_configure_auto_pm - Configure autonomous power management.
1343  * @sleep: Configuration for ApSleep.
1344  * @idle:  Configuration for ApIdle.
1345  */
1346 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1347         struct prcmu_auto_pm_config *idle)
1348 {
1349         u32 sleep_cfg;
1350         u32 idle_cfg;
1351         unsigned long flags;
1352
1353         BUG_ON((sleep == NULL) || (idle == NULL));
1354
1355         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1356         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1357         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1358         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1359         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1360         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1361
1362         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1363         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1364         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1365         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1366         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1367         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1368
1369         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1370
1371         /*
1372          * The autonomous power management configuration is done through
1373          * fields in mailbox 2, but these fields are only used as shared
1374          * variables - i.e. there is no need to send a message.
1375          */
1376         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1377         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1378
1379         mb2_transfer.auto_pm_enabled =
1380                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1381                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1384
1385         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1386 }
1387 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1388
1389 bool prcmu_is_auto_pm_enabled(void)
1390 {
1391         return mb2_transfer.auto_pm_enabled;
1392 }
1393
1394 static int request_sysclk(bool enable)
1395 {
1396         int r;
1397         unsigned long flags;
1398
1399         r = 0;
1400
1401         mutex_lock(&mb3_transfer.sysclk_lock);
1402
1403         spin_lock_irqsave(&mb3_transfer.lock, flags);
1404
1405         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1406                 cpu_relax();
1407
1408         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1409
1410         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1411         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1412
1413         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1414
1415         /*
1416          * The firmware only sends an ACK if we want to enable the
1417          * SysClk, and it succeeds.
1418          */
1419         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1420                         msecs_to_jiffies(20000))) {
1421                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422                         __func__);
1423                 r = -EIO;
1424         }
1425
1426         mutex_unlock(&mb3_transfer.sysclk_lock);
1427
1428         return r;
1429 }
1430
1431 static int request_timclk(bool enable)
1432 {
1433         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1434
1435         if (!enable)
1436                 val |= PRCM_TCR_STOP_TIMERS;
1437         writel(val, PRCM_TCR);
1438
1439         return 0;
1440 }
1441
1442 static int request_clock(u8 clock, bool enable)
1443 {
1444         u32 val;
1445         unsigned long flags;
1446
1447         spin_lock_irqsave(&clk_mgt_lock, flags);
1448
1449         /* Grab the HW semaphore. */
1450         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1451                 cpu_relax();
1452
1453         val = readl(clk_mgt[clock].reg);
1454         if (enable) {
1455                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456         } else {
1457                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1459         }
1460         writel(val, clk_mgt[clock].reg);
1461
1462         /* Release the HW semaphore. */
1463         writel(0, PRCM_SEM);
1464
1465         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1466
1467         return 0;
1468 }
1469
1470 static int request_sga_clock(u8 clock, bool enable)
1471 {
1472         u32 val;
1473         int ret;
1474
1475         if (enable) {
1476                 val = readl(PRCM_CGATING_BYPASS);
1477                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1478         }
1479
1480         ret = request_clock(clock, enable);
1481
1482         if (!ret && !enable) {
1483                 val = readl(PRCM_CGATING_BYPASS);
1484                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1485         }
1486
1487         return ret;
1488 }
1489
1490 static inline bool plldsi_locked(void)
1491 {
1492         return (readl(PRCM_PLLDSI_LOCKP) &
1493                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1497 }
1498
1499 static int request_plldsi(bool enable)
1500 {
1501         int r = 0;
1502         u32 val;
1503
1504         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1507
1508         val = readl(PRCM_PLLDSI_ENABLE);
1509         if (enable)
1510                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511         else
1512                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513         writel(val, PRCM_PLLDSI_ENABLE);
1514
1515         if (enable) {
1516                 unsigned int i;
1517                 bool locked = plldsi_locked();
1518
1519                 for (i = 10; !locked && (i > 0); --i) {
1520                         udelay(100);
1521                         locked = plldsi_locked();
1522                 }
1523                 if (locked) {
1524                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525                                 PRCM_APE_RESETN_SET);
1526                 } else {
1527                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529                                 PRCM_MMIP_LS_CLAMP_SET);
1530                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531                         writel(val, PRCM_PLLDSI_ENABLE);
1532                         r = -EAGAIN;
1533                 }
1534         } else {
1535                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1536         }
1537         return r;
1538 }
1539
1540 static int request_dsiclk(u8 n, bool enable)
1541 {
1542         u32 val;
1543
1544         val = readl(PRCM_DSI_PLLOUT_SEL);
1545         val &= ~dsiclk[n].divsel_mask;
1546         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547                 dsiclk[n].divsel_shift);
1548         writel(val, PRCM_DSI_PLLOUT_SEL);
1549         return 0;
1550 }
1551
1552 static int request_dsiescclk(u8 n, bool enable)
1553 {
1554         u32 val;
1555
1556         val = readl(PRCM_DSITVCLK_DIV);
1557         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558         writel(val, PRCM_DSITVCLK_DIV);
1559         return 0;
1560 }
1561
1562 /**
1563  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1564  * @clock:      The clock for which the request is made.
1565  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1566  *
1567  * This function should only be used by the clock implementation.
1568  * Do not use it from any other place!
