ACPI: scan: Make acpi_bus_get_device() clear return pointer on error
[platform/kernel/linux-rpi.git] / drivers / mfd / db8500-prcmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "dbx500-prcmu-regs.h"
41
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE           0x2FC
44 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
57
58 #define PRCM_AVS_VOLTAGE                0
59 #define PRCM_AVS_VOLTAGE_MASK           0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP          6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE           7
63 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
64
65 #define PRCM_BOOT_STATUS        0xFFF
66 #define PRCM_ROMCODE_A2P        0xFFE
67 #define PRCM_ROMCODE_P2A        0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
80
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS          0
99 #define MB0H_CONFIG_WAKEUPS_EXE         1
100 #define MB0H_READ_WAKEUP_ACK            3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
102
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
113
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF    0x1
136 #define PLL_SOC0_ON     0x2
137 #define PLL_SOC1_OFF    0x4
138 #define PLL_SOC1_ON     0x8
139
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
145
146 /* Mailbox 2 headers */
147 #define MB2H_DPS        0x0
148 #define MB2H_AUTO_PWR   0x1
149
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
161
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165
166 /* Mailbox 3 headers */
167 #define MB3H_ANC        0x0
168 #define MB3H_SIDETONE   0x1
169 #define MB3H_SYSCLK     0xE
170
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
179
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT   0x0
182 #define MB4H_MEM_ST     0x1
183 #define MB4H_HOTDOG     0x12
184 #define MB4H_HOTMON     0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW                       BIT(0)
202 #define HOTMON_CONFIG_HIGH                      BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS                     0
209 #define A9WDOG_ID_MASK                          0xf
210
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN               BIT(3)
219
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230 /*
231  * Wakeups/IRQs
232  */
233
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263
264 static struct {
265         bool valid;
266         struct prcmu_fw_version version;
267 } fw_info;
268
269 static struct irq_domain *db8500_irq_domain;
270
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308         IRQ_ENTRY(RTC),
309         IRQ_ENTRY(RTT0),
310         IRQ_ENTRY(RTT1),
311         IRQ_ENTRY(HSI0),
312         IRQ_ENTRY(HSI1),
313         IRQ_ENTRY(CA_WAKE),
314         IRQ_ENTRY(USB),
315         IRQ_ENTRY(ABB),
316         IRQ_ENTRY(ABB_FIFO),
317         IRQ_ENTRY(CA_SLEEP),
318         IRQ_ENTRY(ARM),
319         IRQ_ENTRY(HOTMON_LOW),
320         IRQ_ENTRY(HOTMON_HIGH),
321         IRQ_ENTRY(MODEM_SW_RESET_REQ),
322         IRQ_ENTRY(GPIO0),
323         IRQ_ENTRY(GPIO1),
324         IRQ_ENTRY(GPIO2),
325         IRQ_ENTRY(GPIO3),
326         IRQ_ENTRY(GPIO4),
327         IRQ_ENTRY(GPIO5),
328         IRQ_ENTRY(GPIO6),
329         IRQ_ENTRY(GPIO7),
330         IRQ_ENTRY(GPIO8)
331 };
332
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336         WAKEUP_ENTRY(RTC),
337         WAKEUP_ENTRY(RTT0),
338         WAKEUP_ENTRY(RTT1),
339         WAKEUP_ENTRY(HSI0),
340         WAKEUP_ENTRY(HSI1),
341         WAKEUP_ENTRY(USB),
342         WAKEUP_ENTRY(ABB),
343         WAKEUP_ENTRY(ABB_FIFO),
344         WAKEUP_ENTRY(ARM)
345 };
346
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:               The transaction lock.
350  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
351  *                      the request data.
352  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
353  * @req:                Request data that need to persist between requests.
354  */
355 static struct {
356         spinlock_t lock;
357         spinlock_t dbb_irqs_lock;
358         struct work_struct mask_work;
359         struct mutex ac_wake_lock;
360         struct completion ac_wake_work;
361         struct {
362                 u32 dbb_irqs;
363                 u32 dbb_wakeups;
364                 u32 abb_events;
365         } req;
366 } mb0_transfer;
367
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:       The transaction lock.
371  * @work:       The transaction completion structure.
372  * @ape_opp:    The current APE OPP.
373  * @ack:        Reply ("acknowledge") data.
374  */
375 static struct {
376         struct mutex lock;
377         struct completion work;
378         u8 ape_opp;
379         struct {
380                 u8 header;
381                 u8 arm_opp;
382                 u8 ape_opp;
383                 u8 ape_voltage_status;
384         } ack;
385 } mb1_transfer;
386
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397         struct mutex lock;
398         struct completion work;
399         spinlock_t auto_pm_lock;
400         bool auto_pm_enabled;
401         struct {
402                 u8 status;
403         } ack;
404 } mb2_transfer;
405
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:               The request lock.
409  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:        Work structure used for sysclk requests.
411  */
412 static struct {
413         spinlock_t lock;
414         struct mutex sysclk_lock;
415         struct completion sysclk_work;
416 } mb3_transfer;
417
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:       The transaction lock.
421  * @work:       The transaction completion structure.
422  */
423 static struct {
424         struct mutex lock;
425         struct completion work;
426 } mb4_transfer;
427
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:       The transaction lock.
431  * @work:       The transaction completion structure.
432  * @ack:        Reply ("acknowledge") data.
433  */
434 static struct {
435         struct mutex lock;
436         struct completion work;
437         struct {
438                 u8 status;
439                 u8 value;
440         } ack;
441 } mb5_transfer;
442
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452
453 struct clk_mgt {
454         u32 offset;
455         u32 pllsw;
456         int branch;
457         bool clk38div;
458 };
459
460 enum {
461         PLL_RAW,
462         PLL_FIX,
463         PLL_DIV
464 };
465
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501
502 struct dsiclk {
503         u32 divsel_mask;
504         u32 divsel_shift;
505         u32 divsel;
506 };
507
508 static struct dsiclk dsiclk[2] = {
509         {
510                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513         },
514         {
515                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518         }
519 };
520
521 struct dsiescclk {
522         u32 en;
523         u32 div_mask;
524         u32 div_shift;
525 };
526
527 static struct dsiescclk dsiescclk[3] = {
528         {
529                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532         },
533         {
534                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537         },
538         {
539                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542         }
543 };
544
545 u32 db8500_prcmu_read(unsigned int reg)
546 {
547         return readl(prcmu_base + reg);
548 }
549
550 void db8500_prcmu_write(unsigned int reg, u32 value)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&prcmu_lock, flags);
555         writel(value, (prcmu_base + reg));
556         spin_unlock_irqrestore(&prcmu_lock, flags);
557 }
558
559 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
560 {
561         u32 val;
562         unsigned long flags;
563
564         spin_lock_irqsave(&prcmu_lock, flags);
565         val = readl(prcmu_base + reg);
566         val = ((val & ~mask) | (value & mask));
567         writel(val, (prcmu_base + reg));
568         spin_unlock_irqrestore(&prcmu_lock, flags);
569 }
570
571 struct prcmu_fw_version *prcmu_get_fw_version(void)
572 {
573         return fw_info.valid ? &fw_info.version : NULL;
574 }
575
576 static bool prcmu_is_ulppll_disabled(void)
577 {
578         struct prcmu_fw_version *ver;
579
580         ver = prcmu_get_fw_version();
581         return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
582 }
583
584 bool prcmu_has_arm_maxopp(void)
585 {
586         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
587                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
588 }
589
590 /**
591  * prcmu_set_rc_a2p - This function is used to run few power state sequences
592  * @val: Value to be set, i.e. transition requested
593  * Returns: 0 on success, -EINVAL on invalid argument
594  *
595  * This function is used to run the following power state sequences -
596  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
597  */
598 int prcmu_set_rc_a2p(enum romcode_write val)
599 {
600         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
601                 return -EINVAL;
602         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
603         return 0;
604 }
605
606 /**
607  * prcmu_get_rc_p2a - This function is used to get power state sequences
608  * Returns: the power transition that has last happened
609  *
610  * This function can return the following transitions-
611  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
612  */
613 enum romcode_read prcmu_get_rc_p2a(void)
614 {
615         return readb(tcdm_base + PRCM_ROMCODE_P2A);
616 }
617
618 /**
619  * prcmu_get_current_mode - Return the current XP70 power mode
620  * Returns: Returns the current AP(ARM) power mode: init,
621  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
622  */
623 enum ap_pwrst prcmu_get_xp70_current_state(void)
624 {
625         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
626 }
627
628 /**
629  * prcmu_config_clkout - Configure one of the programmable clock outputs.
630  * @clkout:     The CLKOUT number (0 or 1).
631  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
632  * @div:        The divider to be applied.
633  *
634  * Configures one of the programmable clock outputs (CLKOUTs).
635  * @div should be in the range [1,63] to request a configuration, or 0 to
636  * inform that the configuration is no longer requested.
