Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <linux/platform_data/ux500_wdt.h>
36 #include <linux/platform_data/db8500_thermal.h>
37 #include "dbx500-prcmu-regs.h"
38
39 /* Index of different voltages to be used when accessing AVSData */
40 #define PRCM_AVS_BASE           0x2FC
41 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
42 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
43 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
44 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
45 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
46 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
47 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
48 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
49 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
50 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
51 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
52 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
53 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
54
55 #define PRCM_AVS_VOLTAGE                0
56 #define PRCM_AVS_VOLTAGE_MASK           0x3f
57 #define PRCM_AVS_ISSLOWSTARTUP          6
58 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
59 #define PRCM_AVS_ISMODEENABLE           7
60 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
61
62 #define PRCM_BOOT_STATUS        0xFFF
63 #define PRCM_ROMCODE_A2P        0xFFE
64 #define PRCM_ROMCODE_P2A        0xFFD
65 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
66
67 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
68
69 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
70 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
71 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
72 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
73 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
74 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
75 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
76 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
77
78 /* Req Mailboxes */
79 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
80 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
81 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
82 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
83 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
84 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
85
86 /* Ack Mailboxes */
87 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
88 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
89 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
90 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
91 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
92 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
93
94 /* Mailbox 0 headers */
95 #define MB0H_POWER_STATE_TRANS          0
96 #define MB0H_CONFIG_WAKEUPS_EXE         1
97 #define MB0H_READ_WAKEUP_ACK            3
98 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
99
100 #define MB0H_WAKEUP_EXE 2
101 #define MB0H_WAKEUP_SLEEP 5
102
103 /* Mailbox 0 REQs */
104 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
105 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
106 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
107 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
108 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
109 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
110
111 /* Mailbox 0 ACKs */
112 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
113 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
114 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
115 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
116 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
117 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
118 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
119
120 /* Mailbox 1 headers */
121 #define MB1H_ARM_APE_OPP 0x0
122 #define MB1H_RESET_MODEM 0x2
123 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
124 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
125 #define MB1H_RELEASE_USB_WAKEUP 0x5
126 #define MB1H_PLL_ON_OFF 0x6
127
128 /* Mailbox 1 Requests */
129 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
130 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
131 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
132 #define PLL_SOC0_OFF    0x1
133 #define PLL_SOC0_ON     0x2
134 #define PLL_SOC1_OFF    0x4
135 #define PLL_SOC1_ON     0x8
136
137 /* Mailbox 1 ACKs */
138 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
139 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
140 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
141 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
142
143 /* Mailbox 2 headers */
144 #define MB2H_DPS        0x0
145 #define MB2H_AUTO_PWR   0x1
146
147 /* Mailbox 2 REQs */
148 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
149 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
150 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
151 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
152 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
153 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
154 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
155 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
156 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
157 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
158
159 /* Mailbox 2 ACKs */
160 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
161 #define HWACC_PWR_ST_OK 0xFE
162
163 /* Mailbox 3 headers */
164 #define MB3H_ANC        0x0
165 #define MB3H_SIDETONE   0x1
166 #define MB3H_SYSCLK     0xE
167
168 /* Mailbox 3 Requests */
169 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
170 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
171 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
172 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
173 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
175 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
176
177 /* Mailbox 4 headers */
178 #define MB4H_DDR_INIT   0x0
179 #define MB4H_MEM_ST     0x1
180 #define MB4H_HOTDOG     0x12
181 #define MB4H_HOTMON     0x13
182 #define MB4H_HOT_PERIOD 0x14
183 #define MB4H_A9WDOG_CONF 0x16
184 #define MB4H_A9WDOG_EN   0x17
185 #define MB4H_A9WDOG_DIS  0x18
186 #define MB4H_A9WDOG_LOAD 0x19
187 #define MB4H_A9WDOG_KICK 0x20
188
189 /* Mailbox 4 Requests */
190 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
191 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
192 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
193 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
196 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
197 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
198 #define HOTMON_CONFIG_LOW                       BIT(0)
199 #define HOTMON_CONFIG_HIGH                      BIT(1)
200 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
204 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
205 #define A9WDOG_AUTO_OFF_DIS                     0
206 #define A9WDOG_ID_MASK                          0xf
207
208 /* Mailbox 5 Requests */
209 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
210 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
211 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
212 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
213 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
214 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
215 #define PRCMU_I2C_STOP_EN               BIT(3)
216
217 /* Mailbox 5 ACKs */
218 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
219 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
220 #define I2C_WR_OK 0x1
221 #define I2C_RD_OK 0x2
222
223 #define NUM_MB 8
224 #define MBOX_BIT BIT
225 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
226
227 /*
228  * Wakeups/IRQs
229  */
230
231 #define WAKEUP_BIT_RTC BIT(0)
232 #define WAKEUP_BIT_RTT0 BIT(1)
233 #define WAKEUP_BIT_RTT1 BIT(2)
234 #define WAKEUP_BIT_HSI0 BIT(3)
235 #define WAKEUP_BIT_HSI1 BIT(4)
236 #define WAKEUP_BIT_CA_WAKE BIT(5)
237 #define WAKEUP_BIT_USB BIT(6)
238 #define WAKEUP_BIT_ABB BIT(7)
239 #define WAKEUP_BIT_ABB_FIFO BIT(8)
240 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
241 #define WAKEUP_BIT_CA_SLEEP BIT(10)
242 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
243 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
244 #define WAKEUP_BIT_ANC_OK BIT(13)
245 #define WAKEUP_BIT_SW_ERROR BIT(14)
246 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
247 #define WAKEUP_BIT_ARM BIT(17)
248 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
249 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
250 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
251 #define WAKEUP_BIT_GPIO0 BIT(23)
252 #define WAKEUP_BIT_GPIO1 BIT(24)
253 #define WAKEUP_BIT_GPIO2 BIT(25)
254 #define WAKEUP_BIT_GPIO3 BIT(26)
255 #define WAKEUP_BIT_GPIO4 BIT(27)
256 #define WAKEUP_BIT_GPIO5 BIT(28)
257 #define WAKEUP_BIT_GPIO6 BIT(29)
258 #define WAKEUP_BIT_GPIO7 BIT(30)
259 #define WAKEUP_BIT_GPIO8 BIT(31)
260
261 static struct {
262         bool valid;
263         struct prcmu_fw_version version;
264 } fw_info;
265
266 static struct irq_domain *db8500_irq_domain;
267
268 /*
269  * This vector maps irq numbers to the bits in the bit field used in
270  * communication with the PRCMU firmware.
271  *
272  * The reason for having this is to keep the irq numbers contiguous even though
273  * the bits in the bit field are not. (The bits also have a tendency to move
274  * around, to further complicate matters.)
275  */
276 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
277 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
278
279 #define IRQ_PRCMU_RTC 0
280 #define IRQ_PRCMU_RTT0 1
281 #define IRQ_PRCMU_RTT1 2
282 #define IRQ_PRCMU_HSI0 3
283 #define IRQ_PRCMU_HSI1 4
284 #define IRQ_PRCMU_CA_WAKE 5
285 #define IRQ_PRCMU_USB 6
286 #define IRQ_PRCMU_ABB 7
287 #define IRQ_PRCMU_ABB_FIFO 8
288 #define IRQ_PRCMU_ARM 9
289 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
290 #define IRQ_PRCMU_GPIO0 11
291 #define IRQ_PRCMU_GPIO1 12
292 #define IRQ_PRCMU_GPIO2 13
293 #define IRQ_PRCMU_GPIO3 14
294 #define IRQ_PRCMU_GPIO4 15
295 #define IRQ_PRCMU_GPIO5 16
296 #define IRQ_PRCMU_GPIO6 17
297 #define IRQ_PRCMU_GPIO7 18
298 #define IRQ_PRCMU_GPIO8 19
299 #define IRQ_PRCMU_CA_SLEEP 20
300 #define IRQ_PRCMU_HOTMON_LOW 21
301 #define IRQ_PRCMU_HOTMON_HIGH 22
302 #define NUM_PRCMU_WAKEUPS 23
303
304 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
305         IRQ_ENTRY(RTC),
306         IRQ_ENTRY(RTT0),
307         IRQ_ENTRY(RTT1),
308         IRQ_ENTRY(HSI0),
309         IRQ_ENTRY(HSI1),
310         IRQ_ENTRY(CA_WAKE),
311         IRQ_ENTRY(USB),
312         IRQ_ENTRY(ABB),
313         IRQ_ENTRY(ABB_FIFO),
314         IRQ_ENTRY(CA_SLEEP),
315         IRQ_ENTRY(ARM),
316         IRQ_ENTRY(HOTMON_LOW),
317         IRQ_ENTRY(HOTMON_HIGH),
318         IRQ_ENTRY(MODEM_SW_RESET_REQ),
319         IRQ_ENTRY(GPIO0),
320         IRQ_ENTRY(GPIO1),
321         IRQ_ENTRY(GPIO2),
322         IRQ_ENTRY(GPIO3),
323         IRQ_ENTRY(GPIO4),
324         IRQ_ENTRY(GPIO5),
325         IRQ_ENTRY(GPIO6),
326         IRQ_ENTRY(GPIO7),
327         IRQ_ENTRY(GPIO8)
328 };
329
330 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
331 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
332 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
333         WAKEUP_ENTRY(RTC),
334         WAKEUP_ENTRY(RTT0),
335         WAKEUP_ENTRY(RTT1),
336         WAKEUP_ENTRY(HSI0),
337         WAKEUP_ENTRY(HSI1),
338         WAKEUP_ENTRY(USB),
339         WAKEUP_ENTRY(ABB),
340         WAKEUP_ENTRY(ABB_FIFO),
341         WAKEUP_ENTRY(ARM)
342 };
343
344 /*
345  * mb0_transfer - state needed for mailbox 0 communication.
346  * @lock:               The transaction lock.
347  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
348  *                      the request data.
349  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
350  * @req:                Request data that need to persist between requests.
351  */
352 static struct {
353         spinlock_t lock;
354         spinlock_t dbb_irqs_lock;
355         struct work_struct mask_work;
356         struct mutex ac_wake_lock;
357         struct completion ac_wake_work;
358         struct {
359                 u32 dbb_irqs;
360                 u32 dbb_wakeups;
361                 u32 abb_events;
362         } req;
363 } mb0_transfer;
364
365 /*
366  * mb1_transfer - state needed for mailbox 1 communication.
367  * @lock:       The transaction lock.