1569  */
1570 int db8500_prcmu_request_clock(u8 clock, bool enable)
1571 {
1572         if (clock == PRCMU_SGACLK)
1573                 return request_sga_clock(clock, enable);
1574         else if (clock < PRCMU_NUM_REG_CLOCKS)
1575                 return request_clock(clock, enable);
1576         else if (clock == PRCMU_TIMCLK)
1577                 return request_timclk(enable);
1578         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582         else if (clock == PRCMU_PLLDSI)
1583                 return request_plldsi(enable);
1584         else if (clock == PRCMU_SYSCLK)
1585                 return request_sysclk(enable);
1586         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1587                 return request_pll(clock, enable);
1588         else
1589                 return -EINVAL;
1590 }
1591
1592 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1593         int branch)
1594 {
1595         u64 rate;
1596         u32 val;
1597         u32 d;
1598         u32 div = 1;
1599
1600         val = readl(reg);
1601
1602         rate = src_rate;
1603         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1604
1605         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606         if (d > 1)
1607                 div *= d;
1608
1609         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610         if (d > 1)
1611                 div *= d;
1612
1613         if (val & PRCM_PLL_FREQ_SELDIV2)
1614                 div *= 2;
1615
1616         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1618                 ((reg == PRCM_PLLSOC0_FREQ) ||
1619                  (reg == PRCM_PLLARM_FREQ) ||
1620                  (reg == PRCM_PLLDDR_FREQ))))
1621                 div *= 2;
1622
1623         (void)do_div(rate, div);
1624
1625         return (unsigned long)rate;
1626 }
1627
1628 #define ROOT_CLOCK_RATE 38400000
1629
1630 static unsigned long clock_rate(u8 clock)
1631 {
1632         u32 val;
1633         u32 pllsw;
1634         unsigned long rate = ROOT_CLOCK_RATE;
1635
1636         val = readl(clk_mgt[clock].reg);
1637
1638         if (val & PRCM_CLK_MGT_CLK38) {
1639                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640                         rate /= 2;
1641                 return rate;
1642         }
1643
1644         val |= clk_mgt[clock].pllsw;
1645         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1646
1647         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653         else
1654                 return 0;
1655
1656         if ((clock == PRCMU_SGACLK) &&
1657                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658                 u64 r = (rate * 10);
1659
1660                 (void)do_div(r, 25);
1661                 return (unsigned long)r;
1662         }
1663         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664         if (val)
1665                 return rate / val;
1666         else
1667                 return 0;
1668 }
1669
1670 static unsigned long armss_rate(void)
1671 {
1672         u32 r;
1673         unsigned long rate;
1674
1675         r = readl(PRCM_ARM_CHGCLKREQ);
1676
1677         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1678                 /* External ARMCLKFIX clock */
1679
1680                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1681
1682                 /* Check PRCM_ARM_CHGCLKREQ divider */
1683                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1684                         rate /= 2;
1685
1686                 /* Check PRCM_ARMCLKFIX_MGT divider */
1687                 r = readl(PRCM_ARMCLKFIX_MGT);
1688                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1689                 rate /= r;
1690
1691         } else {/* ARM PLL */
1692                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1693         }
1694
1695         return rate;
1696 }
1697
1698 static unsigned long dsiclk_rate(u8 n)
1699 {
1700         u32 divsel;
1701         u32 div = 1;
1702
1703         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1704         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1705
1706         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1707                 divsel = dsiclk[n].divsel;
1708
1709         switch (divsel) {
1710         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1711                 div *= 2;
1712         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1713                 div *= 2;
1714         case PRCM_DSI_PLLOUT_SEL_PHI:
1715                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1716                         PLL_RAW) / div;
1717         default:
1718                 return 0;
1719         }
1720 }
1721
1722 static unsigned long dsiescclk_rate(u8 n)
1723 {
1724         u32 div;
1725
1726         div = readl(PRCM_DSITVCLK_DIV);
1727         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1728         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1729 }
1730
1731 unsigned long prcmu_clock_rate(u8 clock)
1732 {
1733         if (clock < PRCMU_NUM_REG_CLOCKS)
1734                 return clock_rate(clock);
1735         else if (clock == PRCMU_TIMCLK)
1736                 return ROOT_CLOCK_RATE / 16;
1737         else if (clock == PRCMU_SYSCLK)
1738                 return ROOT_CLOCK_RATE;
1739         else if (clock == PRCMU_PLLSOC0)
1740                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1741         else if (clock == PRCMU_PLLSOC1)
1742                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743         else if (clock == PRCMU_ARMSS)
1744                 return armss_rate();
1745         else if (clock == PRCMU_PLLDDR)
1746                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747         else if (clock == PRCMU_PLLDSI)
1748                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1749                         PLL_RAW);
1750         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1751                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1752         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1753                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1754         else
1755                 return 0;
1756 }
1757
1758 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1759 {
1760         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1761                 return ROOT_CLOCK_RATE;
1762         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1763         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1764                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1765         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1766                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1767         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1768                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1769         else
1770                 return 0;
1771 }
1772
1773 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1774 {
1775         u32 div;
1776
1777         div = (src_rate / rate);
1778         if (div == 0)
1779                 return 1;
1780         if (rate < (src_rate / div))
1781                 div++;
1782         return div;
1783 }
1784
1785 static long round_clock_rate(u8 clock, unsigned long rate)
1786 {
1787         u32 val;
1788         u32 div;
1789         unsigned long src_rate;
1790         long rounded_rate;
1791
1792         val = readl(clk_mgt[clock].reg);
1793         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1794                 clk_mgt[clock].branch);
1795         div = clock_divider(src_rate, rate);
1796         if (val & PRCM_CLK_MGT_CLK38) {
1797                 if (clk_mgt[clock].clk38div) {
1798                         if (div > 2)
1799                                 div = 2;
1800                 } else {
1801                         div = 1;
1802                 }
1803         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1804                 u64 r = (src_rate * 10);
1805
1806                 (void)do_div(r, 25);
1807                 if (r <= rate)
1808                         return (unsigned long)r;
1809         }
1810         rounded_rate = (src_rate / min(div, (u32)31));
1811
1812         return rounded_rate;
1813 }
1814
1815 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1816 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1817         { .frequency = 200000, .index = ARM_EXTCLK,},