637  */
638 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
639 {
640         static int requests[2];
641         int r = 0;
642         unsigned long flags;
643         u32 val;
644         u32 bits;
645         u32 mask;
646         u32 div_mask;
647
648         BUG_ON(clkout > 1);
649         BUG_ON(div > 63);
650         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
651
652         if (!div && !requests[clkout])
653                 return -EINVAL;
654
655         if (clkout == 0) {
656                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
657                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
658                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
659                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
660         } else {
661                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
662                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
663                         PRCM_CLKOCR_CLK1TYPE);
664                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
665                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
666         }
667         bits &= mask;
668
669         spin_lock_irqsave(&clkout_lock, flags);
670
671         val = readl(PRCM_CLKOCR);
672         if (val & div_mask) {
673                 if (div) {
674                         if ((val & mask) != bits) {
675                                 r = -EBUSY;
676                                 goto unlock_and_return;
677                         }
678                 } else {
679                         if ((val & mask & ~div_mask) != bits) {
680                                 r = -EINVAL;
681                                 goto unlock_and_return;
682                         }
683                 }
684         }
685         writel((bits | (val & ~mask)), PRCM_CLKOCR);
686         requests[clkout] += (div ? 1 : -1);
687
688 unlock_and_return:
689         spin_unlock_irqrestore(&clkout_lock, flags);
690
691         return r;
692 }
693
694 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
695 {
696         unsigned long flags;
697
698         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
699
700         spin_lock_irqsave(&mb0_transfer.lock, flags);
701
702         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
703                 cpu_relax();
704
705         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
706         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
707         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
708         writeb((keep_ulp_clk ? 1 : 0),
709                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
710         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
711         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
712
713         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
714
715         return 0;
716 }
717
718 u8 db8500_prcmu_get_power_state_result(void)
719 {
720         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
721 }
722
723 /* This function should only be called while mb0_transfer.lock is held. */
724 static void config_wakeups(void)
725 {
726         const u8 header[2] = {
727                 MB0H_CONFIG_WAKEUPS_EXE,
728                 MB0H_CONFIG_WAKEUPS_SLEEP
729         };
730         static u32 last_dbb_events;
731         static u32 last_abb_events;
732         u32 dbb_events;
733         u32 abb_events;
734         unsigned int i;
735
736         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
737         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
738
739         abb_events = mb0_transfer.req.abb_events;
740
741         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
742                 return;
743
744         for (i = 0; i < 2; i++) {
745                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
746                         cpu_relax();
747                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
748                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
749                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
750                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
751         }
752         last_dbb_events = dbb_events;
753         last_abb_events = abb_events;
754 }
755
756 void db8500_prcmu_enable_wakeups(u32 wakeups)
757 {
758         unsigned long flags;
759         u32 bits;
760         int i;
761
762         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
763
764         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
765                 if (wakeups & BIT(i))
766                         bits |= prcmu_wakeup_bit[i];
767         }
768
769         spin_lock_irqsave(&mb0_transfer.lock, flags);
770
771         mb0_transfer.req.dbb_wakeups = bits;
772         config_wakeups();
773
774         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
775 }
776
777 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
778 {
779         unsigned long flags;
780
781         spin_lock_irqsave(&mb0_transfer.lock, flags);
782
783         mb0_transfer.req.abb_events = abb_events;
784         config_wakeups();
785
786         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787 }
788
789 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
790 {
791         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
792                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
793         else
794                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
795 }
796
797 /**
798  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
799  * @opp: The new ARM operating point to which transition is to be made
800  * Returns: 0 on success, non-zero on failure
801  *
802  * This function sets the the operating point of the ARM.
803  */
804 int db8500_prcmu_set_arm_opp(u8 opp)
805 {
806         int r;
807
808         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
809                 return -EINVAL;
810
811         r = 0;
812
813         mutex_lock(&mb1_transfer.lock);
814
815         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
816                 cpu_relax();
817
818         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
819         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
820         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
821
822         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
823         wait_for_completion(&mb1_transfer.work);
824
825         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
826                 (mb1_transfer.ack.arm_opp != opp))
827                 r = -EIO;
828
829         mutex_unlock(&mb1_transfer.lock);
830
831         return r;
832 }
833
834 /**
835  * db8500_prcmu_get_arm_opp - get the current ARM OPP
836  *
837  * Returns: the current ARM OPP
838  */
839 int db8500_prcmu_get_arm_opp(void)
840 {
841         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
842 }
843
844 /**
845  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
846  *
847  * Returns: the current DDR OPP
848  */
849 int db8500_prcmu_get_ddr_opp(void)
850 {
851         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
852 }
853
854 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
855 static void request_even_slower_clocks(bool enable)
856 {
857         u32 clock_reg[] = {
858                 PRCM_ACLK_MGT,
859                 PRCM_DMACLK_MGT
860         };
861         unsigned long flags;
862         unsigned int i;
863
864         spin_lock_irqsave(&clk_mgt_lock, flags);
865
866         /* Grab the HW semaphore. */
867         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
868                 cpu_relax();
869
870         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
871                 u32 val;
872                 u32 div;
873
874                 val = readl(prcmu_base + clock_reg[i]);
875                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
876                 if (enable) {
877                         if ((div <= 1) || (div > 15)) {
878                                 pr_err("prcmu: Bad clock divider %d in %s\n",
879                                         div, __func__);
880                                 goto unlock_and_return;
881                         }
882                         div <<= 1;
883                 } else {
884                         if (div <= 2)
885                                 goto unlock_and_return;
886                         div >>= 1;
887                 }
888                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
889                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
890                 writel(val, prcmu_base + clock_reg[i]);
891         }
892
893 unlock_and_return:
894         /* Release the HW semaphore. */
895         writel(0, PRCM_SEM);
896
897         spin_unlock_irqrestore(&clk_mgt_lock, flags);
898 }
899
900 /**
901  * db8500_set_ape_opp - set the appropriate APE OPP
902  * @opp: The new APE operating point to which transition is to be made
903  * Returns: 0 on success, non-zero on failure
904  *
905  * This function sets the operating point of the APE.
906  */
907 int db8500_prcmu_set_ape_opp(u8 opp)
908 {
909         int r = 0;
910
911         if (opp == mb1_transfer.ape_opp)
912                 return 0;
913
914         mutex_lock(&mb1_transfer.lock);
915
916         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
917                 request_even_slower_clocks(false);
918
919         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
920                 goto skip_message;
921
922         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
923                 cpu_relax();
924
925         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
926         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
927         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
928                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
929
930         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
931         wait_for_completion(&mb1_transfer.work);
932
933         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
934                 (mb1_transfer.ack.ape_opp != opp))
935                 r = -EIO;
936
937 skip_message:
938         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
939                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
940                 request_even_slower_clocks(true);
941         if (!r)
942                 mb1_transfer.ape_opp = opp;
943
944         mutex_unlock(&mb1_transfer.lock);
945
946         return r;
947 }
948
949 /**
950  * db8500_prcmu_get_ape_opp - get the current APE OPP
951  *
952  * Returns: the current APE OPP
953  */
954 int db8500_prcmu_get_ape_opp(void)
955 {
956         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
957 }
958
959 /**
960  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
961  * @enable: true to request the higher voltage, false to drop a request.
962  *
963  * Calls to this function to enable and disable requests must be balanced.
964  */
965 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
966 {
967         int r = 0;
968         u8 header;
969         static unsigned int requests;
970
971         mutex_lock(&mb1_transfer.lock);
972
973         if (enable) {
974                 if (0 != requests++)
975                         goto unlock_and_return;
976                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
977         } else {
978                 if (requests == 0) {
979                         r = -EIO;
980                         goto unlock_and_return;
981                 } else if (1 != requests--) {
982                         goto unlock_and_return;
983                 }
984                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
985         }
986
987         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
988                 cpu_relax();
989
990         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
991
992         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
993         wait_for_completion(&mb1_transfer.work);
994
995         if ((mb1_transfer.ack.header != header) ||
996                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
997                 r = -EIO;
998
999 unlock_and_return:
1000         mutex_unlock(&mb1_transfer.lock);
1001
1002         return r;
1003 }
1004
1005 /**
1006  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007  *
1008  * This function releases the power state requirements of a USB wakeup.
1009  */
1010 int prcmu_release_usb_wakeup_state(void)
1011 {
1012         int r = 0;
1013
1014         mutex_lock(&mb1_transfer.lock);
1015
1016         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017                 cpu_relax();
1018
1019         writeb(MB1H_RELEASE_USB_WAKEUP,
1020                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021
1022         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023         wait_for_completion(&mb1_transfer.work);
1024
1025         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027                 r = -EIO;
1028
1029         mutex_unlock(&mb1_transfer.lock);
1030
1031         return r;
1032 }
1033
1034 static int request_pll(u8 clock, bool enable)
1035 {
1036         int r = 0;
1037
1038         if (clock == PRCMU_PLLSOC0)
1039                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040         else if (clock == PRCMU_PLLSOC1)
1041                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042         else
1043                 return -EINVAL;
1044
1045         mutex_lock(&mb1_transfer.lock);
1046
1047         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048                 cpu_relax();
1049
1050         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052
1053         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054         wait_for_completion(&mb1_transfer.work);
1055
1056         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057                 r = -EIO;
1058
1059         mutex_unlock(&mb1_transfer.lock);
1060
1061         return r;
1062 }
1063
1064 /**
1065  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066  * @epod_id: The EPOD to set
1067  * @epod_state: The new EPOD state
1068  *
1069  * This function sets the state of a EPOD (power domain). It may not be called
1070  * from interrupt context.
