Merge branch 'i2c-embedded/for-next' of git://git.pengutronix.de/git/wsa/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / memory / emif.c
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <aneesh@ti.com>
7  * Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/platform_data/emif_plat.h>
16 #include <linux/io.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <memory/jedec_ddr.h>
27 #include "emif.h"
28
29 /**
30  * struct emif_data - Per device static data for driver's use
31  * @duplicate:                  Whether the DDR devices attached to this EMIF
32  *                              instance are exactly same as that on EMIF1. In
33  *                              this case we can save some memory and processing
34  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
35  *                              to this EMIF - read from MR4 register. If there
36  *                              are two devices attached to this EMIF, this
37  *                              value is the maximum of the two temperature
38  *                              levels.
39  * @node:                       node in the device list
40  * @base:                       base address of memory-mapped IO registers.
41  * @dev:                        device pointer.
42  * @addressing                  table with addressing information from the spec
43  * @regs_cache:                 An array of 'struct emif_regs' that stores
44  *                              calculated register values for different
45  *                              frequencies, to avoid re-calculating them on
46  *                              each DVFS transition.
47  * @curr_regs:                  The set of register values used in the last
48  *                              frequency change (i.e. corresponding to the
49  *                              frequency in effect at the moment)
50  * @plat_data:                  Pointer to saved platform data.
51  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
52  */
53 struct emif_data {
54         u8                              duplicate;
55         u8                              temperature_level;
56         u8                              lpmode;
57         struct list_head                node;
58         unsigned long                   irq_state;
59         void __iomem                    *base;
60         struct device                   *dev;
61         const struct lpddr2_addressing  *addressing;
62         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
63         struct emif_regs                *curr_regs;
64         struct emif_platform_data       *plat_data;
65         struct dentry                   *debugfs_root;
66 };
67
68 static struct emif_data *emif1;
69 static spinlock_t       emif_lock;
70 static unsigned long    irq_state;
71 static u32              t_ck; /* DDR clock period in ps */
72 static LIST_HEAD(device_list);
73
74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75         struct emif_regs *regs)
76 {
77         u32 type = emif->plat_data->device_info->type;
78         u32 ip_rev = emif->plat_data->ip_rev;
79
80         seq_printf(s, "EMIF register cache dump for %dMHz\n",
81                 regs->freq/1000000);
82
83         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
87
88         if (ip_rev == EMIF_4D) {
89                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90                         regs->read_idle_ctrl_shdw_normal);
91                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92                         regs->read_idle_ctrl_shdw_volt_ramp);
93         } else if (ip_rev == EMIF_4D5) {
94                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->dll_calib_ctrl_shdw_normal);
96                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->dll_calib_ctrl_shdw_volt_ramp);
98         }
99
100         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102                         regs->ref_ctrl_shdw_derated);
103                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104                         regs->sdram_tim1_shdw_derated);
105                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106                         regs->sdram_tim3_shdw_derated);
107         }
108 }
109
110 static int emif_regdump_show(struct seq_file *s, void *unused)
111 {
112         struct emif_data        *emif   = s->private;
113         struct emif_regs        **regs_cache;
114         int                     i;
115
116         if (emif->duplicate)
117                 regs_cache = emif1->regs_cache;
118         else
119                 regs_cache = emif->regs_cache;
120
121         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122                 do_emif_regdump_show(s, emif, regs_cache[i]);
123                 seq_printf(s, "\n");
124         }
125
126         return 0;
127 }
128
129 static int emif_regdump_open(struct inode *inode, struct file *file)
130 {
131         return single_open(file, emif_regdump_show, inode->i_private);
132 }
133
134 static const struct file_operations emif_regdump_fops = {
135         .open                   = emif_regdump_open,
136         .read                   = seq_read,
137         .release                = single_release,
138 };
139
140 static int emif_mr4_show(struct seq_file *s, void *unused)
141 {
142         struct emif_data *emif = s->private;
143
144         seq_printf(s, "MR4=%d\n", emif->temperature_level);
145         return 0;
146 }
147
148 static int emif_mr4_open(struct inode *inode, struct file *file)
149 {
150         return single_open(file, emif_mr4_show, inode->i_private);
151 }
152
153 static const struct file_operations emif_mr4_fops = {
154         .open                   = emif_mr4_open,
155         .read                   = seq_read,
156         .release                = single_release,
157 };
158
159 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
160 {
161         struct dentry   *dentry;
162         int             ret;
163
164         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
165         if (IS_ERR(dentry)) {
166                 ret = PTR_ERR(dentry);
167                 goto err0;
168         }
169         emif->debugfs_root = dentry;
170
171         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
172                         emif->debugfs_root, emif, &emif_regdump_fops);
173         if (IS_ERR(dentry)) {