1818         { .frequency = 400000, .index = ARM_50_OPP,},
1819         { .frequency = 800000, .index = ARM_100_OPP,},
1820         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1821         { .frequency = CPUFREQ_TABLE_END,},
1822 };
1823
1824 static long round_armss_rate(unsigned long rate)
1825 {
1826         long freq = 0;
1827         int i = 0;
1828
1829         /* cpufreq table frequencies is in KHz. */
1830         rate = rate / 1000;
1831
1832         /* Find the corresponding arm opp from the cpufreq table. */
1833         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1834                 freq = db8500_cpufreq_table[i].frequency;
1835                 if (freq == rate)
1836                         break;
1837                 i++;
1838         }
1839
1840         /* Return the last valid value, even if a match was not found. */
1841         return freq * 1000;
1842 }
1843
1844 #define MIN_PLL_VCO_RATE 600000000ULL
1845 #define MAX_PLL_VCO_RATE 1680640000ULL
1846
1847 static long round_plldsi_rate(unsigned long rate)
1848 {
1849         long rounded_rate = 0;
1850         unsigned long src_rate;
1851         unsigned long rem;
1852         u32 r;
1853
1854         src_rate = clock_rate(PRCMU_HDMICLK);
1855         rem = rate;
1856
1857         for (r = 7; (rem > 0) && (r > 0); r--) {
1858                 u64 d;
1859
1860                 d = (r * rate);
1861                 (void)do_div(d, src_rate);
1862                 if (d < 6)
1863                         d = 6;
1864                 else if (d > 255)
1865                         d = 255;
1866                 d *= src_rate;
1867                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1868                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1869                         continue;
1870                 (void)do_div(d, r);
1871                 if (rate < d) {
1872                         if (rounded_rate == 0)
1873                                 rounded_rate = (long)d;
1874                         break;
1875                 }
1876                 if ((rate - d) < rem) {
1877                         rem = (rate - d);
1878                         rounded_rate = (long)d;
1879                 }
1880         }
1881         return rounded_rate;
1882 }
1883
1884 static long round_dsiclk_rate(unsigned long rate)
1885 {
1886         u32 div;
1887         unsigned long src_rate;
1888         long rounded_rate;
1889
1890         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1891                 PLL_RAW);
1892         div = clock_divider(src_rate, rate);
1893         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1894
1895         return rounded_rate;
1896 }
1897
1898 static long round_dsiescclk_rate(unsigned long rate)
1899 {
1900         u32 div;
1901         unsigned long src_rate;
1902         long rounded_rate;
1903
1904         src_rate = clock_rate(PRCMU_TVCLK);
1905         div = clock_divider(src_rate, rate);
1906         rounded_rate = (src_rate / min(div, (u32)255));
1907
1908         return rounded_rate;
1909 }
1910
1911 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1912 {
1913         if (clock < PRCMU_NUM_REG_CLOCKS)
1914                 return round_clock_rate(clock, rate);
1915         else if (clock == PRCMU_ARMSS)
1916                 return round_armss_rate(rate);
1917         else if (clock == PRCMU_PLLDSI)
1918                 return round_plldsi_rate(rate);
1919         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1920                 return round_dsiclk_rate(rate);
1921         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1922                 return round_dsiescclk_rate(rate);
1923         else
1924                 return (long)prcmu_clock_rate(clock);
1925 }
1926
1927 static void set_clock_rate(u8 clock, unsigned long rate)
1928 {
1929         u32 val;
1930         u32 div;
1931         unsigned long src_rate;
1932         unsigned long flags;
1933
1934         spin_lock_irqsave(&clk_mgt_lock, flags);
1935
1936         /* Grab the HW semaphore. */
1937         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1938                 cpu_relax();
1939
1940         val = readl(clk_mgt[clock].reg);
1941         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1942                 clk_mgt[clock].branch);
1943         div = clock_divider(src_rate, rate);
1944         if (val & PRCM_CLK_MGT_CLK38) {
1945                 if (clk_mgt[clock].clk38div) {
1946                         if (div > 1)
1947                                 val |= PRCM_CLK_MGT_CLK38DIV;
1948                         else
1949                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1950                 }
1951         } else if (clock == PRCMU_SGACLK) {
1952                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1953                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1954                 if (div == 3) {
1955                         u64 r = (src_rate * 10);
1956
1957                         (void)do_div(r, 25);
1958                         if (r <= rate) {
1959                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1960                                 div = 0;
1961                         }
1962                 }
1963                 val |= min(div, (u32)31);
1964         } else {
1965                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1966                 val |= min(div, (u32)31);
1967         }
1968         writel(val, clk_mgt[clock].reg);
1969
1970         /* Release the HW semaphore. */
1971         writel(0, PRCM_SEM);
1972
1973         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1974 }
1975
1976 static int set_armss_rate(unsigned long rate)
1977 {
1978         int i = 0;
1979
1980         /* cpufreq table frequencies is in KHz. */
1981         rate = rate / 1000;
1982
1983         /* Find the corresponding arm opp from the cpufreq table. */
1984         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1985                 if (db8500_cpufreq_table[i].frequency == rate)
1986                         break;
1987                 i++;
1988         }
1989
1990         if (db8500_cpufreq_table[i].frequency != rate)
1991                 return -EINVAL;
1992
1993         /* Set the new arm opp. */
1994         return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1995 }
1996
1997 static int set_plldsi_rate(unsigned long rate)
1998 {
1999         unsigned long src_rate;
2000         unsigned long rem;
2001         u32 pll_freq = 0;
2002         u32 r;
2003
2004         src_rate = clock_rate(PRCMU_HDMICLK);
2005         rem = rate;
2006
2007         for (r = 7; (rem > 0) && (r > 0); r--) {
2008                 u64 d;
2009                 u64 hwrate;
2010
2011                 d = (r * rate);
2012                 (void)do_div(d, src_rate);
2013                 if (d < 6)
2014                         d = 6;
2015                 else if (d > 255)
2016                         d = 255;
2017                 hwrate = (d * src_rate);
2018                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2019                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2020                         continue;
2021                 (void)do_div(hwrate, r);
2022                 if (rate < hwrate) {
2023                         if (pll_freq == 0)
2024                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2025                                         (r << PRCM_PLL_FREQ_R_SHIFT));
2026                         break;
2027                 }
2028                 if ((rate - hwrate) < rem) {
2029                         rem = (rate - hwrate);
2030                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2031                                 (r << PRCM_PLL_FREQ_R_SHIFT));
2032                 }
2033         }
2034         if (pll_freq == 0)
2035                 return -EINVAL;
2036
2037         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2038         writel(pll_freq, PRCM_PLLDSI_FREQ);
2039
2040         return 0;
2041 }
2042
2043 static void set_dsiclk_rate(u8 n, unsigned long rate)
2044 {
2045         u32 val;
2046         u32 div;
2047
2048         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2049                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2050
2051         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2052                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2053                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