368  * @work:       The transaction completion structure.
369  * @ape_opp:    The current APE OPP.
370  * @ack:        Reply ("acknowledge") data.
371  */
372 static struct {
373         struct mutex lock;
374         struct completion work;
375         u8 ape_opp;
376         struct {
377                 u8 header;
378                 u8 arm_opp;
379                 u8 ape_opp;
380                 u8 ape_voltage_status;
381         } ack;
382 } mb1_transfer;
383
384 /*
385  * mb2_transfer - state needed for mailbox 2 communication.
386  * @lock:            The transaction lock.
387  * @work:            The transaction completion structure.
388  * @auto_pm_lock:    The autonomous power management configuration lock.
389  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
390  * @req:             Request data that need to persist between requests.
391  * @ack:             Reply ("acknowledge") data.
392  */
393 static struct {
394         struct mutex lock;
395         struct completion work;
396         spinlock_t auto_pm_lock;
397         bool auto_pm_enabled;
398         struct {
399                 u8 status;
400         } ack;
401 } mb2_transfer;
402
403 /*
404  * mb3_transfer - state needed for mailbox 3 communication.
405  * @lock:               The request lock.
406  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
407  * @sysclk_work:        Work structure used for sysclk requests.
408  */
409 static struct {
410         spinlock_t lock;
411         struct mutex sysclk_lock;
412         struct completion sysclk_work;
413 } mb3_transfer;
414
415 /*
416  * mb4_transfer - state needed for mailbox 4 communication.
417  * @lock:       The transaction lock.
418  * @work:       The transaction completion structure.
419  */
420 static struct {
421         struct mutex lock;
422         struct completion work;
423 } mb4_transfer;
424
425 /*
426  * mb5_transfer - state needed for mailbox 5 communication.
427  * @lock:       The transaction lock.
428  * @work:       The transaction completion structure.
429  * @ack:        Reply ("acknowledge") data.
430  */
431 static struct {
432         struct mutex lock;
433         struct completion work;
434         struct {
435                 u8 status;
436                 u8 value;
437         } ack;
438 } mb5_transfer;
439
440 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
441
442 /* Spinlocks */
443 static DEFINE_SPINLOCK(prcmu_lock);
444 static DEFINE_SPINLOCK(clkout_lock);
445
446 /* Global var to runtime determine TCDM base for v2 or v1 */
447 static __iomem void *tcdm_base;
448 static __iomem void *prcmu_base;
449
450 struct clk_mgt {
451         u32 offset;
452         u32 pllsw;
453         int branch;
454         bool clk38div;
455 };
456
457 enum {
458         PLL_RAW,
459         PLL_FIX,
460         PLL_DIV
461 };
462
463 static DEFINE_SPINLOCK(clk_mgt_lock);
464
465 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
466         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
467 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
468         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
469         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
470         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
474         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
482         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
486         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
490         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
491         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
492         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
493         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
494         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
495         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
497 };
498
499 struct dsiclk {
500         u32 divsel_mask;
501         u32 divsel_shift;
502         u32 divsel;
503 };
504
505 static struct dsiclk dsiclk[2] = {
506         {
507                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
508                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
509                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
510         },
511         {
512                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
513                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
514                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
515         }
516 };
517
518 struct dsiescclk {
519         u32 en;
520         u32 div_mask;
521         u32 div_shift;
522 };
523
524 static struct dsiescclk dsiescclk[3] = {
525         {
526                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
527                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
528                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
529         },
530         {
531                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
532                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
533                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
534         },
535         {
536                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
537                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
538                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
539         }
540 };
541
542
543 /*
544 * Used by MCDE to setup all necessary PRCMU registers
545 */
546 #define PRCMU_RESET_DSIPLL              0x00004000
547 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
548
549 #define PRCMU_CLK_PLL_DIV_SHIFT         0
550 #define PRCMU_CLK_PLL_SW_SHIFT          5
551 #define PRCMU_CLK_38                    (1 << 9)
552 #define PRCMU_CLK_38_SRC                (1 << 10)
553 #define PRCMU_CLK_38_DIV                (1 << 11)
554
555 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
556 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
557
558 /* DPI 50000000 Hz */
559 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
560                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
561 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
562
563 /* D=101, N=1, R=4, SELDIV2=0 */
564 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
565
566 #define PRCMU_ENABLE_PLLDSI             0x00000001
567 #define PRCMU_DISABLE_PLLDSI            0x00000000
568 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
569 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
570 /* ESC clk, div0=1, div1=1, div2=3 */
571 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
572 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
573 #define PRCMU_DSI_RESET_SW              0x00000007
574
575 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
576
577 int db8500_prcmu_enable_dsipll(void)
578 {
579         int i;
580
581         /* Clear DSIPLL_RESETN */
582         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
583         /* Unclamp DSIPLL in/out */
584         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
585
586         /* Set DSI PLL FREQ */
587         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
588         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
589         /* Enable Escape clocks */
590         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
591
592         /* Start DSI PLL */
593         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
594         /* Reset DSI PLL */
595         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
596         for (i = 0; i < 10; i++) {
597                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
598                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
599                         break;
600                 udelay(100);
601         }
602         /* Set DSIPLL_RESETN */
603         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
604         return 0;
605 }
606
607 int db8500_prcmu_disable_dsipll(void)
608 {
609         /* Disable dsi pll */
610         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
611         /* Disable  escapeclock */
612         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
613         return 0;
614 }
615
616 int db8500_prcmu_set_display_clocks(void)
617 {
618         unsigned long flags;
619
620         spin_lock_irqsave(&clk_mgt_lock, flags);
621
622         /* Grab the HW semaphore. */
623         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
624                 cpu_relax();
625
626         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
627         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
628         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
629
630         /* Release the HW semaphore. */
631         writel(0, PRCM_SEM);
632
633         spin_unlock_irqrestore(&clk_mgt_lock, flags);
634
635         return 0;
636 }
637
638 u32 db8500_prcmu_read(unsigned int reg)
639 {
640         return readl(prcmu_base + reg);
641 }
642
643 void db8500_prcmu_write(unsigned int reg, u32 value)
644 {
645         unsigned long flags;
646
647         spin_lock_irqsave(&prcmu_lock, flags);
648         writel(value, (prcmu_base + reg));
649         spin_unlock_irqrestore(&prcmu_lock, flags);
650 }
651
652 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
653 {
654         u32 val;
655         unsigned long flags;
656
657         spin_lock_irqsave(&prcmu_lock, flags);
658         val = readl(prcmu_base + reg);
659         val = ((val & ~mask) | (value & mask));
660         writel(val, (prcmu_base + reg));
661         spin_unlock_irqrestore(&prcmu_lock, flags);
662 }
663
664 struct prcmu_fw_version *prcmu_get_fw_version(void)
665 {
666         return fw_info.valid ? &fw_info.version : NULL;
667 }
668
669 bool prcmu_has_arm_maxopp(void)
670 {
671         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
672                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
673 }
674
675 /**
676  * prcmu_get_boot_status - PRCMU boot status checking
677  * Returns: the current PRCMU boot status
678  */
679 int prcmu_get_boot_status(void)
680 {
681         return readb(tcdm_base + PRCM_BOOT_STATUS);
682 }
683
684 /**
685  * prcmu_set_rc_a2p - This function is used to run few power state sequences
686  * @val: Value to be set, i.e. transition requested
687  * Returns: 0 on success, -EINVAL on invalid argument
688  *
689  * This function is used to run the following power state sequences -
690  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
691  */
692 int prcmu_set_rc_a2p(enum romcode_write val)
693 {
694         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
695                 return -EINVAL;
696         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
697         return 0;
698 }
699
700 /**
701  * prcmu_get_rc_p2a - This function is used to get power state sequences
702  * Returns: the power transition that has last happened
703  *
704  * This function can return the following transitions-
705  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
706  */
707 enum romcode_read prcmu_get_rc_p2a(void)
708 {
709         return readb(tcdm_base + PRCM_ROMCODE_P2A);
710 }
711
712 /**
713  * prcmu_get_current_mode - Return the current XP70 power mode
714  * Returns: Returns the current AP(ARM) power mode: init,
715  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
716  */
717 enum ap_pwrst prcmu_get_xp70_current_state(void)
718 {
719         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
720 }
721
722 /**
723  * prcmu_config_clkout - Configure one of the programmable clock outputs.
724  * @clkout:     The CLKOUT number (0 or 1).
725  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
726  * @div:        The divider to be applied.
727  *
728  * Configures one of the programmable clock outputs (CLKOUTs).
729  * @div should be in the range [1,63] to request a configuration, or 0 to
730  * inform that the configuration is no longer requested.
731  */
732 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
733 {
734         static int requests[2];
735         int r = 0;
736         unsigned long flags;
737         u32 val;
738         u32 bits;
739         u32 mask;
740         u32 div_mask;
741
742         BUG_ON(clkout > 1);
743         BUG_ON(div > 63);
744         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
745
746         if (!div && !requests[clkout])
747                 return -EINVAL;
748
749         switch (clkout) {
750         case 0:
751                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
752                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
753                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
754                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
755                 break;
756         case 1:
757                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
758                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
759                         PRCM_CLKOCR_CLK1TYPE);
760                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
761                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
762                 break;
763         }
764         bits &= mask;
765
766         spin_lock_irqsave(&clkout_lock, flags);
767
768         val = readl(PRCM_CLKOCR);
769         if (val & div_mask) {
770                 if (div) {
771                         if ((val & mask) != bits) {
772                                 r = -EBUSY;
773                                 goto unlock_and_return;
774                         }
775                 } else {
776                         if ((val & mask & ~div_mask) != bits) {
777                                 r = -EINVAL;
778                                 goto unlock_and_return;
779                         }
780                 }
781         }
782         writel((bits | (val & ~mask)), PRCM_CLKOCR);
783         requests[clkout] += (div ? 1 : -1);
784
785 unlock_and_return:
786         spin_unlock_irqrestore(&clkout_lock, flags);
787
788         return r;
789 }
790
791 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
792 {
793         unsigned long flags;
794
795         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
796
797         spin_lock_irqsave(&mb0_transfer.lock, flags);
798
799         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
800                 cpu_relax();
801
802         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
803         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
804         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
805         writeb((keep_ulp_clk ? 1 : 0),
806                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
807         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
808         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
809
810         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
811
812         return 0;
813 }
814
815 u8 db8500_prcmu_get_power_state_result(void)
816 {
817         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
818 }
819
820 /* This function should only be called while mb0_transfer.lock is held. */
821 static void config_wakeups(void)
822 {
823         const u8 header[2] = {
824                 MB0H_CONFIG_WAKEUPS_EXE,
825                 MB0H_CONFIG_WAKEUPS_SLEEP
826         };
827         static u32 last_dbb_events;
828         static u32 last_abb_events;
829         u32 dbb_events;
830         u32 abb_events;
831         unsigned int i;
832
833         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
834         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
835
836         abb_events = mb0_transfer.req.abb_events;
837
838         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
839                 return;
840
841         for (i = 0; i < 2; i++) {
842                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
843                         cpu_relax();
844                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
845                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
846                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
847                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
848         }
849         last_dbb_events = dbb_events;
850         last_abb_events = abb_events;
851 }
852
853 void db8500_prcmu_enable_wakeups(u32 wakeups)
854 {
855         unsigned long flags;
856         u32 bits;
857         int i;
858
859         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
860
861         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
862                 if (wakeups & BIT(i))
863                         bits |= prcmu_wakeup_bit[i];
864         }
865
866         spin_lock_irqsave(&mb0_transfer.lock, flags);
867
868         mb0_transfer.req.dbb_wakeups = bits;
869         config_wakeups();
870
871         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
872 }
873
874 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
875 {
876         unsigned long flags;
877
878         spin_lock_irqsave(&mb0_transfer.lock, flags);
879
880         mb0_transfer.req.abb_events = abb_events;
881         config_wakeups();
882
883         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
884 }
885
886 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
887 {
888         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
889                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
890         else
891                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
892 }
893
894 /**
895  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
896  * @opp: The new ARM operating point to which transition is to be made
897  * Returns: 0 on success, non-zero on failure
898  *
899  * This function sets the the operating point of the ARM.