1071  */
1072 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073 {
1074         int r = 0;
1075         bool ram_retention = false;
1076         int i;
1077
1078         /* check argument */
1079         BUG_ON(epod_id >= NUM_EPOD_ID);
1080
1081         /* set flag if retention is possible */
1082         switch (epod_id) {
1083         case EPOD_ID_SVAMMDSP:
1084         case EPOD_ID_SIAMMDSP:
1085         case EPOD_ID_ESRAM12:
1086         case EPOD_ID_ESRAM34:
1087                 ram_retention = true;
1088                 break;
1089         }
1090
1091         /* check argument */
1092         BUG_ON(epod_state > EPOD_STATE_ON);
1093         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094
1095         /* get lock */
1096         mutex_lock(&mb2_transfer.lock);
1097
1098         /* wait for mailbox */
1099         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100                 cpu_relax();
1101
1102         /* fill in mailbox */
1103         for (i = 0; i < NUM_EPOD_ID; i++)
1104                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106
1107         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108
1109         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110
1111         /*
1112          * The current firmware version does not handle errors correctly,
1113          * and we cannot recover if there is an error.
1114          * This is expected to change when the firmware is updated.
1115          */
1116         if (!wait_for_completion_timeout(&mb2_transfer.work,
1117                         msecs_to_jiffies(20000))) {
1118                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119                         __func__);
1120                 r = -EIO;
1121                 goto unlock_and_return;
1122         }
1123
1124         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125                 r = -EIO;
1126
1127 unlock_and_return:
1128         mutex_unlock(&mb2_transfer.lock);
1129         return r;
1130 }
1131
1132 /**
1133  * prcmu_configure_auto_pm - Configure autonomous power management.
1134  * @sleep: Configuration for ApSleep.
1135  * @idle:  Configuration for ApIdle.
1136  */
1137 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138         struct prcmu_auto_pm_config *idle)
1139 {
1140         u32 sleep_cfg;
1141         u32 idle_cfg;
1142         unsigned long flags;
1143
1144         BUG_ON((sleep == NULL) || (idle == NULL));
1145
1146         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152
1153         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159
1160         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161
1162         /*
1163          * The autonomous power management configuration is done through
1164          * fields in mailbox 2, but these fields are only used as shared
1165          * variables - i.e. there is no need to send a message.
1166          */
1167         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169
1170         mb2_transfer.auto_pm_enabled =
1171                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175
1176         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177 }
1178 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179
1180 bool prcmu_is_auto_pm_enabled(void)
1181 {
1182         return mb2_transfer.auto_pm_enabled;
1183 }
1184
1185 static int request_sysclk(bool enable)
1186 {
1187         int r;
1188         unsigned long flags;
1189
1190         r = 0;
1191
1192         mutex_lock(&mb3_transfer.sysclk_lock);
1193
1194         spin_lock_irqsave(&mb3_transfer.lock, flags);
1195
1196         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197                 cpu_relax();
1198
1199         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200
1201         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203
1204         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205
1206         /*
1207          * The firmware only sends an ACK if we want to enable the
1208          * SysClk, and it succeeds.
1209          */
1210         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211                         msecs_to_jiffies(20000))) {
1212                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213                         __func__);
1214                 r = -EIO;
1215         }
1216
1217         mutex_unlock(&mb3_transfer.sysclk_lock);
1218
1219         return r;
1220 }
1221
1222 static int request_timclk(bool enable)
1223 {
1224         u32 val;
1225
1226         /*
1227          * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228          * PLL is disabled so we cannot use doze mode, this will
1229          * stop the clock on this firmware.
1230          */
1231         if (prcmu_is_ulppll_disabled())
1232                 val = 0;
1233         else
1234                 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235
1236         if (!enable)
1237                 val |= PRCM_TCR_STOP_TIMERS |
1238                         PRCM_TCR_DOZE_MODE |
1239                         PRCM_TCR_TENSEL_MASK;
1240
1241         writel(val, PRCM_TCR);
1242
1243         return 0;
1244 }
1245
1246 static int request_clock(u8 clock, bool enable)
1247 {
1248         u32 val;
1249         unsigned long flags;
1250
1251         spin_lock_irqsave(&clk_mgt_lock, flags);
1252
1253         /* Grab the HW semaphore. */
1254         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255                 cpu_relax();
1256
1257         val = readl(prcmu_base + clk_mgt[clock].offset);
1258         if (enable) {
1259                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260         } else {
1261                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263         }
1264         writel(val, prcmu_base + clk_mgt[clock].offset);
1265
1266         /* Release the HW semaphore. */
1267         writel(0, PRCM_SEM);
1268
1269         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270
1271         return 0;
1272 }
1273
1274 static int request_sga_clock(u8 clock, bool enable)
1275 {
1276         u32 val;
1277         int ret;
1278
1279         if (enable) {
1280                 val = readl(PRCM_CGATING_BYPASS);
1281                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282         }
1283
1284         ret = request_clock(clock, enable);
1285
1286         if (!ret && !enable) {
1287                 val = readl(PRCM_CGATING_BYPASS);
1288                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289         }
1290
1291         return ret;
1292 }
1293
1294 static inline bool plldsi_locked(void)
1295 {
1296         return (readl(PRCM_PLLDSI_LOCKP) &
1297                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301 }
1302
1303 static int request_plldsi(bool enable)
1304 {
1305         int r = 0;
1306         u32 val;
1307
1308         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311
1312         val = readl(PRCM_PLLDSI_ENABLE);
1313         if (enable)
1314                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315         else
1316                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317         writel(val, PRCM_PLLDSI_ENABLE);
1318
1319         if (enable) {
1320                 unsigned int i;
1321                 bool locked = plldsi_locked();
1322
1323                 for (i = 10; !locked && (i > 0); --i) {
1324                         udelay(100);
1325                         locked = plldsi_locked();
1326                 }
1327                 if (locked) {
1328                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329                                 PRCM_APE_RESETN_SET);
1330                 } else {
1331                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333                                 PRCM_MMIP_LS_CLAMP_SET);
1334                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335                         writel(val, PRCM_PLLDSI_ENABLE);
1336                         r = -EAGAIN;
1337                 }
1338         } else {
1339                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340         }
1341         return r;
1342 }
1343
1344 static int request_dsiclk(u8 n, bool enable)
1345 {
1346         u32 val;
1347
1348         val = readl(PRCM_DSI_PLLOUT_SEL);
1349         val &= ~dsiclk[n].divsel_mask;
1350         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351                 dsiclk[n].divsel_shift);
1352         writel(val, PRCM_DSI_PLLOUT_SEL);
1353         return 0;
1354 }
1355
1356 static int request_dsiescclk(u8 n, bool enable)
1357 {
1358         u32 val;
1359
1360         val = readl(PRCM_DSITVCLK_DIV);
1361         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362         writel(val, PRCM_DSITVCLK_DIV);
1363         return 0;
1364 }
1365
1366 /**
1367  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368  * @clock:      The clock for which the request is made.
1369  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1370  *
1371  * This function should only be used by the clock implementation.
1372  * Do not use it from any other place!