2054
2055         val = readl(PRCM_DSI_PLLOUT_SEL);
2056         val &= ~dsiclk[n].divsel_mask;
2057         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2058         writel(val, PRCM_DSI_PLLOUT_SEL);
2059 }
2060
2061 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2062 {
2063         u32 val;
2064         u32 div;
2065
2066         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2067         val = readl(PRCM_DSITVCLK_DIV);
2068         val &= ~dsiescclk[n].div_mask;
2069         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2070         writel(val, PRCM_DSITVCLK_DIV);
2071 }
2072
2073 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2074 {
2075         if (clock < PRCMU_NUM_REG_CLOCKS)
2076                 set_clock_rate(clock, rate);
2077         else if (clock == PRCMU_ARMSS)
2078                 return set_armss_rate(rate);
2079         else if (clock == PRCMU_PLLDSI)
2080                 return set_plldsi_rate(rate);
2081         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2082                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2083         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2084                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2085         return 0;
2086 }
2087
2088 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2089 {
2090         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2091             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2092                 return -EINVAL;
2093
2094         mutex_lock(&mb4_transfer.lock);
2095
2096         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097                 cpu_relax();
2098
2099         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2100         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2101                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2102         writeb(DDR_PWR_STATE_ON,
2103                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2104         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2105
2106         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107         wait_for_completion(&mb4_transfer.work);
2108
2109         mutex_unlock(&mb4_transfer.lock);
2110
2111         return 0;
2112 }
2113
2114 int db8500_prcmu_config_hotdog(u8 threshold)
2115 {
2116         mutex_lock(&mb4_transfer.lock);
2117
2118         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2119                 cpu_relax();
2120
2121         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2122         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2123
2124         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2125         wait_for_completion(&mb4_transfer.work);
2126
2127         mutex_unlock(&mb4_transfer.lock);
2128
2129         return 0;
2130 }
2131
2132 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2133 {
2134         mutex_lock(&mb4_transfer.lock);
2135
2136         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2137                 cpu_relax();
2138
2139         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2140         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2141         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2142                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2143         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2144
2145         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2146         wait_for_completion(&mb4_transfer.work);
2147
2148         mutex_unlock(&mb4_transfer.lock);
2149
2150         return 0;
2151 }
2152
2153 static int config_hot_period(u16 val)
2154 {
2155         mutex_lock(&mb4_transfer.lock);
2156
2157         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2158                 cpu_relax();
2159
2160         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2161         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2162
2163         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2164         wait_for_completion(&mb4_transfer.work);
2165
2166         mutex_unlock(&mb4_transfer.lock);
2167
2168         return 0;
2169 }
2170
2171 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2172 {
2173         if (cycles32k == 0xFFFF)
2174                 return -EINVAL;
2175
2176         return config_hot_period(cycles32k);
2177 }
2178
2179 int db8500_prcmu_stop_temp_sense(void)
2180 {
2181         return config_hot_period(0xFFFF);
2182 }
2183
2184 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2185 {
2186
2187         mutex_lock(&mb4_transfer.lock);
2188
2189         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2190                 cpu_relax();
2191
2192         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2193         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2194         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2195         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2196
2197         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2198
2199         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2200         wait_for_completion(&mb4_transfer.work);
2201
2202         mutex_unlock(&mb4_transfer.lock);
2203
2204         return 0;
2205
2206 }
2207
2208 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2209 {
2210         BUG_ON(num == 0 || num > 0xf);
2211         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2212                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2213                             A9WDOG_AUTO_OFF_DIS);
2214 }
2215
2216 int db8500_prcmu_enable_a9wdog(u8 id)
2217 {
2218         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2219 }
2220
2221 int db8500_prcmu_disable_a9wdog(u8 id)
2222 {
2223         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2224 }
2225
2226 int db8500_prcmu_kick_a9wdog(u8 id)
2227 {
2228         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2229 }
2230
2231 /*
2232  * timeout is 28 bit, in ms.
2233  */
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235 {
2236         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237                             (id & A9WDOG_ID_MASK) |
2238                             /*
2239                              * Put the lowest 28 bits of timeout at
2240                              * offset 4. Four first bits are used for id.
2241                              */
2242                             (u8)((timeout << 4) & 0xf0),
2243                             (u8)((timeout >> 4) & 0xff),
2244                             (u8)((timeout >> 12) & 0xff),
2245                             (u8)((timeout >> 20) & 0xff));
2246 }
2247
2248 /**
2249  * prcmu_abb_read() - Read register value(s) from the ABB.
2250  * @slave:      The I2C slave address.
2251  * @reg:        The (start) register address.
2252  * @value:      The read out value(s).
2253  * @size:       The number of registers to read.
2254  *
2255  * Reads register value(s) from the ABB.
2256  * @size has to be 1 for the current firmware version.
2257  */
2258 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2259 {
2260         int r;
2261
2262         if (size != 1)
2263                 return -EINVAL;
2264
2265         mutex_lock(&mb5_transfer.lock);
2266
2267         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2268                 cpu_relax();
2269
2270         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2271         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2272         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2273         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2274         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2275
2276         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2277
2278         if (!wait_for_completion_timeout(&mb5_transfer.work,
2279                                 msecs_to_jiffies(20000))) {
2280                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2281                         __func__);
2282                 r = -EIO;
2283         } else {
2284                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2285         }
2286
2287         if (!r)
2288                 *value = mb5_transfer.ack.value;
2289
2290         mutex_unlock(&mb5_transfer.lock);
2291
2292         return r;
2293 }
2294
2295 /**
2296  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2297  * @slave:      The I2C slave address.
2298  * @reg:        The (start) register address.