900  */
901 int db8500_prcmu_set_arm_opp(u8 opp)
902 {
903         int r;
904
905         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
906                 return -EINVAL;
907
908         r = 0;
909
910         mutex_lock(&mb1_transfer.lock);
911
912         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
913                 cpu_relax();
914
915         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
916         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
917         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
918
919         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
920         wait_for_completion(&mb1_transfer.work);
921
922         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
923                 (mb1_transfer.ack.arm_opp != opp))
924                 r = -EIO;
925
926         mutex_unlock(&mb1_transfer.lock);
927
928         return r;
929 }
930
931 /**
932  * db8500_prcmu_get_arm_opp - get the current ARM OPP
933  *
934  * Returns: the current ARM OPP
935  */
936 int db8500_prcmu_get_arm_opp(void)
937 {
938         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
939 }
940
941 /**
942  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
943  *
944  * Returns: the current DDR OPP
945  */
946 int db8500_prcmu_get_ddr_opp(void)
947 {
948         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
949 }
950
951 /**
952  * db8500_set_ddr_opp - set the appropriate DDR OPP
953  * @opp: The new DDR operating point to which transition is to be made
954  * Returns: 0 on success, non-zero on failure
955  *
956  * This function sets the operating point of the DDR.
957  */
958 static bool enable_set_ddr_opp;
959 int db8500_prcmu_set_ddr_opp(u8 opp)
960 {
961         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
962                 return -EINVAL;
963         /* Changing the DDR OPP can hang the hardware pre-v21 */
964         if (enable_set_ddr_opp)
965                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
966
967         return 0;
968 }
969
970 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
971 static void request_even_slower_clocks(bool enable)
972 {
973         u32 clock_reg[] = {
974                 PRCM_ACLK_MGT,
975                 PRCM_DMACLK_MGT
976         };
977         unsigned long flags;
978         unsigned int i;
979
980         spin_lock_irqsave(&clk_mgt_lock, flags);
981
982         /* Grab the HW semaphore. */
983         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
984                 cpu_relax();
985
986         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
987                 u32 val;
988                 u32 div;
989
990                 val = readl(prcmu_base + clock_reg[i]);
991                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
992                 if (enable) {
993                         if ((div <= 1) || (div > 15)) {
994                                 pr_err("prcmu: Bad clock divider %d in %s\n",
995                                         div, __func__);
996                                 goto unlock_and_return;
997                         }
998                         div <<= 1;
999                 } else {
1000                         if (div <= 2)
1001                                 goto unlock_and_return;
1002                         div >>= 1;
1003                 }
1004                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1005                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1006                 writel(val, prcmu_base + clock_reg[i]);
1007         }
1008
1009 unlock_and_return:
1010         /* Release the HW semaphore. */
1011         writel(0, PRCM_SEM);
1012
1013         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1014 }
1015
1016 /**
1017  * db8500_set_ape_opp - set the appropriate APE OPP
1018  * @opp: The new APE operating point to which transition is to be made
1019  * Returns: 0 on success, non-zero on failure
1020  *
1021  * This function sets the operating point of the APE.
1022  */
1023 int db8500_prcmu_set_ape_opp(u8 opp)
1024 {
1025         int r = 0;
1026
1027         if (opp == mb1_transfer.ape_opp)
1028                 return 0;
1029
1030         mutex_lock(&mb1_transfer.lock);
1031
1032         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1033                 request_even_slower_clocks(false);
1034
1035         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1036                 goto skip_message;
1037
1038         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1039                 cpu_relax();
1040
1041         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1043         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1044                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1045
1046         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1047         wait_for_completion(&mb1_transfer.work);
1048
1049         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1050                 (mb1_transfer.ack.ape_opp != opp))
1051                 r = -EIO;
1052
1053 skip_message:
1054         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1055                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1056                 request_even_slower_clocks(true);
1057         if (!r)
1058                 mb1_transfer.ape_opp = opp;
1059
1060         mutex_unlock(&mb1_transfer.lock);
1061
1062         return r;
1063 }
1064
1065 /**
1066  * db8500_prcmu_get_ape_opp - get the current APE OPP
1067  *
1068  * Returns: the current APE OPP
1069  */
1070 int db8500_prcmu_get_ape_opp(void)
1071 {
1072         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1073 }
1074
1075 /**
1076  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1077  * @enable: true to request the higher voltage, false to drop a request.
1078  *
1079  * Calls to this function to enable and disable requests must be balanced.
1080  */
1081 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1082 {
1083         int r = 0;
1084         u8 header;
1085         static unsigned int requests;
1086
1087         mutex_lock(&mb1_transfer.lock);
1088
1089         if (enable) {
1090                 if (0 != requests++)
1091                         goto unlock_and_return;
1092                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1093         } else {
1094                 if (requests == 0) {
1095                         r = -EIO;
1096                         goto unlock_and_return;
1097                 } else if (1 != requests--) {
1098                         goto unlock_and_return;
1099                 }
1100                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1101         }
1102
1103         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104                 cpu_relax();
1105
1106         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1107
1108         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1109         wait_for_completion(&mb1_transfer.work);
1110
1111         if ((mb1_transfer.ack.header != header) ||
1112                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1113                 r = -EIO;
1114
1115 unlock_and_return:
1116         mutex_unlock(&mb1_transfer.lock);
1117
1118         return r;
1119 }
1120
1121 /**
1122  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1123  *
1124  * This function releases the power state requirements of a USB wakeup.
1125  */
1126 int prcmu_release_usb_wakeup_state(void)
1127 {
1128         int r = 0;
1129
1130         mutex_lock(&mb1_transfer.lock);
1131
1132         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133                 cpu_relax();
1134
1135         writeb(MB1H_RELEASE_USB_WAKEUP,
1136                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1137
1138         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1139         wait_for_completion(&mb1_transfer.work);
1140
1141         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1142                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1143                 r = -EIO;
1144
1145         mutex_unlock(&mb1_transfer.lock);
1146
1147         return r;
1148 }
1149
1150 static int request_pll(u8 clock, bool enable)
1151 {
1152         int r = 0;
1153
1154         if (clock == PRCMU_PLLSOC0)
1155                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1156         else if (clock == PRCMU_PLLSOC1)
1157                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1158         else
1159                 return -EINVAL;
1160
1161         mutex_lock(&mb1_transfer.lock);
1162
1163         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1164                 cpu_relax();
1165
1166         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1167         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1168
1169         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1170         wait_for_completion(&mb1_transfer.work);
1171
1172         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1173                 r = -EIO;
1174
1175         mutex_unlock(&mb1_transfer.lock);
1176
1177         return r;
1178 }
1179
1180 /**
1181  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1182  * @epod_id: The EPOD to set
1183  * @epod_state: The new EPOD state
1184  *
1185  * This function sets the state of a EPOD (power domain). It may not be called
1186  * from interrupt context.
1187  */
1188 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1189 {
1190         int r = 0;
1191         bool ram_retention = false;
1192         int i;
1193
1194         /* check argument */
1195         BUG_ON(epod_id >= NUM_EPOD_ID);
1196
1197         /* set flag if retention is possible */
1198         switch (epod_id) {
1199         case EPOD_ID_SVAMMDSP:
1200         case EPOD_ID_SIAMMDSP:
1201         case EPOD_ID_ESRAM12:
1202         case EPOD_ID_ESRAM34:
1203                 ram_retention = true;
1204                 break;
1205         }
1206
1207         /* check argument */
1208         BUG_ON(epod_state > EPOD_STATE_ON);
1209         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1210
1211         /* get lock */
1212         mutex_lock(&mb2_transfer.lock);
1213
1214         /* wait for mailbox */
1215         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1216                 cpu_relax();
1217
1218         /* fill in mailbox */
1219         for (i = 0; i < NUM_EPOD_ID; i++)
1220                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1221         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1222
1223         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1224
1225         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1226
1227         /*
1228          * The current firmware version does not handle errors correctly,
1229          * and we cannot recover if there is an error.
1230          * This is expected to change when the firmware is updated.
1231          */
1232         if (!wait_for_completion_timeout(&mb2_transfer.work,
1233                         msecs_to_jiffies(20000))) {
1234                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1235                         __func__);
1236                 r = -EIO;
1237                 goto unlock_and_return;
1238         }
1239
1240         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1241                 r = -EIO;
1242
1243 unlock_and_return:
1244         mutex_unlock(&mb2_transfer.lock);
1245         return r;
1246 }
1247
1248 /**
1249  * prcmu_configure_auto_pm - Configure autonomous power management.
1250  * @sleep: Configuration for ApSleep.
1251  * @idle:  Configuration for ApIdle.