174                 ret = PTR_ERR(dentry);
175                 goto err1;
176         }
177
178         dentry = debugfs_create_file("mr4", S_IRUGO,
179                         emif->debugfs_root, emif, &emif_mr4_fops);
180         if (IS_ERR(dentry)) {
181                 ret = PTR_ERR(dentry);
182                 goto err1;
183         }
184
185         return 0;
186 err1:
187         debugfs_remove_recursive(emif->debugfs_root);
188 err0:
189         return ret;
190 }
191
192 static void __exit emif_debugfs_exit(struct emif_data *emif)
193 {
194         debugfs_remove_recursive(emif->debugfs_root);
195         emif->debugfs_root = NULL;
196 }
197
198 /*
199  * Calculate the period of DDR clock from frequency value
200  */
201 static void set_ddr_clk_period(u32 freq)
202 {
203         /* Divide 10^12 by frequency to get period in ps */
204         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
205 }
206
207 /*
208  * Get bus width used by EMIF. Note that this may be different from the
209  * bus width of the DDR devices used. For instance two 16-bit DDR devices
210  * may be connected to a given CS of EMIF. In this case bus width as far
211  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
212  */
213 static u32 get_emif_bus_width(struct emif_data *emif)
214 {
215         u32             width;
216         void __iomem    *base = emif->base;
217
218         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
219                         >> NARROW_MODE_SHIFT;
220         width = width == 0 ? 32 : 16;
221
222         return width;
223 }
224
225 /*
226  * Get the CL from SDRAM_CONFIG register
227  */
228 static u32 get_cl(struct emif_data *emif)
229 {
230         u32             cl;
231         void __iomem    *base = emif->base;
232
233         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
234
235         return cl;
236 }
237
238 static void set_lpmode(struct emif_data *emif, u8 lpmode)
239 {
240         u32 temp;
241         void __iomem *base = emif->base;
242
243         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
244         temp &= ~LP_MODE_MASK;
245         temp |= (lpmode << LP_MODE_SHIFT);
246         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
247 }
248
249 static void do_freq_update(void)
250 {
251         struct emif_data *emif;
252
253         /*
254          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
255          *
256          * i728 DESCRIPTION:
257          * The EMIF automatically puts the SDRAM into self-refresh mode
258          * after the EMIF has not performed accesses during
259          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
260          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
261          * to 0x2. If during a small window the following three events
262          * occur:
263          * - The SR_TIMING counter expires
264          * - And frequency change is requested
265          * - And OCP access is requested
266          * Then it causes instable clock on the DDR interface.
267          *
268          * WORKAROUND
269          * To avoid the occurrence of the three events, the workaround
270          * is to disable the self-refresh when requesting a frequency
271          * change. Before requesting a frequency change the software must
272          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
273          * frequency change has been done, the software can reprogram
274          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
275          */
276         list_for_each_entry(emif, &device_list, node) {
277                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
278                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
279         }
280
281         /*
282          * TODO: Do FREQ_UPDATE here when an API
283          * is available for this as part of the new
284          * clock framework
285          */
286
287         list_for_each_entry(emif, &device_list, node) {
288                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
289                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
290         }
291 }
292
293 /* Find addressing table entry based on the device's type and density */
294 static const struct lpddr2_addressing *get_addressing_table(
295         const struct ddr_device_info *device_info)
296 {
297         u32             index, type, density;
298
299         type = device_info->type;
300         density = device_info->density;
301
302         switch (type) {
303         case DDR_TYPE_LPDDR2_S4:
304                 index = density - 1;
305                 break;
306         case DDR_TYPE_LPDDR2_S2:
307                 switch (density) {
308                 case DDR_DENSITY_1Gb:
309                 case DDR_DENSITY_2Gb:
310                         index = density + 3;
311                         break;
312                 default:
313                         index = density - 1;
314                 }
315                 break;
316         default:
317                 return NULL;
318         }
319
320         return &lpddr2_jedec_addressing_table[index];
321 }
322
323 /*
324  * Find the the right timing table from the array of timing
325  * tables of the device using DDR clock frequency
326  */
327 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
328                 u32 freq)
329 {
330         u32                             i, min, max, freq_nearest;
331         const struct lpddr2_timings     *timings = NULL;
332         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
333         struct                          device *dev = emif->dev;
334
335         /* Start with a very high frequency - 1GHz */
336         freq_nearest = 1000000000;
337
338         /*
339          * Find the timings table such that:
340          *  1. the frequency range covers the required frequency(safe) AND
341          *  2. the max_freq is closest to the required frequency(optimal)
342          */
343         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
344                 max = timings_arr[i].max_freq;
345                 min = timings_arr[i].min_freq;
346                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
347                         freq_nearest = max;
348                         timings = &timings_arr[i];
349                 }
350         }
351
352         if (!timings)