2299  * @value:      The value(s) to write.
2300  * @mask:       The mask(s) to use.
2301  * @size:       The number of registers to write.
2302  *
2303  * Writes masked register value(s) to the ABB.
2304  * For each @value, only the bits set to 1 in the corresponding @mask
2305  * will be written. The other bits are not changed.
2306  * @size has to be 1 for the current firmware version.
2307  */
2308 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2309 {
2310         int r;
2311
2312         if (size != 1)
2313                 return -EINVAL;
2314
2315         mutex_lock(&mb5_transfer.lock);
2316
2317         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2318                 cpu_relax();
2319
2320         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2321         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2322         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2323         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2324         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2325
2326         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2327
2328         if (!wait_for_completion_timeout(&mb5_transfer.work,
2329                                 msecs_to_jiffies(20000))) {
2330                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2331                         __func__);
2332                 r = -EIO;
2333         } else {
2334                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2335         }
2336
2337         mutex_unlock(&mb5_transfer.lock);
2338
2339         return r;
2340 }
2341
2342 /**
2343  * prcmu_abb_write() - Write register value(s) to the ABB.
2344  * @slave:      The I2C slave address.
2345  * @reg:        The (start) register address.
2346  * @value:      The value(s) to write.
2347  * @size:       The number of registers to write.
2348  *
2349  * Writes register value(s) to the ABB.
2350  * @size has to be 1 for the current firmware version.
2351  */
2352 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2353 {
2354         u8 mask = ~0;
2355
2356         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2357 }
2358
2359 /**
2360  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2361  */
2362 int prcmu_ac_wake_req(void)
2363 {
2364         u32 val;
2365         int ret = 0;
2366
2367         mutex_lock(&mb0_transfer.ac_wake_lock);
2368
2369         val = readl(PRCM_HOSTACCESS_REQ);
2370         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2371                 goto unlock_and_return;
2372
2373         atomic_set(&ac_wake_req_state, 1);
2374
2375         /*
2376          * Force Modem Wake-up before hostaccess_req ping-pong.
2377          * It prevents Modem to enter in Sleep while acking the hostaccess
2378          * request. The 31us delay has been calculated by HWI.
2379          */
2380         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2381         writel(val, PRCM_HOSTACCESS_REQ);
2382
2383         udelay(31);
2384
2385         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2386         writel(val, PRCM_HOSTACCESS_REQ);
2387
2388         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2389                         msecs_to_jiffies(5000))) {
2390 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2391                 db8500_prcmu_debug_dump(__func__, true, true);
2392 #endif
2393                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2394                         __func__);
2395                 ret = -EFAULT;
2396         }
2397
2398 unlock_and_return:
2399         mutex_unlock(&mb0_transfer.ac_wake_lock);
2400         return ret;
2401 }
2402
2403 /**
2404  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2405  */
2406 void prcmu_ac_sleep_req()
2407 {
2408         u32 val;
2409
2410         mutex_lock(&mb0_transfer.ac_wake_lock);
2411
2412         val = readl(PRCM_HOSTACCESS_REQ);
2413         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2414                 goto unlock_and_return;
2415
2416         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2417                 PRCM_HOSTACCESS_REQ);
2418
2419         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2420                         msecs_to_jiffies(5000))) {
2421                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2422                         __func__);
2423         }
2424
2425         atomic_set(&ac_wake_req_state, 0);
2426
2427 unlock_and_return:
2428         mutex_unlock(&mb0_transfer.ac_wake_lock);
2429 }
2430
2431 bool db8500_prcmu_is_ac_wake_requested(void)
2432 {
2433         return (atomic_read(&ac_wake_req_state) != 0);
2434 }
2435
2436 /**
2437  * db8500_prcmu_system_reset - System reset
2438  *
2439  * Saves the reset reason code and then sets the APE_SOFTRST register which
2440  * fires interrupt to fw
2441  */
2442 void db8500_prcmu_system_reset(u16 reset_code)
2443 {
2444         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2445         writel(1, PRCM_APE_SOFTRST);
2446 }
2447
2448 /**
2449  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2450  *
2451  * Retrieves the reset reason code stored by prcmu_system_reset() before
2452  * last restart.
2453  */
2454 u16 db8500_prcmu_get_reset_code(void)
2455 {
2456         return readw(tcdm_base + PRCM_SW_RST_REASON);
2457 }
2458
2459 /**
2460  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2461  */
2462 void db8500_prcmu_modem_reset(void)
2463 {
2464         mutex_lock(&mb1_transfer.lock);
2465
2466         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2467                 cpu_relax();
2468
2469         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2470         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2471         wait_for_completion(&mb1_transfer.work);
2472
2473         /*
2474          * No need to check return from PRCMU as modem should go in reset state
2475          * This state is already managed by upper layer
2476          */
2477
2478         mutex_unlock(&mb1_transfer.lock);
2479 }
2480
2481 static void ack_dbb_wakeup(void)
2482 {
2483         unsigned long flags;
2484
2485         spin_lock_irqsave(&mb0_transfer.lock, flags);
2486
2487         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2488                 cpu_relax();
2489
2490         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2491         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2492
2493         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2494 }
2495
2496 static inline void print_unknown_header_warning(u8 n, u8 header)
2497 {
2498         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2499                 header, n);
2500 }
2501
2502 static bool read_mailbox_0(void)
2503 {
2504         bool r;
2505         u32 ev;
2506         unsigned int n;
2507         u8 header;
2508
2509         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2510         switch (header) {
2511         case MB0H_WAKEUP_EXE:
2512         case MB0H_WAKEUP_SLEEP:
2513                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2514                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2515                 else
2516                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2517
2518                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2519                         complete(&mb0_transfer.ac_wake_work);
2520                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2521                         complete(&mb3_transfer.sysclk_work);
2522
2523                 ev &= mb0_transfer.req.dbb_irqs;
2524
2525                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2526                         if (ev & prcmu_irq_bit[n])
2527                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
2528                 }
2529                 r = true;
2530                 break;
2531         default:
2532                 print_unknown_header_warning(0, header);
2533                 r = false;
2534                 break;
2535         }
2536         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2537         return r;
2538 }
2539
2540 static bool read_mailbox_1(void)
2541 {