1252  */
1253 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1254         struct prcmu_auto_pm_config *idle)
1255 {
1256         u32 sleep_cfg;
1257         u32 idle_cfg;
1258         unsigned long flags;
1259
1260         BUG_ON((sleep == NULL) || (idle == NULL));
1261
1262         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1263         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1264         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1265         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1266         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1267         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1268
1269         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1270         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1271         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1272         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1273         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1274         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1275
1276         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1277
1278         /*
1279          * The autonomous power management configuration is done through
1280          * fields in mailbox 2, but these fields are only used as shared
1281          * variables - i.e. there is no need to send a message.
1282          */
1283         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1284         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1285
1286         mb2_transfer.auto_pm_enabled =
1287                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1288                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1291
1292         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1293 }
1294 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1295
1296 bool prcmu_is_auto_pm_enabled(void)
1297 {
1298         return mb2_transfer.auto_pm_enabled;
1299 }
1300
1301 static int request_sysclk(bool enable)
1302 {
1303         int r;
1304         unsigned long flags;
1305
1306         r = 0;
1307
1308         mutex_lock(&mb3_transfer.sysclk_lock);
1309
1310         spin_lock_irqsave(&mb3_transfer.lock, flags);
1311
1312         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1313                 cpu_relax();
1314
1315         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1316
1317         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1318         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1319
1320         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1321
1322         /*
1323          * The firmware only sends an ACK if we want to enable the
1324          * SysClk, and it succeeds.
1325          */
1326         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1327                         msecs_to_jiffies(20000))) {
1328                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329                         __func__);
1330                 r = -EIO;
1331         }
1332
1333         mutex_unlock(&mb3_transfer.sysclk_lock);
1334
1335         return r;
1336 }
1337
1338 static int request_timclk(bool enable)
1339 {
1340         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1341
1342         if (!enable)
1343                 val |= PRCM_TCR_STOP_TIMERS;
1344         writel(val, PRCM_TCR);
1345
1346         return 0;
1347 }
1348
1349 static int request_clock(u8 clock, bool enable)
1350 {
1351         u32 val;
1352         unsigned long flags;
1353
1354         spin_lock_irqsave(&clk_mgt_lock, flags);
1355
1356         /* Grab the HW semaphore. */
1357         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1358                 cpu_relax();
1359
1360         val = readl(prcmu_base + clk_mgt[clock].offset);
1361         if (enable) {
1362                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1363         } else {
1364                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1365                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1366         }
1367         writel(val, prcmu_base + clk_mgt[clock].offset);
1368
1369         /* Release the HW semaphore. */
1370         writel(0, PRCM_SEM);
1371
1372         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1373
1374         return 0;
1375 }
1376
1377 static int request_sga_clock(u8 clock, bool enable)
1378 {
1379         u32 val;
1380         int ret;
1381
1382         if (enable) {
1383                 val = readl(PRCM_CGATING_BYPASS);
1384                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385         }
1386
1387         ret = request_clock(clock, enable);
1388
1389         if (!ret && !enable) {
1390                 val = readl(PRCM_CGATING_BYPASS);
1391                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1392         }
1393
1394         return ret;
1395 }
1396
1397 static inline bool plldsi_locked(void)
1398 {
1399         return (readl(PRCM_PLLDSI_LOCKP) &
1400                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1401                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1402                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1404 }
1405
1406 static int request_plldsi(bool enable)
1407 {
1408         int r = 0;
1409         u32 val;
1410
1411         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1412                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1413                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1414
1415         val = readl(PRCM_PLLDSI_ENABLE);
1416         if (enable)
1417                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1418         else
1419                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420         writel(val, PRCM_PLLDSI_ENABLE);
1421
1422         if (enable) {
1423                 unsigned int i;
1424                 bool locked = plldsi_locked();
1425
1426                 for (i = 10; !locked && (i > 0); --i) {
1427                         udelay(100);
1428                         locked = plldsi_locked();
1429                 }
1430                 if (locked) {
1431                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1432                                 PRCM_APE_RESETN_SET);
1433                 } else {
1434                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1435                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1436                                 PRCM_MMIP_LS_CLAMP_SET);
1437                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1438                         writel(val, PRCM_PLLDSI_ENABLE);
1439                         r = -EAGAIN;
1440                 }
1441         } else {
1442                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1443         }
1444         return r;
1445 }
1446
1447 static int request_dsiclk(u8 n, bool enable)
1448 {
1449         u32 val;
1450
1451         val = readl(PRCM_DSI_PLLOUT_SEL);
1452         val &= ~dsiclk[n].divsel_mask;
1453         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1454                 dsiclk[n].divsel_shift);
1455         writel(val, PRCM_DSI_PLLOUT_SEL);
1456         return 0;
1457 }
1458
1459 static int request_dsiescclk(u8 n, bool enable)
1460 {
1461         u32 val;
1462
1463         val = readl(PRCM_DSITVCLK_DIV);
1464         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1465         writel(val, PRCM_DSITVCLK_DIV);
1466         return 0;
1467 }
1468
1469 /**
1470  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1471  * @clock:      The clock for which the request is made.
1472  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1473  *
1474  * This function should only be used by the clock implementation.
1475  * Do not use it from any other place!
1476  */
1477 int db8500_prcmu_request_clock(u8 clock, bool enable)
1478 {
1479         if (clock == PRCMU_SGACLK)
1480                 return request_sga_clock(clock, enable);
1481         else if (clock < PRCMU_NUM_REG_CLOCKS)
1482                 return request_clock(clock, enable);
1483         else if (clock == PRCMU_TIMCLK)
1484                 return request_timclk(enable);
1485         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1486                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1487         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1488                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1489         else if (clock == PRCMU_PLLDSI)
1490                 return request_plldsi(enable);
1491         else if (clock == PRCMU_SYSCLK)
1492                 return request_sysclk(enable);
1493         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1494                 return request_pll(clock, enable);
1495         else
1496                 return -EINVAL;
1497 }
1498
1499 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1500         int branch)
1501 {
1502         u64 rate;
1503         u32 val;
1504         u32 d;
1505         u32 div = 1;
1506
1507         val = readl(reg);
1508
1509         rate = src_rate;
1510         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1511
1512         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1513         if (d > 1)
1514                 div *= d;
1515
1516         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1517         if (d > 1)
1518                 div *= d;
1519
1520         if (val & PRCM_PLL_FREQ_SELDIV2)
1521                 div *= 2;
1522
1523         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1524                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1525                 ((reg == PRCM_PLLSOC0_FREQ) ||
1526                  (reg == PRCM_PLLARM_FREQ) ||
1527                  (reg == PRCM_PLLDDR_FREQ))))
1528                 div *= 2;
1529
1530         (void)do_div(rate, div);
1531
1532         return (unsigned long)rate;
1533 }
1534
1535 #define ROOT_CLOCK_RATE 38400000
1536
1537 static unsigned long clock_rate(u8 clock)
1538 {
1539         u32 val;
1540         u32 pllsw;
1541         unsigned long rate = ROOT_CLOCK_RATE;
1542
1543         val = readl(prcmu_base + clk_mgt[clock].offset);
1544
1545         if (val & PRCM_CLK_MGT_CLK38) {
1546                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1547                         rate /= 2;
1548                 return rate;
1549         }
1550
1551         val |= clk_mgt[clock].pllsw;
1552         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1553
1554         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1555                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1556         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1557                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1558         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1559                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1560         else
1561                 return 0;
1562
1563         if ((clock == PRCMU_SGACLK) &&
1564                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1565                 u64 r = (rate * 10);
1566
1567                 (void)do_div(r, 25);
1568                 return (unsigned long)r;
1569         }
1570         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1571         if (val)
1572                 return rate / val;
1573         else
1574                 return 0;
1575 }
1576
1577 static unsigned long armss_rate(void)
1578 {
1579         u32 r;
1580         unsigned long rate;
1581
1582         r = readl(PRCM_ARM_CHGCLKREQ);
1583
1584         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1585                 /* External ARMCLKFIX clock */
1586
1587                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1588
1589                 /* Check PRCM_ARM_CHGCLKREQ divider */
1590                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1591                         rate /= 2;
1592
1593                 /* Check PRCM_ARMCLKFIX_MGT divider */
1594                 r = readl(PRCM_ARMCLKFIX_MGT);
1595                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1596                 rate /= r;
1597
1598         } else {/* ARM PLL */
1599                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1600         }
1601
1602         return rate;
1603 }
1604
1605 static unsigned long dsiclk_rate(u8 n)
1606 {
1607         u32 divsel;
1608         u32 div = 1;
1609
1610         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1611         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1612
1613         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1614                 divsel = dsiclk[n].divsel;
1615
1616         switch (divsel) {
1617         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1618                 div *= 2;
1619         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1620                 div *= 2;
1621         case PRCM_DSI_PLLOUT_SEL_PHI:
1622                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1623                         PLL_RAW) / div;
1624         default:
1625                 return 0;
1626         }
1627 }
1628
1629 static unsigned long dsiescclk_rate(u8 n)
1630 {
1631         u32 div;
1632
1633         div = readl(PRCM_DSITVCLK_DIV);
1634         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1635         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1636 }
1637
1638 unsigned long prcmu_clock_rate(u8 clock)
1639 {
1640         if (clock < PRCMU_NUM_REG_CLOCKS)
1641                 return clock_rate(clock);
1642         else if (clock == PRCMU_TIMCLK)
1643                 return ROOT_CLOCK_RATE / 16;
1644         else if (clock == PRCMU_SYSCLK)
1645                 return ROOT_CLOCK_RATE;
1646         else if (clock == PRCMU_PLLSOC0)
1647                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1648         else if (clock == PRCMU_PLLSOC1)
1649                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1650         else if (clock == PRCMU_ARMSS)
1651                 return armss_rate();
1652         else if (clock == PRCMU_PLLDDR)
1653                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1654         else if (clock == PRCMU_PLLDSI)
1655                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1656                         PLL_RAW);
1657         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1658                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1659         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1660                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1661         else
1662                 return 0;
1663 }
1664
1665 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1666 {
1667         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1668                 return ROOT_CLOCK_RATE;
1669         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1670         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1671                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1672         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1673                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1674         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1675                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1676         else
1677                 return 0;
1678 }
1679
1680 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1681 {
1682         u32 div;
1683
1684         div = (src_rate / rate);
1685         if (div == 0)
1686                 return 1;
1687         if (rate < (src_rate / div))
1688                 div++;
1689         return div;
1690 }
1691
1692 static long round_clock_rate(u8 clock, unsigned long rate)
1693 {
1694         u32 val;
1695         u32 div;