353                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
354                         __func__, freq);
355
356         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
357                 __func__, freq, freq_nearest);
358
359         return timings;
360 }
361
362 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
363                 const struct lpddr2_addressing *addressing)
364 {
365         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
366
367         /* Scale down frequency and t_refi to avoid overflow */
368         freq_khz = freq / 1000;
369         t_refi = addressing->tREFI_ns / 100;
370
371         /*
372          * refresh rate to be set is 'tREFI(in us) * freq in MHz
373          * division by 10000 to account for change in units
374          */
375         val = t_refi * freq_khz / 10000;
376         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
377
378         return ref_ctrl_shdw;
379 }
380
381 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
382                 const struct lpddr2_min_tck *min_tck,
383                 const struct lpddr2_addressing *addressing)
384 {
385         u32 tim1 = 0, val = 0;
386
387         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
388         tim1 |= val << T_WTR_SHIFT;
389
390         if (addressing->num_banks == B8)
391                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
392         else
393                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
394         tim1 |= (val - 1) << T_RRD_SHIFT;
395
396         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
397         tim1 |= val << T_RC_SHIFT;
398
399         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
400         tim1 |= (val - 1) << T_RAS_SHIFT;
401
402         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
403         tim1 |= val << T_WR_SHIFT;
404
405         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
406         tim1 |= val << T_RCD_SHIFT;
407
408         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
409         tim1 |= val << T_RP_SHIFT;
410
411         return tim1;
412 }
413
414 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
415                 const struct lpddr2_min_tck *min_tck,
416                 const struct lpddr2_addressing *addressing)
417 {
418         u32 tim1 = 0, val = 0;
419
420         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
421         tim1 = val << T_WTR_SHIFT;
422
423         /*
424          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
425          * to tFAW for de-rating
426          */
427         if (addressing->num_banks == B8) {
428                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
429         } else {
430                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
431                 val = max(min_tck->tRRD, val) - 1;
432         }
433         tim1 |= val << T_RRD_SHIFT;
434
435         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
436         tim1 |= (val - 1) << T_RC_SHIFT;
437
438         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
439         val = max(min_tck->tRASmin, val) - 1;
440         tim1 |= val << T_RAS_SHIFT;
441
442         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
443         tim1 |= val << T_WR_SHIFT;
444
445         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
446         tim1 |= (val - 1) << T_RCD_SHIFT;
447
448         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
449         tim1 |= (val - 1) << T_RP_SHIFT;
450
451         return tim1;
452 }
453
454 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
455                 const struct lpddr2_min_tck *min_tck,
456                 const struct lpddr2_addressing *addressing,
457                 u32 type)
458 {
459         u32 tim2 = 0, val = 0;
460
461         val = min_tck->tCKE - 1;
462         tim2 |= val << T_CKE_SHIFT;
463
464         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
465         tim2 |= val << T_RTP_SHIFT;
466
467         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
468         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
469         tim2 |= val << T_XSNR_SHIFT;
470
471         /* XSRD same as XSNR for LPDDR2 */
472         tim2 |= val << T_XSRD_SHIFT;
473
474         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
475         tim2 |= val << T_XP_SHIFT;
476
477         return tim2;
478 }
479
480 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
481                 const struct lpddr2_min_tck *min_tck,
482                 const struct lpddr2_addressing *addressing,
483                 u32 type, u32 ip_rev, u32 derated)
484 {
485         u32 tim3 = 0, val = 0, t_dqsck;
486
487         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
488         val = val > 0xF ? 0xF : val;
489         tim3 |= val << T_RAS_MAX_SHIFT;
490
491         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
492         tim3 |= val << T_RFC_SHIFT;
493
494         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
495                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
496         if (ip_rev == EMIF_4D5)
497                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
498         else
499                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
500
501         tim3 |= val << T_TDQSCKMAX_SHIFT;
502
503         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
504         tim3 |= val << ZQ_ZQCS_SHIFT;
505
506         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
507         val = max(min_tck->tCKESR, val) - 1;
508         tim3 |= val << T_CKESR_SHIFT;
509
510         if (ip_rev == EMIF_4D5) {
511                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
512
513                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
514                 tim3 |= val << T_PDLL_UL_SHIFT;
515         }
516
517         return tim3;
518 }
519
520 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
521                 bool cs1_used, bool cal_resistors_per_cs)
522 {
523         u32 zq = 0, val = 0;
524
525         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
526         zq |= val << ZQ_REFINTERVAL_SHIFT;
527
528         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
529         zq |= val << ZQ_ZQCL_MULT_SHIFT;
530
531         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