2542         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2543         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2544                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2545         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2546                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2547         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2548                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2549         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2550         complete(&mb1_transfer.work);
2551         return false;
2552 }
2553
2554 static bool read_mailbox_2(void)
2555 {
2556         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2557         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2558         complete(&mb2_transfer.work);
2559         return false;
2560 }
2561
2562 static bool read_mailbox_3(void)
2563 {
2564         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2565         return false;
2566 }
2567
2568 static bool read_mailbox_4(void)
2569 {
2570         u8 header;
2571         bool do_complete = true;
2572
2573         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2574         switch (header) {
2575         case MB4H_MEM_ST:
2576         case MB4H_HOTDOG:
2577         case MB4H_HOTMON:
2578         case MB4H_HOT_PERIOD:
2579         case MB4H_A9WDOG_CONF:
2580         case MB4H_A9WDOG_EN:
2581         case MB4H_A9WDOG_DIS:
2582         case MB4H_A9WDOG_LOAD:
2583         case MB4H_A9WDOG_KICK:
2584                 break;
2585         default:
2586                 print_unknown_header_warning(4, header);
2587                 do_complete = false;
2588                 break;
2589         }
2590
2591         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2592
2593         if (do_complete)
2594                 complete(&mb4_transfer.work);
2595
2596         return false;
2597 }
2598
2599 static bool read_mailbox_5(void)
2600 {
2601         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2602         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2603         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2604         complete(&mb5_transfer.work);
2605         return false;
2606 }
2607
2608 static bool read_mailbox_6(void)
2609 {
2610         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2611         return false;
2612 }
2613
2614 static bool read_mailbox_7(void)
2615 {
2616         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2617         return false;
2618 }
2619
2620 static bool (* const read_mailbox[NUM_MB])(void) = {
2621         read_mailbox_0,
2622         read_mailbox_1,
2623         read_mailbox_2,
2624         read_mailbox_3,
2625         read_mailbox_4,
2626         read_mailbox_5,
2627         read_mailbox_6,
2628         read_mailbox_7
2629 };
2630
2631 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2632 {
2633         u32 bits;
2634         u8 n;
2635         irqreturn_t r;
2636
2637         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2638         if (unlikely(!bits))
2639                 return IRQ_NONE;
2640
2641         r = IRQ_HANDLED;
2642         for (n = 0; bits; n++) {
2643                 if (bits & MBOX_BIT(n)) {
2644                         bits -= MBOX_BIT(n);
2645                         if (read_mailbox[n]())
2646                                 r = IRQ_WAKE_THREAD;
2647                 }
2648         }
2649         return r;
2650 }
2651
2652 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2653 {
2654         ack_dbb_wakeup();
2655         return IRQ_HANDLED;
2656 }
2657
2658 static void prcmu_mask_work(struct work_struct *work)
2659 {
2660         unsigned long flags;
2661
2662         spin_lock_irqsave(&mb0_transfer.lock, flags);
2663
2664         config_wakeups();
2665
2666         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2667 }
2668
2669 static void prcmu_irq_mask(struct irq_data *d)
2670 {
2671         unsigned long flags;
2672
2673         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2674
2675         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2676
2677         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2678
2679         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2680                 schedule_work(&mb0_transfer.mask_work);
2681 }
2682
2683 static void prcmu_irq_unmask(struct irq_data *d)
2684 {
2685         unsigned long flags;
2686
2687         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2688
2689         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2690
2691         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2692
2693         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2694                 schedule_work(&mb0_transfer.mask_work);
2695 }
2696
2697 static void noop(struct irq_data *d)
2698 {
2699 }
2700
2701 static struct irq_chip prcmu_irq_chip = {
2702         .name           = "prcmu",
2703         .irq_disable    = prcmu_irq_mask,
2704         .irq_ack        = noop,
2705         .irq_mask       = prcmu_irq_mask,
2706         .irq_unmask     = prcmu_irq_unmask,
2707 };
2708
2709 static char *fw_project_name(u8 project)
2710 {
2711         switch (project) {
2712         case PRCMU_FW_PROJECT_U8500:
2713                 return "U8500";
2714         case PRCMU_FW_PROJECT_U8500_C2:
2715                 return "U8500 C2";
2716         case PRCMU_FW_PROJECT_U9500:
2717                 return "U9500";
2718         case PRCMU_FW_PROJECT_U9500_C2:
2719                 return "U9500 C2";
2720         case PRCMU_FW_PROJECT_U8520:
2721                 return "U8520";
2722         case PRCMU_FW_PROJECT_U8420:
2723                 return "U8420";
2724         default:
2725                 return "Unknown";
2726         }
2727 }
2728
2729 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2730                                 irq_hw_number_t hwirq)
2731 {
2732         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2733                                 handle_simple_irq);
2734         set_irq_flags(virq, IRQF_VALID);
2735
2736         return 0;
2737 }
2738
2739 static struct irq_domain_ops db8500_irq_ops = {
2740         .map    = db8500_irq_map,
2741         .xlate  = irq_domain_xlate_twocell,
2742 };
2743
2744 static int db8500_irq_init(struct device_node *np)
2745 {
2746         int irq_base = -1;
2747
2748         /* In the device tree case, just take some IRQs */
2749         if (!np)
2750                 irq_base = IRQ_PRCMU_BASE;
2751
2752         db8500_irq_domain = irq_domain_add_simple(
2753                 np, NUM_PRCMU_WAKEUPS, irq_base,
2754                 &db8500_irq_ops, NULL);
2755
2756         if (!db8500_irq_domain) {
2757                 pr_err("Failed to create irqdomain\n");
2758                 return -ENOSYS;
2759         }
2760
2761         return 0;
2762 }
2763
2764 void __init db8500_prcmu_early_init(void)
2765 {
2766         if (cpu_is_u8500v2() || cpu_is_u9540()) {
2767                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2768
2769                 if (tcpm_base != NULL) {
2770                         u32 version;
2771                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2772                         fw_info.version.project = version & 0xFF;
2773                         fw_info.version.api_version = (version >> 8) & 0xFF;
2774                         fw_info.version.func_version = (version >> 16) & 0xFF;
2775                         fw_info.version.errata = (version >> 24) & 0xFF;
2776                         fw_info.valid = true;
2777                         pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2778                                 fw_project_name(fw_info.version.project),
2779                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2780                                 (version >> 24) & 0xFF);
2781                         iounmap(tcpm_base);
2782                 }
2783
2784                 if (cpu_is_u9540())
2785                         tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2786                                                 SZ_4K + SZ_8K) + SZ_8K;
2787                 else