1373  */
1374 int db8500_prcmu_request_clock(u8 clock, bool enable)
1375 {
1376         if (clock == PRCMU_SGACLK)
1377                 return request_sga_clock(clock, enable);
1378         else if (clock < PRCMU_NUM_REG_CLOCKS)
1379                 return request_clock(clock, enable);
1380         else if (clock == PRCMU_TIMCLK)
1381                 return request_timclk(enable);
1382         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386         else if (clock == PRCMU_PLLDSI)
1387                 return request_plldsi(enable);
1388         else if (clock == PRCMU_SYSCLK)
1389                 return request_sysclk(enable);
1390         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391                 return request_pll(clock, enable);
1392         else
1393                 return -EINVAL;
1394 }
1395
1396 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397         int branch)
1398 {
1399         u64 rate;
1400         u32 val;
1401         u32 d;
1402         u32 div = 1;
1403
1404         val = readl(reg);
1405
1406         rate = src_rate;
1407         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408
1409         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410         if (d > 1)
1411                 div *= d;
1412
1413         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414         if (d > 1)
1415                 div *= d;
1416
1417         if (val & PRCM_PLL_FREQ_SELDIV2)
1418                 div *= 2;
1419
1420         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1422                 ((reg == PRCM_PLLSOC0_FREQ) ||
1423                  (reg == PRCM_PLLARM_FREQ) ||
1424                  (reg == PRCM_PLLDDR_FREQ))))
1425                 div *= 2;
1426
1427         (void)do_div(rate, div);
1428
1429         return (unsigned long)rate;
1430 }
1431
1432 #define ROOT_CLOCK_RATE 38400000
1433
1434 static unsigned long clock_rate(u8 clock)
1435 {
1436         u32 val;
1437         u32 pllsw;
1438         unsigned long rate = ROOT_CLOCK_RATE;
1439
1440         val = readl(prcmu_base + clk_mgt[clock].offset);
1441
1442         if (val & PRCM_CLK_MGT_CLK38) {
1443                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444                         rate /= 2;
1445                 return rate;
1446         }
1447
1448         val |= clk_mgt[clock].pllsw;
1449         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450
1451         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457         else
1458                 return 0;
1459
1460         if ((clock == PRCMU_SGACLK) &&
1461                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462                 u64 r = (rate * 10);
1463
1464                 (void)do_div(r, 25);
1465                 return (unsigned long)r;
1466         }
1467         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468         if (val)
1469                 return rate / val;
1470         else
1471                 return 0;
1472 }
1473
1474 static unsigned long armss_rate(void)
1475 {
1476         u32 r;
1477         unsigned long rate;
1478
1479         r = readl(PRCM_ARM_CHGCLKREQ);
1480
1481         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482                 /* External ARMCLKFIX clock */
1483
1484                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485
1486                 /* Check PRCM_ARM_CHGCLKREQ divider */
1487                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488                         rate /= 2;
1489
1490                 /* Check PRCM_ARMCLKFIX_MGT divider */
1491                 r = readl(PRCM_ARMCLKFIX_MGT);
1492                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493                 rate /= r;
1494
1495         } else {/* ARM PLL */
1496                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497         }
1498
1499         return rate;
1500 }
1501
1502 static unsigned long dsiclk_rate(u8 n)
1503 {
1504         u32 divsel;
1505         u32 div = 1;
1506
1507         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509
1510         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511                 divsel = dsiclk[n].divsel;
1512         else
1513                 dsiclk[n].divsel = divsel;
1514
1515         switch (divsel) {
1516         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517                 div *= 2;
1518                 fallthrough;
1519         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520                 div *= 2;
1521                 fallthrough;
1522         case PRCM_DSI_PLLOUT_SEL_PHI:
1523                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524                         PLL_RAW) / div;
1525         default:
1526                 return 0;
1527         }
1528 }
1529
1530 static unsigned long dsiescclk_rate(u8 n)
1531 {
1532         u32 div;
1533
1534         div = readl(PRCM_DSITVCLK_DIV);
1535         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537 }
1538
1539 unsigned long prcmu_clock_rate(u8 clock)
1540 {
1541         if (clock < PRCMU_NUM_REG_CLOCKS)
1542                 return clock_rate(clock);
1543         else if (clock == PRCMU_TIMCLK)
1544                 return prcmu_is_ulppll_disabled() ?
1545                         32768 : ROOT_CLOCK_RATE / 16;
1546         else if (clock == PRCMU_SYSCLK)
1547                 return ROOT_CLOCK_RATE;
1548         else if (clock == PRCMU_PLLSOC0)
1549                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550         else if (clock == PRCMU_PLLSOC1)
1551                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552         else if (clock == PRCMU_ARMSS)
1553                 return armss_rate();
1554         else if (clock == PRCMU_PLLDDR)
1555                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556         else if (clock == PRCMU_PLLDSI)
1557                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558                         PLL_RAW);
1559         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563         else
1564                 return 0;
1565 }
1566
1567 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568 {
1569         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570                 return ROOT_CLOCK_RATE;
1571         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578         else
1579                 return 0;
1580 }
1581
1582 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583 {
1584         u32 div;
1585
1586         div = (src_rate / rate);
1587         if (div == 0)
1588                 return 1;
1589         if (rate < (src_rate / div))
1590                 div++;
1591         return div;
1592 }
1593
1594 static long round_clock_rate(u8 clock, unsigned long rate)
1595 {
1596         u32 val;
1597         u32 div;
1598         unsigned long src_rate;
1599         long rounded_rate;
1600
1601         val = readl(prcmu_base + clk_mgt[clock].offset);
1602         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603                 clk_mgt[clock].branch);
1604         div = clock_divider(src_rate, rate);
1605         if (val & PRCM_CLK_MGT_CLK38) {
1606                 if (clk_mgt[clock].clk38div) {
1607                         if (div > 2)
1608                                 div = 2;
1609                 } else {
1610                         div = 1;
1611                 }
1612         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613                 u64 r = (src_rate * 10);
1614
1615                 (void)do_div(r, 25);
1616                 if (r <= rate)
1617                         return (unsigned long)r;
1618         }
1619         rounded_rate = (src_rate / min(div, (u32)31));
1620
1621         return rounded_rate;
1622 }
1623
1624 static const unsigned long db8500_armss_freqs[] = {
1625         200000000,
1626         400000000,
1627         800000000,
1628         998400000
1629 };
1630
1631 /* The DB8520 has slightly higher ARMSS max frequency */
1632 static const unsigned long db8520_armss_freqs[] = {
1633         200000000,
1634         400000000,
1635         800000000,
1636         1152000000
1637 };
1638
1639
1640
1641 static long round_armss_rate(unsigned long rate)
1642 {
1643         unsigned long freq = 0;
1644         const unsigned long *freqs;
1645         int nfreqs;
1646         int i;
1647
1648         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1649                 freqs = db8520_armss_freqs;
1650                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1651         } else {
1652                 freqs = db8500_armss_freqs;
1653                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1654         }
1655
1656         /* Find the corresponding arm opp from the cpufreq table. */
1657         for (i = 0; i < nfreqs; i++) {
1658                 freq = freqs[i];
1659                 if (rate <= freq)
1660                         break;
1661         }
1662
1663         /* Return the last valid value, even if a match was not found. */
1664         return freq;
1665 }
1666
1667 #define MIN_PLL_VCO_RATE 600000000ULL
1668 #define MAX_PLL_VCO_RATE 1680640000ULL
1669
1670 static long round_plldsi_rate(unsigned long rate)
1671 {
1672         long rounded_rate = 0;
1673         unsigned long src_rate;
1674         unsigned long rem;
1675         u32 r;
1676
1677         src_rate = clock_rate(PRCMU_HDMICLK);
1678         rem = rate;
1679
1680         for (r = 7; (rem > 0) && (r > 0); r--) {
1681                 u64 d;
1682
1683                 d = (r * rate);
1684                 (void)do_div(d, src_rate);
1685                 if (d < 6)
1686                         d = 6;
1687                 else if (d > 255)
1688                         d = 255;
1689                 d *= src_rate;
1690                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1691                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1692                         continue;
1693                 (void)do_div(d, r);
1694                 if (rate < d) {
1695                         if (rounded_rate == 0)
1696                                 rounded_rate = (long)d;
1697                         break;
1698                 }
1699                 if ((rate - d) < rem) {
1700                         rem = (rate - d);
1701                         rounded_rate = (long)d;
1702                 }
1703         }
1704         return rounded_rate;
1705 }
1706
1707 static long round_dsiclk_rate(unsigned long rate)
1708 {
1709         u32 div;
1710         unsigned long src_rate;
1711         long rounded_rate;
1712
1713         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1714                 PLL_RAW);
1715         div = clock_divider(src_rate, rate);
1716         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1717
1718         return rounded_rate;
1719 }
1720
1721 static long round_dsiescclk_rate(unsigned long rate)
1722 {
1723         u32 div;
1724         unsigned long src_rate;
1725         long rounded_rate;
1726
1727         src_rate = clock_rate(PRCMU_TVCLK);
1728         div = clock_divider(src_rate, rate);
1729         rounded_rate = (src_rate / min(div, (u32)255));
1730
1731         return rounded_rate;
1732 }
1733
1734 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1735 {
1736         if (clock < PRCMU_NUM_REG_CLOCKS)
1737                 return round_clock_rate(clock, rate);
1738         else if (clock == PRCMU_ARMSS)
1739                 return round_armss_rate(rate);
1740         else if (clock == PRCMU_PLLDSI)
1741                 return round_plldsi_rate(rate);
1742         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1743                 return round_dsiclk_rate(rate);
1744         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1745                 return round_dsiescclk_rate(rate);
1746         else
1747                 return (long)prcmu_clock_rate(clock);
1748 }
1749
1750 static void set_clock_rate(u8 clock, unsigned long rate)
1751 {
1752         u32 val;
1753         u32 div;
1754         unsigned long src_rate;
1755         unsigned long flags;
1756
1757         spin_lock_irqsave(&clk_mgt_lock, flags);
1758
1759         /* Grab the HW semaphore. */
1760         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1761                 cpu_relax();
1762
1763         val = readl(prcmu_base + clk_mgt[clock].offset);
1764         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1765                 clk_mgt[clock].branch);
1766         div = clock_divider(src_rate, rate);
1767         if (val & PRCM_CLK_MGT_CLK38) {
1768                 if (clk_mgt[clock].clk38div) {
1769                         if (div > 1)
1770                                 val |= PRCM_CLK_MGT_CLK38DIV;
1771                         else
1772                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1773                 }
1774         } else if (clock == PRCMU_SGACLK) {