1696         unsigned long src_rate;
1697         long rounded_rate;
1698
1699         val = readl(prcmu_base + clk_mgt[clock].offset);
1700         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1701                 clk_mgt[clock].branch);
1702         div = clock_divider(src_rate, rate);
1703         if (val & PRCM_CLK_MGT_CLK38) {
1704                 if (clk_mgt[clock].clk38div) {
1705                         if (div > 2)
1706                                 div = 2;
1707                 } else {
1708                         div = 1;
1709                 }
1710         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1711                 u64 r = (src_rate * 10);
1712
1713                 (void)do_div(r, 25);
1714                 if (r <= rate)
1715                         return (unsigned long)r;
1716         }
1717         rounded_rate = (src_rate / min(div, (u32)31));
1718
1719         return rounded_rate;
1720 }
1721
1722 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1723 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1724         { .frequency = 200000, .index = ARM_EXTCLK,},
1725         { .frequency = 400000, .index = ARM_50_OPP,},
1726         { .frequency = 800000, .index = ARM_100_OPP,},
1727         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1728         { .frequency = CPUFREQ_TABLE_END,},
1729 };
1730
1731 static long round_armss_rate(unsigned long rate)
1732 {
1733         long freq = 0;
1734         int i = 0;
1735
1736         /* cpufreq table frequencies is in KHz. */
1737         rate = rate / 1000;
1738
1739         /* Find the corresponding arm opp from the cpufreq table. */
1740         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1741                 freq = db8500_cpufreq_table[i].frequency;
1742                 if (freq == rate)
1743                         break;
1744                 i++;
1745         }
1746
1747         /* Return the last valid value, even if a match was not found. */
1748         return freq * 1000;
1749 }
1750
1751 #define MIN_PLL_VCO_RATE 600000000ULL
1752 #define MAX_PLL_VCO_RATE 1680640000ULL
1753
1754 static long round_plldsi_rate(unsigned long rate)
1755 {
1756         long rounded_rate = 0;
1757         unsigned long src_rate;
1758         unsigned long rem;
1759         u32 r;
1760
1761         src_rate = clock_rate(PRCMU_HDMICLK);
1762         rem = rate;
1763
1764         for (r = 7; (rem > 0) && (r > 0); r--) {
1765                 u64 d;
1766
1767                 d = (r * rate);
1768                 (void)do_div(d, src_rate);
1769                 if (d < 6)
1770                         d = 6;
1771                 else if (d > 255)
1772                         d = 255;
1773                 d *= src_rate;
1774                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1775                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1776                         continue;
1777                 (void)do_div(d, r);
1778                 if (rate < d) {
1779                         if (rounded_rate == 0)
1780                                 rounded_rate = (long)d;
1781                         break;
1782                 }
1783                 if ((rate - d) < rem) {
1784                         rem = (rate - d);
1785                         rounded_rate = (long)d;
1786                 }
1787         }
1788         return rounded_rate;
1789 }
1790
1791 static long round_dsiclk_rate(unsigned long rate)
1792 {
1793         u32 div;
1794         unsigned long src_rate;
1795         long rounded_rate;
1796
1797         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1798                 PLL_RAW);
1799         div = clock_divider(src_rate, rate);
1800         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1801
1802         return rounded_rate;
1803 }
1804
1805 static long round_dsiescclk_rate(unsigned long rate)
1806 {
1807         u32 div;
1808         unsigned long src_rate;
1809         long rounded_rate;
1810
1811         src_rate = clock_rate(PRCMU_TVCLK);
1812         div = clock_divider(src_rate, rate);
1813         rounded_rate = (src_rate / min(div, (u32)255));
1814
1815         return rounded_rate;
1816 }
1817
1818 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1819 {
1820         if (clock < PRCMU_NUM_REG_CLOCKS)
1821                 return round_clock_rate(clock, rate);
1822         else if (clock == PRCMU_ARMSS)
1823                 return round_armss_rate(rate);
1824         else if (clock == PRCMU_PLLDSI)
1825                 return round_plldsi_rate(rate);
1826         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1827                 return round_dsiclk_rate(rate);
1828         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1829                 return round_dsiescclk_rate(rate);
1830         else
1831                 return (long)prcmu_clock_rate(clock);
1832 }
1833
1834 static void set_clock_rate(u8 clock, unsigned long rate)
1835 {
1836         u32 val;
1837         u32 div;
1838         unsigned long src_rate;
1839         unsigned long flags;
1840
1841         spin_lock_irqsave(&clk_mgt_lock, flags);
1842
1843         /* Grab the HW semaphore. */
1844         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1845                 cpu_relax();
1846
1847         val = readl(prcmu_base + clk_mgt[clock].offset);
1848         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1849                 clk_mgt[clock].branch);
1850         div = clock_divider(src_rate, rate);
1851         if (val & PRCM_CLK_MGT_CLK38) {
1852                 if (clk_mgt[clock].clk38div) {
1853                         if (div > 1)
1854                                 val |= PRCM_CLK_MGT_CLK38DIV;
1855                         else
1856                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1857                 }
1858         } else if (clock == PRCMU_SGACLK) {
1859                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1860                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1861                 if (div == 3) {
1862                         u64 r = (src_rate * 10);
1863
1864                         (void)do_div(r, 25);
1865                         if (r <= rate) {
1866                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1867                                 div = 0;
1868                         }
1869                 }
1870                 val |= min(div, (u32)31);
1871         } else {
1872                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1873                 val |= min(div, (u32)31);
1874         }
1875         writel(val, prcmu_base + clk_mgt[clock].offset);
1876
1877         /* Release the HW semaphore. */
1878         writel(0, PRCM_SEM);
1879
1880         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1881 }
1882
1883 static int set_armss_rate(unsigned long rate)
1884 {
1885         int i = 0;
1886
1887         /* cpufreq table frequencies is in KHz. */
1888         rate = rate / 1000;
1889
1890         /* Find the corresponding arm opp from the cpufreq table. */
1891         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1892                 if (db8500_cpufreq_table[i].frequency == rate)
1893                         break;
1894                 i++;
1895         }
1896
1897         if (db8500_cpufreq_table[i].frequency != rate)
1898                 return -EINVAL;
1899
1900         /* Set the new arm opp. */
1901         return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1902 }
1903
1904 static int set_plldsi_rate(unsigned long rate)
1905 {
1906         unsigned long src_rate;
1907         unsigned long rem;
1908         u32 pll_freq = 0;
1909         u32 r;
1910
1911         src_rate = clock_rate(PRCMU_HDMICLK);
1912         rem = rate;
1913
1914         for (r = 7; (rem > 0) && (r > 0); r--) {
1915                 u64 d;
1916                 u64 hwrate;
1917
1918                 d = (r * rate);
1919                 (void)do_div(d, src_rate);
1920                 if (d < 6)
1921                         d = 6;
1922                 else if (d > 255)
1923                         d = 255;
1924                 hwrate = (d * src_rate);
1925                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1926                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1927                         continue;
1928                 (void)do_div(hwrate, r);
1929                 if (rate < hwrate) {
1930                         if (pll_freq == 0)
1931                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1932                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1933                         break;
1934                 }
1935                 if ((rate - hwrate) < rem) {
1936                         rem = (rate - hwrate);
1937                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1938                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1939                 }
1940         }
1941         if (pll_freq == 0)
1942                 return -EINVAL;
1943
1944         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1945         writel(pll_freq, PRCM_PLLDSI_FREQ);
1946
1947         return 0;
1948 }
1949
1950 static void set_dsiclk_rate(u8 n, unsigned long rate)
1951 {
1952         u32 val;
1953         u32 div;
1954
1955         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1956                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1957
1958         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1959                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1960                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1961
1962         val = readl(PRCM_DSI_PLLOUT_SEL);
1963         val &= ~dsiclk[n].divsel_mask;
1964         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1965         writel(val, PRCM_DSI_PLLOUT_SEL);
1966 }
1967
1968 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1969 {
1970         u32 val;
1971         u32 div;
1972
1973         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1974         val = readl(PRCM_DSITVCLK_DIV);
1975         val &= ~dsiescclk[n].div_mask;
1976         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1977         writel(val, PRCM_DSITVCLK_DIV);
1978 }
1979
1980 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1981 {
1982         if (clock < PRCMU_NUM_REG_CLOCKS)
1983                 set_clock_rate(clock, rate);
1984         else if (clock == PRCMU_ARMSS)
1985                 return set_armss_rate(rate);
1986         else if (clock == PRCMU_PLLDSI)
1987                 return set_plldsi_rate(rate);
1988         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1989                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1990         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1991                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1992         return 0;
1993 }
1994
1995 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1996 {
1997         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1998             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1999                 return -EINVAL;
2000
2001         mutex_lock(&mb4_transfer.lock);
2002
2003         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2004                 cpu_relax();
2005
2006         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2007         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2008                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2009         writeb(DDR_PWR_STATE_ON,
2010                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2011         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2012
2013         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2014         wait_for_completion(&mb4_transfer.work);
2015
2016         mutex_unlock(&mb4_transfer.lock);
2017
2018         return 0;
2019 }
2020
2021 int db8500_prcmu_config_hotdog(u8 threshold)
2022 {
2023         mutex_lock(&mb4_transfer.lock);
2024
2025         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026                 cpu_relax();
2027
2028         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2029         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2030
2031         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2032         wait_for_completion(&mb4_transfer.work);
2033
2034         mutex_unlock(&mb4_transfer.lock);
2035
2036         return 0;
2037 }
2038
2039 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2040 {
2041         mutex_lock(&mb4_transfer.lock);
2042
2043         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2044                 cpu_relax();
2045
2046         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2047         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2048         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2049                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2050         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2051
2052         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2053         wait_for_completion(&mb4_transfer.work);
2054
2055         mutex_unlock(&mb4_transfer.lock);
2056
2057         return 0;
2058 }
2059
2060 static int config_hot_period(u16 val)
2061 {
2062         mutex_lock(&mb4_transfer.lock);
2063
2064         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2065                 cpu_relax();
2066
2067         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2068         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2069
2070         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2071         wait_for_completion(&mb4_transfer.work);
2072
2073         mutex_unlock(&mb4_transfer.lock);
2074
2075         return 0;
2076 }
2077
2078 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2079 {
2080         if (cycles32k == 0xFFFF)
2081                 return -EINVAL;
2082
2083         return config_hot_period(cycles32k);
2084 }
2085
2086 int db8500_prcmu_stop_temp_sense(void)
2087 {
2088         return config_hot_period(0xFFFF);
2089 }
2090
2091 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2092 {
2093
2094         mutex_lock(&mb4_transfer.lock);
2095
2096         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097                 cpu_relax();
2098
2099         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2100         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2101         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2102         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2103
2104         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2105
2106         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107         wait_for_completion(&mb4_transfer.work);
2108
2109         mutex_unlock(&mb4_transfer.lock);
2110
2111         return 0;
2112
2113 }
2114
2115 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2116 {
2117         BUG_ON(num == 0 || num > 0xf);
2118         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2119                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2120                             A9WDOG_AUTO_OFF_DIS);
2121 }
2122 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2123
2124 int db8500_prcmu_enable_a9wdog(u8 id)
2125 {
2126         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2127 }
2128 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2129
2130 int db8500_prcmu_disable_a9wdog(u8 id)
2131 {
2132         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2133 }
2134 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2135
2136 int db8500_prcmu_kick_a9wdog(u8 id)
2137 {
2138         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139 }
2140 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2141
2142 /*
2143  * timeout is 28 bit, in ms.