2788                         tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2789         } else {
2790                 pr_err("prcmu: Unsupported chip version\n");
2791                 BUG();
2792         }
2793
2794         spin_lock_init(&mb0_transfer.lock);
2795         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2796         mutex_init(&mb0_transfer.ac_wake_lock);
2797         init_completion(&mb0_transfer.ac_wake_work);
2798         mutex_init(&mb1_transfer.lock);
2799         init_completion(&mb1_transfer.work);
2800         mb1_transfer.ape_opp = APE_NO_CHANGE;
2801         mutex_init(&mb2_transfer.lock);
2802         init_completion(&mb2_transfer.work);
2803         spin_lock_init(&mb2_transfer.auto_pm_lock);
2804         spin_lock_init(&mb3_transfer.lock);
2805         mutex_init(&mb3_transfer.sysclk_lock);
2806         init_completion(&mb3_transfer.sysclk_work);
2807         mutex_init(&mb4_transfer.lock);
2808         init_completion(&mb4_transfer.work);
2809         mutex_init(&mb5_transfer.lock);
2810         init_completion(&mb5_transfer.work);
2811
2812         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2813 }
2814
2815 static void __init init_prcm_registers(void)
2816 {
2817         u32 val;
2818
2819         val = readl(PRCM_A9PL_FORCE_CLKEN);
2820         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2821                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2822         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2823 }
2824
2825 /*
2826  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2827  */
2828 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2829         REGULATOR_SUPPLY("v-ape", NULL),
2830         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2831         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2832         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2833         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2834         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2835         /* "v-mmc" changed to "vcore" in the mainline kernel */
2836         REGULATOR_SUPPLY("vcore", "sdi0"),
2837         REGULATOR_SUPPLY("vcore", "sdi1"),
2838         REGULATOR_SUPPLY("vcore", "sdi2"),
2839         REGULATOR_SUPPLY("vcore", "sdi3"),
2840         REGULATOR_SUPPLY("vcore", "sdi4"),
2841         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2842         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2843         /* "v-uart" changed to "vcore" in the mainline kernel */
2844         REGULATOR_SUPPLY("vcore", "uart0"),
2845         REGULATOR_SUPPLY("vcore", "uart1"),
2846         REGULATOR_SUPPLY("vcore", "uart2"),
2847         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2848         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2849         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2850 };
2851
2852 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2853         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2854         /* AV8100 regulator */
2855         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2856 };
2857
2858 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2859         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2860         REGULATOR_SUPPLY("vsupply", "mcde"),
2861 };
2862
2863 /* SVA MMDSP regulator switch */
2864 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2865         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2866 };
2867
2868 /* SVA pipe regulator switch */
2869 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2870         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2871 };
2872
2873 /* SIA MMDSP regulator switch */
2874 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2875         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2876 };
2877
2878 /* SIA pipe regulator switch */
2879 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2880         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2881 };
2882
2883 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2884         REGULATOR_SUPPLY("v-mali", NULL),
2885 };
2886
2887 /* ESRAM1 and 2 regulator switch */
2888 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2889         REGULATOR_SUPPLY("esram12", "cm_control"),
2890 };
2891
2892 /* ESRAM3 and 4 regulator switch */
2893 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2894         REGULATOR_SUPPLY("v-esram34", "mcde"),
2895         REGULATOR_SUPPLY("esram34", "cm_control"),
2896         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2897 };
2898
2899 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2900         [DB8500_REGULATOR_VAPE] = {
2901                 .constraints = {
2902                         .name = "db8500-vape",
2903                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904                         .always_on = true,
2905                 },
2906                 .consumer_supplies = db8500_vape_consumers,
2907                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2908         },
2909         [DB8500_REGULATOR_VARM] = {
2910                 .constraints = {
2911                         .name = "db8500-varm",
2912                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913                 },
2914         },
2915         [DB8500_REGULATOR_VMODEM] = {
2916                 .constraints = {
2917                         .name = "db8500-vmodem",
2918                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919                 },
2920         },
2921         [DB8500_REGULATOR_VPLL] = {
2922                 .constraints = {
2923                         .name = "db8500-vpll",
2924                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2925                 },
2926         },
2927         [DB8500_REGULATOR_VSMPS1] = {
2928                 .constraints = {
2929                         .name = "db8500-vsmps1",
2930                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931                 },
2932         },
2933         [DB8500_REGULATOR_VSMPS2] = {
2934                 .constraints = {
2935                         .name = "db8500-vsmps2",
2936                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937                 },
2938                 .consumer_supplies = db8500_vsmps2_consumers,
2939                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2940         },
2941         [DB8500_REGULATOR_VSMPS3] = {
2942                 .constraints = {
2943                         .name = "db8500-vsmps3",
2944                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945                 },
2946         },
2947         [DB8500_REGULATOR_VRF1] = {
2948                 .constraints = {
2949                         .name = "db8500-vrf1",
2950                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951                 },
2952         },
2953         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2954                 /* dependency to u8500-vape is handled outside regulator framework */
2955                 .constraints = {
2956                         .name = "db8500-sva-mmdsp",
2957                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958                 },
2959                 .consumer_supplies = db8500_svammdsp_consumers,
2960                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2961         },
2962         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2963                 .constraints = {
2964                         /* "ret" means "retention" */
2965                         .name = "db8500-sva-mmdsp-ret",
2966                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967                 },
2968         },
2969         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2970                 /* dependency to u8500-vape is handled outside regulator framework */
2971                 .constraints = {
2972                         .name = "db8500-sva-pipe",
2973                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974                 },
2975                 .consumer_supplies = db8500_svapipe_consumers,
2976                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2977         },