1775                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1776                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1777                 if (div == 3) {
1778                         u64 r = (src_rate * 10);
1779
1780                         (void)do_div(r, 25);
1781                         if (r <= rate) {
1782                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1783                                 div = 0;
1784                         }
1785                 }
1786                 val |= min(div, (u32)31);
1787         } else {
1788                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1789                 val |= min(div, (u32)31);
1790         }
1791         writel(val, prcmu_base + clk_mgt[clock].offset);
1792
1793         /* Release the HW semaphore. */
1794         writel(0, PRCM_SEM);
1795
1796         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1797 }
1798
1799 static int set_armss_rate(unsigned long rate)
1800 {
1801         unsigned long freq;
1802         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1803         const unsigned long *freqs;
1804         int nfreqs;
1805         int i;
1806
1807         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1808                 freqs = db8520_armss_freqs;
1809                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1810         } else {
1811                 freqs = db8500_armss_freqs;
1812                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1813         }
1814
1815         /* Find the corresponding arm opp from the cpufreq table. */
1816         for (i = 0; i < nfreqs; i++) {
1817                 freq = freqs[i];
1818                 if (rate == freq)
1819                         break;
1820         }
1821
1822         if (rate != freq)
1823                 return -EINVAL;
1824
1825         /* Set the new arm opp. */
1826         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1827         return db8500_prcmu_set_arm_opp(opps[i]);
1828 }
1829
1830 static int set_plldsi_rate(unsigned long rate)
1831 {
1832         unsigned long src_rate;
1833         unsigned long rem;
1834         u32 pll_freq = 0;
1835         u32 r;
1836
1837         src_rate = clock_rate(PRCMU_HDMICLK);
1838         rem = rate;
1839
1840         for (r = 7; (rem > 0) && (r > 0); r--) {
1841                 u64 d;
1842                 u64 hwrate;
1843
1844                 d = (r * rate);
1845                 (void)do_div(d, src_rate);
1846                 if (d < 6)
1847                         d = 6;
1848                 else if (d > 255)
1849                         d = 255;
1850                 hwrate = (d * src_rate);
1851                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1852                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1853                         continue;
1854                 (void)do_div(hwrate, r);
1855                 if (rate < hwrate) {
1856                         if (pll_freq == 0)
1857                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1858                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1859                         break;
1860                 }
1861                 if ((rate - hwrate) < rem) {
1862                         rem = (rate - hwrate);
1863                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1864                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1865                 }
1866         }
1867         if (pll_freq == 0)
1868                 return -EINVAL;
1869
1870         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1871         writel(pll_freq, PRCM_PLLDSI_FREQ);
1872
1873         return 0;
1874 }
1875
1876 static void set_dsiclk_rate(u8 n, unsigned long rate)
1877 {
1878         u32 val;
1879         u32 div;
1880
1881         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1882                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1883
1884         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1885                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1886                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1887
1888         val = readl(PRCM_DSI_PLLOUT_SEL);
1889         val &= ~dsiclk[n].divsel_mask;
1890         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1891         writel(val, PRCM_DSI_PLLOUT_SEL);
1892 }
1893
1894 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1895 {
1896         u32 val;
1897         u32 div;
1898
1899         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1900         val = readl(PRCM_DSITVCLK_DIV);
1901         val &= ~dsiescclk[n].div_mask;
1902         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1903         writel(val, PRCM_DSITVCLK_DIV);
1904 }
1905
1906 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1907 {
1908         if (clock < PRCMU_NUM_REG_CLOCKS)
1909                 set_clock_rate(clock, rate);
1910         else if (clock == PRCMU_ARMSS)
1911                 return set_armss_rate(rate);
1912         else if (clock == PRCMU_PLLDSI)
1913                 return set_plldsi_rate(rate);
1914         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1915                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1916         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1917                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1918         return 0;
1919 }
1920
1921 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1922 {
1923         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1924             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1925                 return -EINVAL;
1926
1927         mutex_lock(&mb4_transfer.lock);
1928
1929         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1930                 cpu_relax();
1931
1932         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1933         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1934                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1935         writeb(DDR_PWR_STATE_ON,
1936                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1937         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1938
1939         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1940         wait_for_completion(&mb4_transfer.work);
1941
1942         mutex_unlock(&mb4_transfer.lock);
1943
1944         return 0;
1945 }
1946
1947 int db8500_prcmu_config_hotdog(u8 threshold)
1948 {
1949         mutex_lock(&mb4_transfer.lock);
1950
1951         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1952                 cpu_relax();
1953
1954         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1955         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1956
1957         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1958         wait_for_completion(&mb4_transfer.work);
1959
1960         mutex_unlock(&mb4_transfer.lock);
1961
1962         return 0;
1963 }
1964
1965 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1966 {
1967         mutex_lock(&mb4_transfer.lock);
1968
1969         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970                 cpu_relax();
1971
1972         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1973         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1974         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1975                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1976         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977
1978         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1979         wait_for_completion(&mb4_transfer.work);
1980
1981         mutex_unlock(&mb4_transfer.lock);
1982
1983         return 0;
1984 }
1985 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1986
1987 static int config_hot_period(u16 val)
1988 {
1989         mutex_lock(&mb4_transfer.lock);
1990
1991         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992                 cpu_relax();
1993
1994         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1995         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996
1997         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998         wait_for_completion(&mb4_transfer.work);
1999
2000         mutex_unlock(&mb4_transfer.lock);
2001
2002         return 0;
2003 }
2004
2005 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2006 {
2007         if (cycles32k == 0xFFFF)
2008                 return -EINVAL;
2009
2010         return config_hot_period(cycles32k);
2011 }
2012 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2013
2014 int db8500_prcmu_stop_temp_sense(void)
2015 {
2016         return config_hot_period(0xFFFF);
2017 }
2018 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2019
2020 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2021 {
2022
2023         mutex_lock(&mb4_transfer.lock);
2024
2025         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026                 cpu_relax();
2027
2028         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2029         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2030         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2031         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2032
2033         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034
2035         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036         wait_for_completion(&mb4_transfer.work);
2037
2038         mutex_unlock(&mb4_transfer.lock);
2039
2040         return 0;
2041
2042 }
2043
2044 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2045 {
2046         BUG_ON(num == 0 || num > 0xf);
2047         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2048                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2049                             A9WDOG_AUTO_OFF_DIS);
2050 }
2051 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2052
2053 int db8500_prcmu_enable_a9wdog(u8 id)
2054 {
2055         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2056 }
2057 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2058
2059 int db8500_prcmu_disable_a9wdog(u8 id)
2060 {
2061         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2062 }
2063 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2064
2065 int db8500_prcmu_kick_a9wdog(u8 id)
2066 {
2067         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2068 }
2069 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2070
2071 /*
2072  * timeout is 28 bit, in ms.
2073  */
2074 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2075 {
2076         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2077                             (id & A9WDOG_ID_MASK) |
2078                             /*
2079                              * Put the lowest 28 bits of timeout at
2080                              * offset 4. Four first bits are used for id.
2081                              */
2082                             (u8)((timeout << 4) & 0xf0),
2083                             (u8)((timeout >> 4) & 0xff),
2084                             (u8)((timeout >> 12) & 0xff),
2085                             (u8)((timeout >> 20) & 0xff));
2086 }
2087 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2088
2089 /**
2090  * prcmu_abb_read() - Read register value(s) from the ABB.
2091  * @slave:      The I2C slave address.
2092  * @reg:        The (start) register address.
2093  * @value:      The read out value(s).
2094  * @size:       The number of registers to read.
2095  *
2096  * Reads register value(s) from the ABB.
2097  * @size has to be 1 for the current firmware version.
2098  */
2099 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2100 {
2101         int r;
2102
2103         if (size != 1)
2104                 return -EINVAL;
2105
2106         mutex_lock(&mb5_transfer.lock);
2107
2108         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2109                 cpu_relax();
2110
2111         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2112         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2113         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2114         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2115         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2116
2117         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2118
2119         if (!wait_for_completion_timeout(&mb5_transfer.work,
2120                                 msecs_to_jiffies(20000))) {
2121                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2122                         __func__);
2123                 r = -EIO;
2124         } else {
2125                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2126         }
2127
2128         if (!r)
2129                 *value = mb5_transfer.ack.value;
2130
2131         mutex_unlock(&mb5_transfer.lock);
2132
2133         return r;
2134 }
2135
2136 /**
2137  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2138  * @slave:      The I2C slave address.