2144  */
2145 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2146 {
2147         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2148                             (id & A9WDOG_ID_MASK) |
2149                             /*
2150                              * Put the lowest 28 bits of timeout at
2151                              * offset 4. Four first bits are used for id.
2152                              */
2153                             (u8)((timeout << 4) & 0xf0),
2154                             (u8)((timeout >> 4) & 0xff),
2155                             (u8)((timeout >> 12) & 0xff),
2156                             (u8)((timeout >> 20) & 0xff));
2157 }
2158 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2159
2160 /**
2161  * prcmu_abb_read() - Read register value(s) from the ABB.
2162  * @slave:      The I2C slave address.
2163  * @reg:        The (start) register address.
2164  * @value:      The read out value(s).
2165  * @size:       The number of registers to read.
2166  *
2167  * Reads register value(s) from the ABB.
2168  * @size has to be 1 for the current firmware version.
2169  */
2170 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2171 {
2172         int r;
2173
2174         if (size != 1)
2175                 return -EINVAL;
2176
2177         mutex_lock(&mb5_transfer.lock);
2178
2179         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2180                 cpu_relax();
2181
2182         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2183         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2184         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2185         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2186         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2187
2188         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2189
2190         if (!wait_for_completion_timeout(&mb5_transfer.work,
2191                                 msecs_to_jiffies(20000))) {
2192                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2193                         __func__);
2194                 r = -EIO;
2195         } else {
2196                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2197         }
2198
2199         if (!r)
2200                 *value = mb5_transfer.ack.value;
2201
2202         mutex_unlock(&mb5_transfer.lock);
2203
2204         return r;
2205 }
2206
2207 /**
2208  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2209  * @slave:      The I2C slave address.
2210  * @reg:        The (start) register address.
2211  * @value:      The value(s) to write.
2212  * @mask:       The mask(s) to use.
2213  * @size:       The number of registers to write.
2214  *
2215  * Writes masked register value(s) to the ABB.
2216  * For each @value, only the bits set to 1 in the corresponding @mask
2217  * will be written. The other bits are not changed.
2218  * @size has to be 1 for the current firmware version.
2219  */
2220 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2221 {
2222         int r;
2223
2224         if (size != 1)
2225                 return -EINVAL;
2226
2227         mutex_lock(&mb5_transfer.lock);
2228
2229         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2230                 cpu_relax();
2231
2232         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2233         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2234         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2235         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2236         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2237
2238         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2239
2240         if (!wait_for_completion_timeout(&mb5_transfer.work,
2241                                 msecs_to_jiffies(20000))) {
2242                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2243                         __func__);
2244                 r = -EIO;
2245         } else {
2246                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2247         }
2248
2249         mutex_unlock(&mb5_transfer.lock);
2250
2251         return r;
2252 }
2253
2254 /**
2255  * prcmu_abb_write() - Write register value(s) to the ABB.
2256  * @slave:      The I2C slave address.
2257  * @reg:        The (start) register address.
2258  * @value:      The value(s) to write.
2259  * @size:       The number of registers to write.
2260  *
2261  * Writes register value(s) to the ABB.
2262  * @size has to be 1 for the current firmware version.
2263  */
2264 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2265 {
2266         u8 mask = ~0;
2267
2268         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2269 }
2270
2271 /**
2272  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2273  */
2274 int prcmu_ac_wake_req(void)
2275 {
2276         u32 val;
2277         int ret = 0;
2278
2279         mutex_lock(&mb0_transfer.ac_wake_lock);
2280
2281         val = readl(PRCM_HOSTACCESS_REQ);
2282         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2283                 goto unlock_and_return;
2284
2285         atomic_set(&ac_wake_req_state, 1);
2286
2287         /*
2288          * Force Modem Wake-up before hostaccess_req ping-pong.
2289          * It prevents Modem to enter in Sleep while acking the hostaccess
2290          * request. The 31us delay has been calculated by HWI.
2291          */
2292         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2293         writel(val, PRCM_HOSTACCESS_REQ);
2294
2295         udelay(31);
2296
2297         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2298         writel(val, PRCM_HOSTACCESS_REQ);
2299
2300         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2301                         msecs_to_jiffies(5000))) {
2302 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2303                 db8500_prcmu_debug_dump(__func__, true, true);
2304 #endif
2305                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2306                         __func__);
2307                 ret = -EFAULT;
2308         }
2309
2310 unlock_and_return:
2311         mutex_unlock(&mb0_transfer.ac_wake_lock);
2312         return ret;
2313 }
2314
2315 /**
2316  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2317  */
2318 void prcmu_ac_sleep_req()
2319 {
2320         u32 val;
2321
2322         mutex_lock(&mb0_transfer.ac_wake_lock);
2323
2324         val = readl(PRCM_HOSTACCESS_REQ);
2325         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2326                 goto unlock_and_return;
2327
2328         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2329                 PRCM_HOSTACCESS_REQ);
2330
2331         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2332                         msecs_to_jiffies(5000))) {
2333                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2334                         __func__);
2335         }
2336
2337         atomic_set(&ac_wake_req_state, 0);
2338
2339 unlock_and_return:
2340         mutex_unlock(&mb0_transfer.ac_wake_lock);
2341 }
2342
2343 bool db8500_prcmu_is_ac_wake_requested(void)
2344 {
2345         return (atomic_read(&ac_wake_req_state) != 0);
2346 }
2347
2348 /**
2349  * db8500_prcmu_system_reset - System reset
2350  *
2351  * Saves the reset reason code and then sets the APE_SOFTRST register which
2352  * fires interrupt to fw
2353  */
2354 void db8500_prcmu_system_reset(u16 reset_code)
2355 {
2356         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2357         writel(1, PRCM_APE_SOFTRST);
2358 }
2359
2360 /**
2361  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2362  *
2363  * Retrieves the reset reason code stored by prcmu_system_reset() before
2364  * last restart.
2365  */
2366 u16 db8500_prcmu_get_reset_code(void)
2367 {
2368         return readw(tcdm_base + PRCM_SW_RST_REASON);
2369 }
2370
2371 /**
2372  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2373  */
2374 void db8500_prcmu_modem_reset(void)
2375 {
2376         mutex_lock(&mb1_transfer.lock);
2377
2378         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2379                 cpu_relax();
2380
2381         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2382         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2383         wait_for_completion(&mb1_transfer.work);
2384
2385         /*
2386          * No need to check return from PRCMU as modem should go in reset state
2387          * This state is already managed by upper layer
2388          */
2389
2390         mutex_unlock(&mb1_transfer.lock);
2391 }
2392
2393 static void ack_dbb_wakeup(void)
2394 {
2395         unsigned long flags;
2396
2397         spin_lock_irqsave(&mb0_transfer.lock, flags);
2398
2399         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2400                 cpu_relax();
2401
2402         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2403         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2404
2405         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2406 }
2407
2408 static inline void print_unknown_header_warning(u8 n, u8 header)
2409 {
2410         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2411                 header, n);
2412 }
2413
2414 static bool read_mailbox_0(void)
2415 {
2416         bool r;
2417         u32 ev;
2418         unsigned int n;
2419         u8 header;
2420
2421         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2422         switch (header) {
2423         case MB0H_WAKEUP_EXE:
2424         case MB0H_WAKEUP_SLEEP:
2425                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2426                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2427                 else
2428                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2429
2430                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2431                         complete(&mb0_transfer.ac_wake_work);
2432                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2433                         complete(&mb3_transfer.sysclk_work);
2434
2435                 ev &= mb0_transfer.req.dbb_irqs;
2436
2437                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2438                         if (ev & prcmu_irq_bit[n])
2439                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2440                 }
2441                 r = true;
2442                 break;
2443         default:
2444                 print_unknown_header_warning(0, header);
2445                 r = false;
2446                 break;
2447         }
2448         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2449         return r;
2450 }
2451
2452 static bool read_mailbox_1(void)
2453 {
2454         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2455         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2456                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2457         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2458                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2459         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2460                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2461         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2462         complete(&mb1_transfer.work);
2463         return false;
2464 }
2465
2466 static bool read_mailbox_2(void)
2467 {
2468         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2469         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2470         complete(&mb2_transfer.work);
2471         return false;
2472 }
2473
2474 static bool read_mailbox_3(void)
2475 {
2476         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2477         return false;
2478 }
2479
2480 static bool read_mailbox_4(void)
2481 {
2482         u8 header;
2483         bool do_complete = true;
2484
2485         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2486         switch (header) {
2487         case MB4H_MEM_ST:
2488         case MB4H_HOTDOG:
2489         case MB4H_HOTMON:
2490         case MB4H_HOT_PERIOD:
2491         case MB4H_A9WDOG_CONF:
2492         case MB4H_A9WDOG_EN:
2493         case MB4H_A9WDOG_DIS:
2494         case MB4H_A9WDOG_LOAD:
2495         case MB4H_A9WDOG_KICK:
2496                 break;
2497         default:
2498                 print_unknown_header_warning(4, header);
2499                 do_complete = false;
2500                 break;
2501         }
2502
2503         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2504
2505         if (do_complete)
2506                 complete(&mb4_transfer.work);
2507
2508         return false;
2509 }
2510
2511 static bool read_mailbox_5(void)
2512 {
2513         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2514         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2515         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2516         complete(&mb5_transfer.work);
2517         return false;
2518 }
2519
2520 static bool read_mailbox_6(void)
2521 {
2522         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2523         return false;
2524 }
2525
2526 static bool read_mailbox_7(void)
2527 {
2528         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2529         return false;
2530 }
2531
2532 static bool (* const read_mailbox[NUM_MB])(void) = {
2533         read_mailbox_0,
2534         read_mailbox_1,
2535         read_mailbox_2,
2536         read_mailbox_3,
2537         read_mailbox_4,
2538         read_mailbox_5,
