Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / memory / fsl_ifc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2011 Freescale Semiconductor, Inc
4  *
5  * Freescale Integrated Flash Controller
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27
28 /*
29  * convert_ifc_address - convert the base address
30  * @addr_base:  base address of the memory bank
31  */
32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34         return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37
38 /*
39  * fsl_ifc_find - find IFC bank
40  * @addr_base:  base address of the memory bank
41  *
42  * This function walks IFC banks comparing "Base address" field of the CSPR
43  * registers with the supplied addr_base argument. When bases match this
44  * function returns bank number (starting with 0), otherwise it returns
45  * appropriate errno value.
46  */
47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49         int i = 0;
50
51         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52                 return -ENODEV;
53
54         for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55                 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56
57                 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58                                 convert_ifc_address(addr_base))
59                         return i;
60         }
61
62         return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65
66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68         struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69
70         /*
71          * Clear all the common status and event registers
72          */
73         if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74                 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75
76         /* enable all error and events */
77         ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78
79         /* enable all error and event interrupts */
80         ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81         ifc_out32(0x0, &ifc->cm_erattr0);
82         ifc_out32(0x0, &ifc->cm_erattr1);
83
84         return 0;
85 }
86
87 static int fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89         struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90
91         of_platform_depopulate(&dev->dev);
92         free_irq(ctrl->nand_irq, ctrl);
93         free_irq(ctrl->irq, ctrl);
94
95         irq_dispose_mapping(ctrl->nand_irq);
96         irq_dispose_mapping(ctrl->irq);
97
98         iounmap(ctrl->gregs);
99
100         dev_set_drvdata(&dev->dev, NULL);
101
102         return 0;
103 }
104
105 /*
106  * NAND events are split between an operational interrupt which only
107  * receives OPC, and an error interrupt that receives everything else,
108  * including non-NAND errors.  Whichever interrupt gets to it first
109  * records the status and wakes the wait queue.
110  */
111 static DEFINE_SPINLOCK(nand_irq_lock);
112
113 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
114 {
115         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
116         unsigned long flags;
117         u32 stat;
118
119         spin_lock_irqsave(&nand_irq_lock, flags);
120
121         stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
122         if (stat) {
123                 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
124                 ctrl->nand_stat = stat;
125                 wake_up(&ctrl->nand_wait);
126         }
127
128         spin_unlock_irqrestore(&nand_irq_lock, flags);
129
130         return stat;
131 }
132
133 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
134 {
135         struct fsl_ifc_ctrl *ctrl = data;
136
137         if (check_nand_stat(ctrl))
138                 return IRQ_HANDLED;
139
140         return IRQ_NONE;
141 }
142
143 /*
144  * NOTE: This interrupt is used to report ifc events of various kinds,
145  * such as transaction errors on the chipselects.
146  */
147 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
148 {
149         struct fsl_ifc_ctrl *ctrl = data;
150         struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
151         u32 err_axiid, err_srcid, status, cs_err, err_addr;
152         irqreturn_t ret = IRQ_NONE;
153
154         /* read for chip select error */
155         cs_err = ifc_in32(&ifc->cm_evter_stat);
156         if (cs_err) {
157                 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
158                         cs_err);
159                 /* clear the chip select error */
160                 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
161
162                 /* read error attribute registers print the error information */
163                 status = ifc_in32(&ifc->cm_erattr0);
164                 err_addr = ifc_in32(&ifc->cm_erattr1);
165
166                 if (status & IFC_CM_ERATTR0_ERTYP_READ)
167                         dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
168                                 status);
169                 else
170                         dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
171                                 status);
172
173                 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
174                                         IFC_CM_ERATTR0_ERAID_SHIFT;
175                 dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
176                         err_axiid);
177
178                 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
179                                         IFC_CM_ERATTR0_ESRCID_SHIFT;
180                 dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
181                         err_srcid);
182
183                 dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
184                         err_addr);
185
186                 ret = IRQ_HANDLED;
187         }
188
189         if (check_nand_stat(ctrl))
190                 ret = IRQ_HANDLED;
191
192         return ret;
193 }
194
195 /*
196  * fsl_ifc_ctrl_probe
197  *
198  * called by device layer when it finds a device matching
199  * one our driver can handled. This code allocates all of
200  * the resources needed for the controller only.  The
201  * resources for the NAND banks themselves are allocated
202  * in the chip probe function.