2139  * @reg:        The (start) register address.
2140  * @value:      The value(s) to write.
2141  * @mask:       The mask(s) to use.
2142  * @size:       The number of registers to write.
2143  *
2144  * Writes masked register value(s) to the ABB.
2145  * For each @value, only the bits set to 1 in the corresponding @mask
2146  * will be written. The other bits are not changed.
2147  * @size has to be 1 for the current firmware version.
2148  */
2149 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2150 {
2151         int r;
2152
2153         if (size != 1)
2154                 return -EINVAL;
2155
2156         mutex_lock(&mb5_transfer.lock);
2157
2158         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2159                 cpu_relax();
2160
2161         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2162         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2163         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2164         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2165         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2166
2167         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2168
2169         if (!wait_for_completion_timeout(&mb5_transfer.work,
2170                                 msecs_to_jiffies(20000))) {
2171                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2172                         __func__);
2173                 r = -EIO;
2174         } else {
2175                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2176         }
2177
2178         mutex_unlock(&mb5_transfer.lock);
2179
2180         return r;
2181 }
2182
2183 /**
2184  * prcmu_abb_write() - Write register value(s) to the ABB.
2185  * @slave:      The I2C slave address.
2186  * @reg:        The (start) register address.
2187  * @value:      The value(s) to write.
2188  * @size:       The number of registers to write.
2189  *
2190  * Writes register value(s) to the ABB.
2191  * @size has to be 1 for the current firmware version.
2192  */
2193 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2194 {
2195         u8 mask = ~0;
2196
2197         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2198 }
2199
2200 /**
2201  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2202  */
2203 int prcmu_ac_wake_req(void)
2204 {
2205         u32 val;
2206         int ret = 0;
2207
2208         mutex_lock(&mb0_transfer.ac_wake_lock);
2209
2210         val = readl(PRCM_HOSTACCESS_REQ);
2211         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2212                 goto unlock_and_return;
2213
2214         atomic_set(&ac_wake_req_state, 1);
2215
2216         /*
2217          * Force Modem Wake-up before hostaccess_req ping-pong.
2218          * It prevents Modem to enter in Sleep while acking the hostaccess
2219          * request. The 31us delay has been calculated by HWI.
2220          */
2221         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2222         writel(val, PRCM_HOSTACCESS_REQ);
2223
2224         udelay(31);
2225
2226         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2227         writel(val, PRCM_HOSTACCESS_REQ);
2228
2229         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2230                         msecs_to_jiffies(5000))) {
2231                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2232                         __func__);
2233                 ret = -EFAULT;
2234         }
2235
2236 unlock_and_return:
2237         mutex_unlock(&mb0_transfer.ac_wake_lock);
2238         return ret;
2239 }
2240
2241 /**
2242  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2243  */
2244 void prcmu_ac_sleep_req(void)
2245 {
2246         u32 val;
2247
2248         mutex_lock(&mb0_transfer.ac_wake_lock);
2249
2250         val = readl(PRCM_HOSTACCESS_REQ);
2251         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2252                 goto unlock_and_return;
2253
2254         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2255                 PRCM_HOSTACCESS_REQ);
2256
2257         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2258                         msecs_to_jiffies(5000))) {
2259                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2260                         __func__);
2261         }
2262
2263         atomic_set(&ac_wake_req_state, 0);
2264
2265 unlock_and_return:
2266         mutex_unlock(&mb0_transfer.ac_wake_lock);
2267 }
2268
2269 bool db8500_prcmu_is_ac_wake_requested(void)
2270 {
2271         return (atomic_read(&ac_wake_req_state) != 0);
2272 }
2273
2274 /**
2275  * db8500_prcmu_system_reset - System reset
2276  *
2277  * Saves the reset reason code and then sets the APE_SOFTRST register which
2278  * fires interrupt to fw
2279  *
2280  * @reset_code: The reason for system reset
2281  */
2282 void db8500_prcmu_system_reset(u16 reset_code)
2283 {
2284         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2285         writel(1, PRCM_APE_SOFTRST);
2286 }
2287
2288 /**
2289  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2290  *
2291  * Retrieves the reset reason code stored by prcmu_system_reset() before
2292  * last restart.
2293  */
2294 u16 db8500_prcmu_get_reset_code(void)
2295 {
2296         return readw(tcdm_base + PRCM_SW_RST_REASON);
2297 }
2298
2299 /**
2300  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2301  */
2302 void db8500_prcmu_modem_reset(void)
2303 {
2304         mutex_lock(&mb1_transfer.lock);
2305
2306         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2307                 cpu_relax();
2308
2309         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2310         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2311         wait_for_completion(&mb1_transfer.work);
2312
2313         /*
2314          * No need to check return from PRCMU as modem should go in reset state
2315          * This state is already managed by upper layer
2316          */
2317
2318         mutex_unlock(&mb1_transfer.lock);
2319 }
2320
2321 static void ack_dbb_wakeup(void)
2322 {
2323         unsigned long flags;
2324
2325         spin_lock_irqsave(&mb0_transfer.lock, flags);
2326
2327         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2328                 cpu_relax();
2329
2330         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2331         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2332
2333         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2334 }
2335
2336 static inline void print_unknown_header_warning(u8 n, u8 header)
2337 {
2338         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2339                 header, n);
2340 }
2341
2342 static bool read_mailbox_0(void)
2343 {
2344         bool r;
2345         u32 ev;
2346         unsigned int n;
2347         u8 header;
2348
2349         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2350         switch (header) {
2351         case MB0H_WAKEUP_EXE:
2352         case MB0H_WAKEUP_SLEEP:
2353                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2354                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2355                 else
2356                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2357
2358                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2359                         complete(&mb0_transfer.ac_wake_work);
2360                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2361                         complete(&mb3_transfer.sysclk_work);
2362
2363                 ev &= mb0_transfer.req.dbb_irqs;
2364
2365                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2366                         if (ev & prcmu_irq_bit[n])
2367                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2368                 }
2369                 r = true;
2370                 break;
2371         default:
2372                 print_unknown_header_warning(0, header);
2373                 r = false;
2374                 break;
2375         }
2376         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2377         return r;
2378 }
2379
2380 static bool read_mailbox_1(void)
2381 {
2382         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2383         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2384                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2385         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2386                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2387         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2388                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2389         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2390         complete(&mb1_transfer.work);
2391         return false;
2392 }
2393
2394 static bool read_mailbox_2(void)
2395 {
2396         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2397         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2398         complete(&mb2_transfer.work);
2399         return false;
2400 }
2401
2402 static bool read_mailbox_3(void)
2403 {
2404         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2405         return false;
2406 }
2407
2408 static bool read_mailbox_4(void)
2409 {
2410         u8 header;
2411         bool do_complete = true;
2412
2413         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2414         switch (header) {
2415         case MB4H_MEM_ST:
2416         case MB4H_HOTDOG:
2417         case MB4H_HOTMON:
2418         case MB4H_HOT_PERIOD:
2419         case MB4H_A9WDOG_CONF:
2420         case MB4H_A9WDOG_EN:
2421         case MB4H_A9WDOG_DIS:
2422         case MB4H_A9WDOG_LOAD:
2423         case MB4H_A9WDOG_KICK:
2424                 break;
2425         default:
2426                 print_unknown_header_warning(4, header);
2427                 do_complete = false;
2428                 break;
2429         }
2430
2431         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2432
2433         if (do_complete)
2434                 complete(&mb4_transfer.work);
2435
2436         return false;
2437 }
2438
2439 static bool read_mailbox_5(void)
2440 {
2441         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2442         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2443         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2444         complete(&mb5_transfer.work);
2445         return false;
2446 }
2447
2448 static bool read_mailbox_6(void)
2449 {
2450         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2451         return false;
2452 }
2453
2454 static bool read_mailbox_7(void)
2455 {
2456         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2457         return false;
2458 }
2459
2460 static bool (* const read_mailbox[NUM_MB])(void) = {
2461         read_mailbox_0,
2462         read_mailbox_1,
2463         read_mailbox_2,
2464         read_mailbox_3,
2465         read_mailbox_4,
2466         read_mailbox_5,
2467         read_mailbox_6,
2468         read_mailbox_7
2469 };
2470
2471 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2472 {
2473         u32 bits;
2474         u8 n;
2475         irqreturn_t r;
2476
2477         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2478         if (unlikely(!bits))
2479                 return IRQ_NONE;
2480
2481         r = IRQ_HANDLED;
2482         for (n = 0; bits; n++) {
2483                 if (bits & MBOX_BIT(n)) {
2484                         bits -= MBOX_BIT(n);
2485                         if (read_mailbox[n]())
2486                                 r = IRQ_WAKE_THREAD;
2487                 }
2488         }
2489         return r;
2490 }
2491
2492 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2493 {