2539         read_mailbox_6,
2540         read_mailbox_7
2541 };
2542
2543 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2544 {
2545         u32 bits;
2546         u8 n;
2547         irqreturn_t r;
2548
2549         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2550         if (unlikely(!bits))
2551                 return IRQ_NONE;
2552
2553         r = IRQ_HANDLED;
2554         for (n = 0; bits; n++) {
2555                 if (bits & MBOX_BIT(n)) {
2556                         bits -= MBOX_BIT(n);
2557                         if (read_mailbox[n]())
2558                                 r = IRQ_WAKE_THREAD;
2559                 }
2560         }
2561         return r;
2562 }
2563
2564 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2565 {
2566         ack_dbb_wakeup();
2567         return IRQ_HANDLED;
2568 }
2569
2570 static void prcmu_mask_work(struct work_struct *work)
2571 {
2572         unsigned long flags;
2573
2574         spin_lock_irqsave(&mb0_transfer.lock, flags);
2575
2576         config_wakeups();
2577
2578         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2579 }
2580
2581 static void prcmu_irq_mask(struct irq_data *d)
2582 {
2583         unsigned long flags;
2584
2585         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2586
2587         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2588
2589         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2590
2591         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2592                 schedule_work(&mb0_transfer.mask_work);
2593 }
2594
2595 static void prcmu_irq_unmask(struct irq_data *d)
2596 {
2597         unsigned long flags;
2598
2599         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2600
2601         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2602
2603         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2604
2605         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2606                 schedule_work(&mb0_transfer.mask_work);
2607 }
2608
2609 static void noop(struct irq_data *d)
2610 {
2611 }
2612
2613 static struct irq_chip prcmu_irq_chip = {
2614         .name           = "prcmu",
2615         .irq_disable    = prcmu_irq_mask,
2616         .irq_ack        = noop,
2617         .irq_mask       = prcmu_irq_mask,
2618         .irq_unmask     = prcmu_irq_unmask,
2619 };
2620
2621 static __init char *fw_project_name(u32 project)
2622 {
2623         switch (project) {
2624         case PRCMU_FW_PROJECT_U8500:
2625                 return "U8500";
2626         case PRCMU_FW_PROJECT_U8400:
2627                 return "U8400";
2628         case PRCMU_FW_PROJECT_U9500:
2629                 return "U9500";
2630         case PRCMU_FW_PROJECT_U8500_MBB:
2631                 return "U8500 MBB";
2632         case PRCMU_FW_PROJECT_U8500_C1:
2633                 return "U8500 C1";
2634         case PRCMU_FW_PROJECT_U8500_C2:
2635                 return "U8500 C2";
2636         case PRCMU_FW_PROJECT_U8500_C3:
2637                 return "U8500 C3";
2638         case PRCMU_FW_PROJECT_U8500_C4:
2639                 return "U8500 C4";
2640         case PRCMU_FW_PROJECT_U9500_MBL:
2641                 return "U9500 MBL";
2642         case PRCMU_FW_PROJECT_U8500_MBL:
2643                 return "U8500 MBL";
2644         case PRCMU_FW_PROJECT_U8500_MBL2:
2645                 return "U8500 MBL2";
2646         case PRCMU_FW_PROJECT_U8520:
2647                 return "U8520 MBL";
2648         case PRCMU_FW_PROJECT_U8420:
2649                 return "U8420";
2650         case PRCMU_FW_PROJECT_U9540:
2651                 return "U9540";
2652         case PRCMU_FW_PROJECT_A9420:
2653                 return "A9420";
2654         case PRCMU_FW_PROJECT_L8540:
2655                 return "L8540";
2656         case PRCMU_FW_PROJECT_L8580:
2657                 return "L8580";
2658         default:
2659                 return "Unknown";
2660         }
2661 }
2662
2663 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2664                                 irq_hw_number_t hwirq)
2665 {
2666         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2667                                 handle_simple_irq);
2668         set_irq_flags(virq, IRQF_VALID);
2669
2670         return 0;
2671 }
2672
2673 static struct irq_domain_ops db8500_irq_ops = {
2674         .map    = db8500_irq_map,
2675         .xlate  = irq_domain_xlate_twocell,
2676 };
2677
2678 static int db8500_irq_init(struct device_node *np, int irq_base)
2679 {
2680         int i;
2681
2682         /* In the device tree case, just take some IRQs */
2683         if (np)
2684                 irq_base = 0;
2685
2686         db8500_irq_domain = irq_domain_add_simple(
2687                 np, NUM_PRCMU_WAKEUPS, irq_base,
2688                 &db8500_irq_ops, NULL);
2689
2690         if (!db8500_irq_domain) {
2691                 pr_err("Failed to create irqdomain\n");
2692                 return -ENOSYS;
2693         }
2694
2695         /* All wakeups will be used, so create mappings for all */
2696         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2697                 irq_create_mapping(db8500_irq_domain, i);
2698
2699         return 0;
2700 }
2701
2702 static void dbx500_fw_version_init(struct platform_device *pdev,
2703                             u32 version_offset)
2704 {
2705         struct resource *res;
2706         void __iomem *tcpm_base;
2707
2708         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2709                                            "prcmu-tcpm");
2710         if (!res) {
2711                 dev_err(&pdev->dev,
2712                         "Error: no prcmu tcpm memory region provided\n");
2713                 return;
2714         }
2715         tcpm_base = ioremap(res->start, resource_size(res));
2716         if (tcpm_base != NULL) {
2717                 u32 version;
2718
2719                 version = readl(tcpm_base + version_offset);
2720                 fw_info.version.project = (version & 0xFF);
2721                 fw_info.version.api_version = (version >> 8) & 0xFF;
2722                 fw_info.version.func_version = (version >> 16) & 0xFF;
2723                 fw_info.version.errata = (version >> 24) & 0xFF;
2724                 strncpy(fw_info.version.project_name,
2725                         fw_project_name(fw_info.version.project),
2726                         PRCMU_FW_PROJECT_NAME_LEN);
2727                 fw_info.valid = true;
2728                 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2729                         fw_info.version.project_name,
2730                         fw_info.version.project,
2731                         fw_info.version.api_version,
2732                         fw_info.version.func_version,
2733                         fw_info.version.errata);
2734                 iounmap(tcpm_base);
2735         }
2736 }
2737
2738 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2739 {
2740         /*
2741          * This is a temporary remap to bring up the clocks. It is
2742          * subsequently replaces with a real remap. After the merge of
2743          * the mailbox subsystem all of this early code goes away, and the
2744          * clock driver can probe independently. An early initcall will
2745          * still be needed, but it can be diverted into drivers/clk/ux500.
2746          */
2747         prcmu_base = ioremap(phy_base, size);
2748         if (!prcmu_base)
2749                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2750
2751         spin_lock_init(&mb0_transfer.lock);
2752         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2753         mutex_init(&mb0_transfer.ac_wake_lock);
2754         init_completion(&mb0_transfer.ac_wake_work);
2755         mutex_init(&mb1_transfer.lock);
2756         init_completion(&mb1_transfer.work);
2757         mb1_transfer.ape_opp = APE_NO_CHANGE;
2758         mutex_init(&mb2_transfer.lock);
2759         init_completion(&mb2_transfer.work);
2760         spin_lock_init(&mb2_transfer.auto_pm_lock);
2761         spin_lock_init(&mb3_transfer.lock);
2762         mutex_init(&mb3_transfer.sysclk_lock);
2763         init_completion(&mb3_transfer.sysclk_work);
2764         mutex_init(&mb4_transfer.lock);
2765         init_completion(&mb4_transfer.work);
2766         mutex_init(&mb5_transfer.lock);
2767         init_completion(&mb5_transfer.work);
2768
2769         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2770 }
2771
2772 static void __init init_prcm_registers(void)
2773 {
2774         u32 val;
2775
2776         val = readl(PRCM_A9PL_FORCE_CLKEN);
2777         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2778                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2779         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2780 }
2781
2782 /*
2783  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2784  */
2785 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2786         REGULATOR_SUPPLY("v-ape", NULL),
2787         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2788         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2789         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2790         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2791         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2792         /* "v-mmc" changed to "vcore" in the mainline kernel */
2793         REGULATOR_SUPPLY("vcore", "sdi0"),
2794         REGULATOR_SUPPLY("vcore", "sdi1"),
2795         REGULATOR_SUPPLY("vcore", "sdi2"),
2796         REGULATOR_SUPPLY("vcore", "sdi3"),
2797         REGULATOR_SUPPLY("vcore", "sdi4"),
2798         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2799         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2800         /* "v-uart" changed to "vcore" in the mainline kernel */
2801         REGULATOR_SUPPLY("vcore", "uart0"),
2802         REGULATOR_SUPPLY("vcore", "uart1"),
2803         REGULATOR_SUPPLY("vcore", "uart2"),
2804         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2805         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2806         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2807 };
2808
2809 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2810         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2811         /* AV8100 regulator */
2812         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2813 };
2814
2815 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2816         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2817         REGULATOR_SUPPLY("vsupply", "mcde"),
2818 };
2819
2820 /* SVA MMDSP regulator switch */
2821 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2822         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2823 };
2824
2825 /* SVA pipe regulator switch */
2826 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2827         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2828 };
2829
2830 /* SIA MMDSP regulator switch */
2831 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2832         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2833 };
2834
2835 /* SIA pipe regulator switch */
2836 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2837         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2838 };
2839
2840 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2841         REGULATOR_SUPPLY("v-mali", NULL),
2842 };
2843
2844 /* ESRAM1 and 2 regulator switch */
2845 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2846         REGULATOR_SUPPLY("esram12", "cm_control"),
2847 };
2848
2849 /* ESRAM3 and 4 regulator switch */
2850 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2851         REGULATOR_SUPPLY("v-esram34", "mcde"),
2852         REGULATOR_SUPPLY("esram34", "cm_control"),
2853         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2854 };
2855
2856 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2857         [DB8500_REGULATOR_VAPE] = {
2858                 .constraints = {
2859                         .name = "db8500-vape",
2860                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861                         .always_on = true,
2862                 },
2863                 .consumer_supplies = db8500_vape_consumers,
2864                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2865         },
2866         [DB8500_REGULATOR_VARM] = {
2867                 .constraints = {
2868                         .name = "db8500-varm",
2869                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870                 },
2871         },
2872         [DB8500_REGULATOR_VMODEM] = {
2873                 .constraints = {
2874                         .name = "db8500-vmodem",
2875                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876                 },
2877         },
2878         [DB8500_REGULATOR_VPLL] = {
2879                 .constraints = {
2880                         .name = "db8500-vpll",
2881                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882                 },
2883         },
2884         [DB8500_REGULATOR_VSMPS1] = {
2885                 .constraints = {
2886                         .name = "db8500-vsmps1",
2887                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888                 },
2889         },
2890         [DB8500_REGULATOR_VSMPS2] = {
2891                 .constraints = {
2892                         .name = "db8500-vsmps2",
2893                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894                 },