2978         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2979                 /* dependency to u8500-vape is handled outside regulator framework */
2980                 .constraints = {
2981                         .name = "db8500-sia-mmdsp",
2982                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983                 },
2984                 .consumer_supplies = db8500_siammdsp_consumers,
2985                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2986         },
2987         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2988                 .constraints = {
2989                         .name = "db8500-sia-mmdsp-ret",
2990                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991                 },
2992         },
2993         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2994                 /* dependency to u8500-vape is handled outside regulator framework */
2995                 .constraints = {
2996                         .name = "db8500-sia-pipe",
2997                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998                 },
2999                 .consumer_supplies = db8500_siapipe_consumers,
3000                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3001         },
3002         [DB8500_REGULATOR_SWITCH_SGA] = {
3003                 .supply_regulator = "db8500-vape",
3004                 .constraints = {
3005                         .name = "db8500-sga",
3006                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3007                 },
3008                 .consumer_supplies = db8500_sga_consumers,
3009                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3010
3011         },
3012         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3013                 .supply_regulator = "db8500-vape",
3014                 .constraints = {
3015                         .name = "db8500-b2r2-mcde",
3016                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3017                 },
3018                 .consumer_supplies = db8500_b2r2_mcde_consumers,
3019                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3020         },
3021         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3022                 /*
3023                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
3024                  * no need to hold Vape
3025                  */
3026                 .constraints = {
3027                         .name = "db8500-esram12",
3028                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029                 },
3030                 .consumer_supplies = db8500_esram12_consumers,
3031                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3032         },
3033         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3034                 .constraints = {
3035                         .name = "db8500-esram12-ret",
3036                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3037                 },
3038         },
3039         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3040                 /*
3041                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
3042                  * no need to hold Vape
3043                  */
3044                 .constraints = {
3045                         .name = "db8500-esram34",
3046                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3047                 },
3048                 .consumer_supplies = db8500_esram34_consumers,
3049                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3050         },
3051         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3052                 .constraints = {
3053                         .name = "db8500-esram34-ret",
3054                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3055                 },
3056         },
3057 };
3058
3059 static struct resource ab8500_resources[] = {
3060         [0] = {
3061                 .start  = IRQ_DB8500_AB8500,
3062                 .end    = IRQ_DB8500_AB8500,
3063                 .flags  = IORESOURCE_IRQ
3064         }
3065 };
3066
3067 static struct mfd_cell db8500_prcmu_devs[] = {
3068         {
3069                 .name = "db8500-prcmu-regulators",
3070                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3071                 .platform_data = &db8500_regulators,
3072                 .pdata_size = sizeof(db8500_regulators),
3073         },
3074         {
3075                 .name = "cpufreq-u8500",
3076                 .of_compatible = "stericsson,cpufreq-u8500",
3077                 .platform_data = &db8500_cpufreq_table,
3078                 .pdata_size = sizeof(db8500_cpufreq_table),
3079         },
3080         {
3081                 .name = "ab8500-core",
3082                 .of_compatible = "stericsson,ab8500",
3083                 .num_resources = ARRAY_SIZE(ab8500_resources),
3084                 .resources = ab8500_resources,
3085                 .id = AB8500_VERSION_AB8500,
3086         },
3087 };
3088
3089 static void db8500_prcmu_update_cpufreq(void)
3090 {
3091         if (prcmu_has_arm_maxopp()) {
3092                 db8500_cpufreq_table[3].frequency = 1000000;
3093                 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3094         }
3095 }
3096
3097 /**
3098  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3099  *
3100  */
3101 static int db8500_prcmu_probe(struct platform_device *pdev)
3102 {
3103         struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3104         struct device_node *np = pdev->dev.of_node;
3105         int irq = 0, err = 0, i;
3106
3107         if (ux500_is_svp())
3108                 return -ENODEV;
3109
3110         init_prcm_registers();
3111
3112         /* Clean up the mailbox interrupts after pre-kernel code. */
3113         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3114
3115         if (np)
3116                 irq = platform_get_irq(pdev, 0);
3117
3118         if (!np || irq <= 0)
3119                 irq = IRQ_DB8500_PRCMU1;
3120
3121         err = request_threaded_irq(irq, prcmu_irq_handler,
3122                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3123         if (err < 0) {
3124                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3125                 err = -EBUSY;
3126                 goto no_irq_return;
3127         }
3128
3129         db8500_irq_init(np);
3130
3131         for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3132                 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3133                         db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3134                         db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3135                 }
3136         }
3137
3138         if (cpu_is_u8500v20_or_later())
3139                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3140
3141         db8500_prcmu_update_cpufreq();
3142
3143         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3144                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3145         if (err) {
3146                 pr_err("prcmu: Failed to add subdevices\n");
3147                 return err;
3148         }
3149
3150         pr_info("DB8500 PRCMU initialized\n");
3151
3152 no_irq_return:
3153         return err;
3154 }
3155 static const struct of_device_id db8500_prcmu_match[] = {
3156         { .compatible = "stericsson,db8500-prcmu"},
3157         { },
3158 };
3159
3160 static struct platform_driver db8500_prcmu_driver = {
3161         .driver = {
3162                 .name = "db8500-prcmu",
3163                 .owner = THIS_MODULE,
3164                 .of_match_table = db8500_prcmu_match,
3165         },
3166         .probe = db8500_prcmu_probe,
3167 };
3168
3169 static int __init db8500_prcmu_init(void)
3170 {
3171         return platform_driver_register(&db8500_prcmu_driver);
3172 }
3173
3174 core_initcall(db8500_prcmu_init);
3175
3176 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3177 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3178 MODULE_LICENSE("GPL v2");