2494         ack_dbb_wakeup();
2495         return IRQ_HANDLED;
2496 }
2497
2498 static void prcmu_mask_work(struct work_struct *work)
2499 {
2500         unsigned long flags;
2501
2502         spin_lock_irqsave(&mb0_transfer.lock, flags);
2503
2504         config_wakeups();
2505
2506         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2507 }
2508
2509 static void prcmu_irq_mask(struct irq_data *d)
2510 {
2511         unsigned long flags;
2512
2513         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2514
2515         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2516
2517         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2518
2519         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2520                 schedule_work(&mb0_transfer.mask_work);
2521 }
2522
2523 static void prcmu_irq_unmask(struct irq_data *d)
2524 {
2525         unsigned long flags;
2526
2527         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2528
2529         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2530
2531         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2532
2533         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2534                 schedule_work(&mb0_transfer.mask_work);
2535 }
2536
2537 static void noop(struct irq_data *d)
2538 {
2539 }
2540
2541 static struct irq_chip prcmu_irq_chip = {
2542         .name           = "prcmu",
2543         .irq_disable    = prcmu_irq_mask,
2544         .irq_ack        = noop,
2545         .irq_mask       = prcmu_irq_mask,
2546         .irq_unmask     = prcmu_irq_unmask,
2547 };
2548
2549 static char *fw_project_name(u32 project)
2550 {
2551         switch (project) {
2552         case PRCMU_FW_PROJECT_U8500:
2553                 return "U8500";
2554         case PRCMU_FW_PROJECT_U8400:
2555                 return "U8400";
2556         case PRCMU_FW_PROJECT_U9500:
2557                 return "U9500";
2558         case PRCMU_FW_PROJECT_U8500_MBB:
2559                 return "U8500 MBB";
2560         case PRCMU_FW_PROJECT_U8500_C1:
2561                 return "U8500 C1";
2562         case PRCMU_FW_PROJECT_U8500_C2:
2563                 return "U8500 C2";
2564         case PRCMU_FW_PROJECT_U8500_C3:
2565                 return "U8500 C3";
2566         case PRCMU_FW_PROJECT_U8500_C4:
2567                 return "U8500 C4";
2568         case PRCMU_FW_PROJECT_U9500_MBL:
2569                 return "U9500 MBL";
2570         case PRCMU_FW_PROJECT_U8500_MBL:
2571                 return "U8500 MBL";
2572         case PRCMU_FW_PROJECT_U8500_MBL2:
2573                 return "U8500 MBL2";
2574         case PRCMU_FW_PROJECT_U8520:
2575                 return "U8520 MBL";
2576         case PRCMU_FW_PROJECT_U8420:
2577                 return "U8420";
2578         case PRCMU_FW_PROJECT_U8420_SYSCLK:
2579                 return "U8420-sysclk";
2580         case PRCMU_FW_PROJECT_U9540:
2581                 return "U9540";
2582         case PRCMU_FW_PROJECT_A9420:
2583                 return "A9420";
2584         case PRCMU_FW_PROJECT_L8540:
2585                 return "L8540";
2586         case PRCMU_FW_PROJECT_L8580:
2587                 return "L8580";
2588         default:
2589                 return "Unknown";
2590         }
2591 }
2592
2593 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2594                                 irq_hw_number_t hwirq)
2595 {
2596         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2597                                 handle_simple_irq);
2598
2599         return 0;
2600 }
2601
2602 static const struct irq_domain_ops db8500_irq_ops = {
2603         .map    = db8500_irq_map,
2604         .xlate  = irq_domain_xlate_twocell,
2605 };
2606
2607 static int db8500_irq_init(struct device_node *np)
2608 {
2609         int i;
2610
2611         db8500_irq_domain = irq_domain_add_simple(
2612                 np, NUM_PRCMU_WAKEUPS, 0,
2613                 &db8500_irq_ops, NULL);
2614
2615         if (!db8500_irq_domain) {
2616                 pr_err("Failed to create irqdomain\n");
2617                 return -ENOSYS;
2618         }
2619
2620         /* All wakeups will be used, so create mappings for all */
2621         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2622                 irq_create_mapping(db8500_irq_domain, i);
2623
2624         return 0;
2625 }
2626
2627 static void dbx500_fw_version_init(struct device_node *np)
2628 {
2629         void __iomem *tcpm_base;
2630         u32 version;
2631
2632         tcpm_base = of_iomap(np, 1);
2633         if (!tcpm_base) {
2634                 pr_err("no prcmu tcpm mem region provided\n");
2635                 return;
2636         }
2637
2638         version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2639         fw_info.version.project = (version & 0xFF);
2640         fw_info.version.api_version = (version >> 8) & 0xFF;
2641         fw_info.version.func_version = (version >> 16) & 0xFF;
2642         fw_info.version.errata = (version >> 24) & 0xFF;
2643         strncpy(fw_info.version.project_name,
2644                 fw_project_name(fw_info.version.project),
2645                 PRCMU_FW_PROJECT_NAME_LEN);
2646         fw_info.valid = true;
2647         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2648                 fw_info.version.project_name,
2649                 fw_info.version.project,
2650                 fw_info.version.api_version,
2651                 fw_info.version.func_version,
2652                 fw_info.version.errata);
2653         iounmap(tcpm_base);
2654 }
2655
2656 void __init db8500_prcmu_early_init(void)
2657 {
2658         /*
2659          * This is a temporary remap to bring up the clocks. It is
2660          * subsequently replaces with a real remap. After the merge of
2661          * the mailbox subsystem all of this early code goes away, and the
2662          * clock driver can probe independently. An early initcall will
2663          * still be needed, but it can be diverted into drivers/clk/ux500.
2664          */
2665         struct device_node *np;
2666
2667         np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2668         prcmu_base = of_iomap(np, 0);
2669         if (!prcmu_base) {
2670                 of_node_put(np);
2671                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2672                 return;
2673         }
2674         dbx500_fw_version_init(np);
2675         of_node_put(np);
2676
2677         spin_lock_init(&mb0_transfer.lock);
2678         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2679         mutex_init(&mb0_transfer.ac_wake_lock);
2680         init_completion(&mb0_transfer.ac_wake_work);
2681         mutex_init(&mb1_transfer.lock);
2682         init_completion(&mb1_transfer.work);
2683         mb1_transfer.ape_opp = APE_NO_CHANGE;
2684         mutex_init(&mb2_transfer.lock);
2685         init_completion(&mb2_transfer.work);
2686         spin_lock_init(&mb2_transfer.auto_pm_lock);
2687         spin_lock_init(&mb3_transfer.lock);
2688         mutex_init(&mb3_transfer.sysclk_lock);
2689         init_completion(&mb3_transfer.sysclk_work);
2690         mutex_init(&mb4_transfer.lock);
2691         init_completion(&mb4_transfer.work);
2692         mutex_init(&mb5_transfer.lock);
2693         init_completion(&mb5_transfer.work);
2694
2695         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2696 }
2697
2698 static void init_prcm_registers(void)
2699 {
2700         u32 val;
2701
2702         val = readl(PRCM_A9PL_FORCE_CLKEN);
2703         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706 }
2707
2708 /*
2709  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710  */
2711 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712         REGULATOR_SUPPLY("v-ape", NULL),
2713         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718         /* "v-mmc" changed to "vcore" in the mainline kernel */
2719         REGULATOR_SUPPLY("vcore", "sdi0"),
2720         REGULATOR_SUPPLY("vcore", "sdi1"),
2721         REGULATOR_SUPPLY("vcore", "sdi2"),
2722         REGULATOR_SUPPLY("vcore", "sdi3"),
2723         REGULATOR_SUPPLY("vcore", "sdi4"),
2724         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726         /* "v-uart" changed to "vcore" in the mainline kernel */
2727         REGULATOR_SUPPLY("vcore", "uart0"),
2728         REGULATOR_SUPPLY("vcore", "uart1"),
2729         REGULATOR_SUPPLY("vcore", "uart2"),
2730         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 };
2734
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737         /* AV8100 regulator */
2738         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 };
2740
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743         REGULATOR_SUPPLY("vsupply", "mcde"),
2744 };
2745
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 };
2750
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 };
2755
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 };
2760
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 };
2765
2766 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767         REGULATOR_SUPPLY("v-mali", NULL),
2768 };
2769
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772         REGULATOR_SUPPLY("esram12", "cm_control"),
2773 };
2774
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777         REGULATOR_SUPPLY("v-esram34", "mcde"),
2778         REGULATOR_SUPPLY("esram34", "cm_control"),
2779         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 };
2781
2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783         [DB8500_REGULATOR_VAPE] = {
2784                 .constraints = {
2785                         .name = "db8500-vape",
2786                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787                         .always_on = true,
2788                 },
2789                 .consumer_supplies = db8500_vape_consumers,
2790                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791         },
2792         [DB8500_REGULATOR_VARM] = {
2793                 .constraints = {
2794                         .name = "db8500-varm",
2795                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796                 },
2797         },
2798         [DB8500_REGULATOR_VMODEM] = {
2799                 .constraints = {
2800                         .name = "db8500-vmodem",
2801                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802                 },
2803         },
2804         [DB8500_REGULATOR_VPLL] = {
2805                 .constraints = {
2806                         .name = "db8500-vpll",
2807                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808                 },
2809         },
2810         [DB8500_REGULATOR_VSMPS1] = {
2811                 .constraints = {
2812                         .name = "db8500-vsmps1",
2813                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814                 },
2815         },
2816         [DB8500_REGULATOR_VSMPS2] = {
2817                 .constraints = {
2818                         .name = "db8500-vsmps2",
2819                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820                 },
2821                 .consumer_supplies = db8500_vsmps2_consumers,
2822                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823         },
2824         [DB8500_REGULATOR_VSMPS3] = {
2825                 .constraints = {
2826                         .name = "db8500-vsmps3",
2827                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828                 },
2829         },
2830         [DB8500_REGULATOR_VRF1] = {
2831                 .constraints = {
2832                         .name = "db8500-vrf1",