203  */
204 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
205 {
206         int ret = 0;
207         int version, banks;
208         void __iomem *addr;
209
210         dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
211
212         fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
213                                         GFP_KERNEL);
214         if (!fsl_ifc_ctrl_dev)
215                 return -ENOMEM;
216
217         dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
218
219         /* IOMAP the entire IFC region */
220         fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
221         if (!fsl_ifc_ctrl_dev->gregs) {
222                 dev_err(&dev->dev, "failed to get memory region\n");
223                 return -ENODEV;
224         }
225
226         if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
227                 fsl_ifc_ctrl_dev->little_endian = true;
228                 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
229         } else {
230                 fsl_ifc_ctrl_dev->little_endian = false;
231                 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
232         }
233
234         version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
235                         FSL_IFC_VERSION_MASK;
236
237         banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
238         dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
239                 version >> 24, (version >> 16) & 0xf, banks);
240
241         fsl_ifc_ctrl_dev->version = version;
242         fsl_ifc_ctrl_dev->banks = banks;
243
244         addr = fsl_ifc_ctrl_dev->gregs;
245         if (version >= FSL_IFC_VERSION_2_0_0)
246                 addr += PGOFFSET_64K;
247         else
248                 addr += PGOFFSET_4K;
249         fsl_ifc_ctrl_dev->rregs = addr;
250
251         /* get the Controller level irq */
252         fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
253         if (fsl_ifc_ctrl_dev->irq == 0) {
254                 dev_err(&dev->dev, "failed to get irq resource for IFC\n");
255                 ret = -ENODEV;
256                 goto err;
257         }
258
259         /* get the nand machine irq */
260         fsl_ifc_ctrl_dev->nand_irq =
261                         irq_of_parse_and_map(dev->dev.of_node, 1);
262
263         fsl_ifc_ctrl_dev->dev = &dev->dev;
264
265         ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
266         if (ret < 0)
267                 goto err_unmap_nandirq;
268
269         init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
270
271         ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
272                           "fsl-ifc", fsl_ifc_ctrl_dev);
273         if (ret != 0) {
274                 dev_err(&dev->dev, "failed to install irq (%d)\n",
275                         fsl_ifc_ctrl_dev->irq);
276                 goto err_unmap_nandirq;
277         }
278
279         if (fsl_ifc_ctrl_dev->nand_irq) {
280                 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
281                                 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
282                 if (ret != 0) {
283                         dev_err(&dev->dev, "failed to install irq (%d)\n",
284                                 fsl_ifc_ctrl_dev->nand_irq);
285                         goto err_free_irq;
286                 }
287         }
288
289         /* legacy dts may still use "simple-bus" compatible */
290         ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
291         if (ret)
292                 goto err_free_nandirq;
293
294         return 0;
295
296 err_free_nandirq:
297         free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
298 err_free_irq:
299         free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
300 err_unmap_nandirq:
301         irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
302         irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
303 err:
304         iounmap(fsl_ifc_ctrl_dev->gregs);
305         return ret;
306 }
307
308 static const struct of_device_id fsl_ifc_match[] = {
309         {
310                 .compatible = "fsl,ifc",
311         },
312         {},
313 };
314
315 static struct platform_driver fsl_ifc_ctrl_driver = {
316         .driver = {
317                 .name   = "fsl-ifc",
318                 .of_match_table = fsl_ifc_match,
319         },
320         .probe       = fsl_ifc_ctrl_probe,
321         .remove      = fsl_ifc_ctrl_remove,
322 };
323
324 static int __init fsl_ifc_init(void)
325 {
326         return platform_driver_register(&fsl_ifc_ctrl_driver);
327 }
328 subsys_initcall(fsl_ifc_init);
329
330 MODULE_LICENSE("GPL");
331 MODULE_AUTHOR("Freescale Semiconductor");
332 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");