2895                 .consumer_supplies = db8500_vsmps2_consumers,
2896                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2897         },
2898         [DB8500_REGULATOR_VSMPS3] = {
2899                 .constraints = {
2900                         .name = "db8500-vsmps3",
2901                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902                 },
2903         },
2904         [DB8500_REGULATOR_VRF1] = {
2905                 .constraints = {
2906                         .name = "db8500-vrf1",
2907                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908                 },
2909         },
2910         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2911                 /* dependency to u8500-vape is handled outside regulator framework */
2912                 .constraints = {
2913                         .name = "db8500-sva-mmdsp",
2914                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915                 },
2916                 .consumer_supplies = db8500_svammdsp_consumers,
2917                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2918         },
2919         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2920                 .constraints = {
2921                         /* "ret" means "retention" */
2922                         .name = "db8500-sva-mmdsp-ret",
2923                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2924                 },
2925         },
2926         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2927                 /* dependency to u8500-vape is handled outside regulator framework */
2928                 .constraints = {
2929                         .name = "db8500-sva-pipe",
2930                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931                 },
2932                 .consumer_supplies = db8500_svapipe_consumers,
2933                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2934         },
2935         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2936                 /* dependency to u8500-vape is handled outside regulator framework */
2937                 .constraints = {
2938                         .name = "db8500-sia-mmdsp",
2939                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940                 },
2941                 .consumer_supplies = db8500_siammdsp_consumers,
2942                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2943         },
2944         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2945                 .constraints = {
2946                         .name = "db8500-sia-mmdsp-ret",
2947                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2948                 },
2949         },
2950         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2951                 /* dependency to u8500-vape is handled outside regulator framework */
2952                 .constraints = {
2953                         .name = "db8500-sia-pipe",
2954                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2955                 },
2956                 .consumer_supplies = db8500_siapipe_consumers,
2957                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2958         },
2959         [DB8500_REGULATOR_SWITCH_SGA] = {
2960                 .supply_regulator = "db8500-vape",
2961                 .constraints = {
2962                         .name = "db8500-sga",
2963                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2964                 },
2965                 .consumer_supplies = db8500_sga_consumers,
2966                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2967
2968         },
2969         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2970                 .supply_regulator = "db8500-vape",
2971                 .constraints = {
2972                         .name = "db8500-b2r2-mcde",
2973                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974                 },
2975                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2976                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2977         },
2978         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2979                 /*
2980                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2981                  * no need to hold Vape
2982                  */
2983                 .constraints = {
2984                         .name = "db8500-esram12",
2985                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2986                 },
2987                 .consumer_supplies = db8500_esram12_consumers,
2988                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2989         },
2990         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2991                 .constraints = {
2992                         .name = "db8500-esram12-ret",
2993                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994                 },
2995         },
2996         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2997                 /*
2998                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2999                  * no need to hold Vape
3000                  */
3001                 .constraints = {
3002                         .name = "db8500-esram34",
3003                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3004                 },
3005                 .consumer_supplies = db8500_esram34_consumers,
3006                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3007         },
3008         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3009                 .constraints = {
3010                         .name = "db8500-esram34-ret",
3011                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3012                 },
3013         },
3014 };
3015
3016 static struct ux500_wdt_data db8500_wdt_pdata = {
3017         .timeout = 600, /* 10 minutes */
3018         .has_28_bits_resolution = true,
3019 };
3020 /*
3021  * Thermal Sensor
3022  */
3023
3024 static struct resource db8500_thsens_resources[] = {
3025         {
3026                 .name = "IRQ_HOTMON_LOW",
3027                 .start  = IRQ_PRCMU_HOTMON_LOW,
3028                 .end    = IRQ_PRCMU_HOTMON_LOW,
3029                 .flags  = IORESOURCE_IRQ,
3030         },
3031         {
3032                 .name = "IRQ_HOTMON_HIGH",
3033                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3034                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3035                 .flags  = IORESOURCE_IRQ,
3036         },
3037 };
3038
3039 static struct db8500_thsens_platform_data db8500_thsens_data = {
3040         .trip_points[0] = {
3041                 .temp = 70000,
3042                 .type = THERMAL_TRIP_ACTIVE,
3043                 .cdev_name = {
3044                         [0] = "thermal-cpufreq-0",
3045                 },
3046         },
3047         .trip_points[1] = {
3048                 .temp = 75000,
3049                 .type = THERMAL_TRIP_ACTIVE,
3050                 .cdev_name = {
3051                         [0] = "thermal-cpufreq-0",
3052                 },
3053         },
3054         .trip_points[2] = {
3055                 .temp = 80000,
3056                 .type = THERMAL_TRIP_ACTIVE,
3057                 .cdev_name = {
3058                         [0] = "thermal-cpufreq-0",
3059                 },
3060         },
3061         .trip_points[3] = {
3062                 .temp = 85000,
3063                 .type = THERMAL_TRIP_CRITICAL,
3064         },
3065         .num_trips = 4,
3066 };
3067
3068 static struct mfd_cell db8500_prcmu_devs[] = {
3069         {
3070                 .name = "db8500-prcmu-regulators",
3071                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3072                 .platform_data = &db8500_regulators,
3073                 .pdata_size = sizeof(db8500_regulators),
3074         },
3075         {
3076                 .name = "cpufreq-ux500",
3077                 .of_compatible = "stericsson,cpufreq-ux500",
3078                 .platform_data = &db8500_cpufreq_table,
3079                 .pdata_size = sizeof(db8500_cpufreq_table),
3080         },
3081         {
3082                 .name = "ux500_wdt",
3083                 .platform_data = &db8500_wdt_pdata,
3084                 .pdata_size = sizeof(db8500_wdt_pdata),
3085                 .id = -1,
3086         },
3087         {
3088                 .name = "db8500-thermal",
3089                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3090                 .resources = db8500_thsens_resources,
3091                 .platform_data = &db8500_thsens_data,
3092         },
3093 };
3094
3095 static void db8500_prcmu_update_cpufreq(void)
3096 {
3097         if (prcmu_has_arm_maxopp()) {
3098                 db8500_cpufreq_table[3].frequency = 1000000;
3099                 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3100         }
3101 }
3102
3103 static int db8500_prcmu_register_ab8500(struct device *parent,
3104                                         struct ab8500_platform_data *pdata,
3105                                         int irq)
3106 {
3107         struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3108         struct mfd_cell ab8500_cell = {
3109                 .name = "ab8500-core",
3110                 .of_compatible = "stericsson,ab8500",
3111                 .id = AB8500_VERSION_AB8500,
3112                 .platform_data = pdata,
3113                 .pdata_size = sizeof(struct ab8500_platform_data),
3114                 .resources = &ab8500_resource,
3115                 .num_resources = 1,
3116         };
3117
3118         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3119 }
3120
3121 /**
3122  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3123  *
3124  */
3125 static int db8500_prcmu_probe(struct platform_device *pdev)
3126 {
3127         struct device_node *np = pdev->dev.of_node;
3128         struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3129         int irq = 0, err = 0;
3130         struct resource *res;
3131
3132         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3133         if (!res) {
3134                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3135                 return -ENOENT;
3136         }
3137         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3138         if (!prcmu_base) {
3139                 dev_err(&pdev->dev,
3140                         "failed to ioremap prcmu register memory\n");
3141                 return -ENOENT;
3142         }
3143         init_prcm_registers();
3144         dbx500_fw_version_init(pdev, pdata->version_offset);
3145         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3146         if (!res) {
3147                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3148                 return -ENOENT;
3149         }
3150         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3151                         resource_size(res));
3152
3153         /* Clean up the mailbox interrupts after pre-kernel code. */
3154         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3155
3156         irq = platform_get_irq(pdev, 0);
3157         if (irq <= 0) {
3158                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3159                 return -ENOENT;
3160         }
3161
3162         err = request_threaded_irq(irq, prcmu_irq_handler,
3163                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3164         if (err < 0) {
3165                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3166                 err = -EBUSY;
3167                 goto no_irq_return;
3168         }
3169
3170         db8500_irq_init(np, pdata->irq_base);
3171
3172         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3173
3174         db8500_prcmu_update_cpufreq();
3175
3176         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3177                               ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, db8500_irq_domain);
3178         if (err) {
3179                 pr_err("prcmu: Failed to add subdevices\n");
3180                 return err;
3181         }
3182
3183         err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3184                                            pdata->ab_irq);
3185         if (err) {
3186                 mfd_remove_devices(&pdev->dev);
3187                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188                 goto no_irq_return;
3189         }
3190
3191         pr_info("DB8500 PRCMU initialized\n");
3192
3193 no_irq_return:
3194         return err;
3195 }
3196 static const struct of_device_id db8500_prcmu_match[] = {
3197         { .compatible = "stericsson,db8500-prcmu"},
3198         { },
3199 };
3200
3201 static struct platform_driver db8500_prcmu_driver = {
3202         .driver = {
3203                 .name = "db8500-prcmu",
3204                 .owner = THIS_MODULE,
3205                 .of_match_table = db8500_prcmu_match,
3206         },
3207         .probe = db8500_prcmu_probe,
3208 };
3209
3210 static int __init db8500_prcmu_init(void)
3211 {
3212         return platform_driver_register(&db8500_prcmu_driver);
3213 }
3214
3215 core_initcall(db8500_prcmu_init);
3216
3217 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3218 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3219 MODULE_LICENSE("GPL v2");