2833                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834                 },
2835         },
2836         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837                 /* dependency to u8500-vape is handled outside regulator framework */
2838                 .constraints = {
2839                         .name = "db8500-sva-mmdsp",
2840                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841                 },
2842                 .consumer_supplies = db8500_svammdsp_consumers,
2843                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844         },
2845         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846                 .constraints = {
2847                         /* "ret" means "retention" */
2848                         .name = "db8500-sva-mmdsp-ret",
2849                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850                 },
2851         },
2852         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853                 /* dependency to u8500-vape is handled outside regulator framework */
2854                 .constraints = {
2855                         .name = "db8500-sva-pipe",
2856                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857                 },
2858                 .consumer_supplies = db8500_svapipe_consumers,
2859                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860         },
2861         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862                 /* dependency to u8500-vape is handled outside regulator framework */
2863                 .constraints = {
2864                         .name = "db8500-sia-mmdsp",
2865                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866                 },
2867                 .consumer_supplies = db8500_siammdsp_consumers,
2868                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869         },
2870         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871                 .constraints = {
2872                         .name = "db8500-sia-mmdsp-ret",
2873                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874                 },
2875         },
2876         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877                 /* dependency to u8500-vape is handled outside regulator framework */
2878                 .constraints = {
2879                         .name = "db8500-sia-pipe",
2880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                 },
2882                 .consumer_supplies = db8500_siapipe_consumers,
2883                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884         },
2885         [DB8500_REGULATOR_SWITCH_SGA] = {
2886                 .supply_regulator = "db8500-vape",
2887                 .constraints = {
2888                         .name = "db8500-sga",
2889                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890                 },
2891                 .consumer_supplies = db8500_sga_consumers,
2892                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893
2894         },
2895         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896                 .supply_regulator = "db8500-vape",
2897                 .constraints = {
2898                         .name = "db8500-b2r2-mcde",
2899                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900                 },
2901                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2902                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903         },
2904         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905                 /*
2906                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907                  * no need to hold Vape
2908                  */
2909                 .constraints = {
2910                         .name = "db8500-esram12",
2911                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912                 },
2913                 .consumer_supplies = db8500_esram12_consumers,
2914                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915         },
2916         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917                 .constraints = {
2918                         .name = "db8500-esram12-ret",
2919                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920                 },
2921         },
2922         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923                 /*
2924                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925                  * no need to hold Vape
2926                  */
2927                 .constraints = {
2928                         .name = "db8500-esram34",
2929                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930                 },
2931                 .consumer_supplies = db8500_esram34_consumers,
2932                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933         },
2934         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935                 .constraints = {
2936                         .name = "db8500-esram34-ret",
2937                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938                 },
2939         },
2940 };
2941
2942 static struct ux500_wdt_data db8500_wdt_pdata = {
2943         .timeout = 600, /* 10 minutes */
2944         .has_28_bits_resolution = true,
2945 };
2946
2947 static const struct mfd_cell common_prcmu_devs[] = {
2948         {
2949                 .name = "ux500_wdt",
2950                 .platform_data = &db8500_wdt_pdata,
2951                 .pdata_size = sizeof(db8500_wdt_pdata),
2952                 .id = -1,
2953         },
2954 };
2955
2956 static const struct mfd_cell db8500_prcmu_devs[] = {
2957         OF_MFD_CELL("db8500-prcmu-regulators", NULL,
2958                     &db8500_regulators, sizeof(db8500_regulators), 0,
2959                     "stericsson,db8500-prcmu-regulator"),
2960         OF_MFD_CELL("cpuidle-dbx500",
2961                     NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
2962         OF_MFD_CELL("db8500-thermal",
2963                     NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2964 };
2965
2966 static int db8500_prcmu_register_ab8500(struct device *parent)
2967 {
2968         struct device_node *np;
2969         struct resource ab850x_resource;
2970         const struct mfd_cell ab8500_cell = {
2971                 .name = "ab8500-core",
2972                 .of_compatible = "stericsson,ab8500",
2973                 .id = AB8500_VERSION_AB8500,
2974                 .resources = &ab850x_resource,
2975                 .num_resources = 1,
2976         };
2977         const struct mfd_cell ab8505_cell = {
2978                 .name = "ab8505-core",
2979                 .of_compatible = "stericsson,ab8505",
2980                 .id = AB8500_VERSION_AB8505,
2981                 .resources = &ab850x_resource,
2982                 .num_resources = 1,
2983         };
2984         const struct mfd_cell *ab850x_cell;
2985
2986         if (!parent->of_node)
2987                 return -ENODEV;
2988
2989         /* Look up the device node, sneak the IRQ out of it */
2990         for_each_child_of_node(parent->of_node, np) {
2991                 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2992                         ab850x_cell = &ab8500_cell;
2993                         break;
2994                 }
2995                 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2996                         ab850x_cell = &ab8505_cell;
2997                         break;
2998                 }
2999         }
3000         if (!np) {
3001                 dev_info(parent, "could not find AB850X node in the device tree\n");
3002                 return -ENODEV;
3003         }
3004         of_irq_to_resource_table(np, &ab850x_resource, 1);
3005
3006         return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3007 }
3008
3009 static int db8500_prcmu_probe(struct platform_device *pdev)
3010 {
3011         struct device_node *np = pdev->dev.of_node;
3012         int irq = 0, err = 0;
3013         struct resource *res;
3014
3015         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3016         if (!res) {
3017                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3018                 return -EINVAL;
3019         }
3020         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3021         if (!prcmu_base) {
3022                 dev_err(&pdev->dev,
3023                         "failed to ioremap prcmu register memory\n");
3024                 return -ENOMEM;
3025         }
3026         init_prcm_registers();
3027         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3028         if (!res) {
3029                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3030                 return -EINVAL;
3031         }
3032         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3033                         resource_size(res));
3034         if (!tcdm_base) {
3035                 dev_err(&pdev->dev,
3036                         "failed to ioremap prcmu-tcdm register memory\n");
3037                 return -ENOMEM;
3038         }
3039
3040         /* Clean up the mailbox interrupts after pre-kernel code. */
3041         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3042
3043         irq = platform_get_irq(pdev, 0);
3044         if (irq <= 0)
3045                 return irq;
3046
3047         err = request_threaded_irq(irq, prcmu_irq_handler,
3048                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3049         if (err < 0) {
3050                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3051                 return err;
3052         }
3053
3054         db8500_irq_init(np);
3055
3056         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3057
3058         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3059                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3060         if (err) {
3061                 pr_err("prcmu: Failed to add subdevices\n");
3062                 return err;
3063         }
3064
3065         /* TODO: Remove restriction when clk definitions are available. */
3066         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3067                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3068                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3069                                       db8500_irq_domain);
3070                 if (err) {
3071                         mfd_remove_devices(&pdev->dev);
3072                         pr_err("prcmu: Failed to add subdevices\n");
3073                         return err;
3074                 }
3075         }
3076
3077         err = db8500_prcmu_register_ab8500(&pdev->dev);
3078         if (err) {
3079                 mfd_remove_devices(&pdev->dev);
3080                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3081                 return err;
3082         }
3083
3084         pr_info("DB8500 PRCMU initialized\n");
3085         return err;
3086 }
3087 static const struct of_device_id db8500_prcmu_match[] = {
3088         { .compatible = "stericsson,db8500-prcmu"},
3089         { },
3090 };
3091
3092 static struct platform_driver db8500_prcmu_driver = {
3093         .driver = {
3094                 .name = "db8500-prcmu",
3095                 .of_match_table = db8500_prcmu_match,
3096         },
3097         .probe = db8500_prcmu_probe,
3098 };
3099
3100 static int __init db8500_prcmu_init(void)
3101 {
3102         return platform_driver_register(&db8500_prcmu_driver);
3103 }
3104 core_initcall(db8500_prcmu_init);