532         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
533
534         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
535
536         if (cal_resistors_per_cs)
537                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
538         else
539                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
540
541         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
542
543         val = cs1_used ? 1 : 0;
544         zq |= val << ZQ_CS1EN_SHIFT;
545
546         return zq;
547 }
548
549 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
550                 const struct emif_custom_configs *custom_configs, bool cs1_used,
551                 u32 sdram_io_width, u32 emif_bus_width)
552 {
553         u32 alert = 0, interval, devcnt;
554
555         if (custom_configs && (custom_configs->mask &
556                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
557                 interval = custom_configs->temp_alert_poll_interval_ms;
558         else
559                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
560
561         interval *= 1000000;                    /* Convert to ns */
562         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
563         alert |= (interval << TA_REFINTERVAL_SHIFT);
564
565         /*
566          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
567          * also to this form and subtract to get TA_DEVCNT, which is
568          * in log2(x) form.
569          */
570         emif_bus_width = __fls(emif_bus_width) - 1;
571         devcnt = emif_bus_width - sdram_io_width;
572         alert |= devcnt << TA_DEVCNT_SHIFT;
573
574         /* DEVWDT is in 'log2(x) - 3' form */
575         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
576
577         alert |= 1 << TA_SFEXITEN_SHIFT;
578         alert |= 1 << TA_CS0EN_SHIFT;
579         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
580
581         return alert;
582 }
583
584 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
585 {
586         u32 idle = 0, val = 0;
587
588         /*
589          * Maximum value in normal conditions and increased frequency
590          * when voltage is ramping
591          */
592         if (volt_ramp)
593                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
594         else
595                 val = 0x1FF;
596
597         /*
598          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
599          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
600          */
601         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
602         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
603
604         return idle;
605 }
606
607 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
608 {
609         u32 calib = 0, val = 0;
610
611         if (volt_ramp == DDR_VOLTAGE_RAMPING)
612                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
613         else
614                 val = 0; /* Disabled when voltage is stable */
615
616         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
617         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
618
619         return calib;
620 }
621
622 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
623         u32 freq, u8 RL)
624 {
625         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
626
627         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
628         phy |= val << READ_LATENCY_SHIFT_4D;
629
630         if (freq <= 100000000)
631                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
632         else if (freq <= 200000000)
633                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
634         else
635                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
636
637         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
638
639         return phy;
640 }
641
642 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
643 {
644         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
645
646         /*
647          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
648          * half-delay is not needed else set half-delay
649          */
650         if (freq >= 265000000 && freq < 267000000)
651                 half_delay = 0;
652         else
653                 half_delay = 1;
654
655         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
656         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
657                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
658
659         return phy;
660 }
661
662 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
663 {
664         u32 fifo_we_slave_ratio;
665
666         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
667                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
668
669         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
670                 fifo_we_slave_ratio << 22;
671 }
672
673 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
674 {
675         u32 fifo_we_slave_ratio;
676
677         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
678                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
679
680         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
681                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
682 }
683
684 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
685 {
686         u32 fifo_we_slave_ratio;
687
688         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
689                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
690
691         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
692                 fifo_we_slave_ratio << 13;
693 }
694
695 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
696 {
697         u32 pwr_mgmt_ctrl       = 0, timeout;
698         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
699         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
700         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
701         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
702
703         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
704
705         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
706                 lpmode          = cust_cfgs->lpmode;
707                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
708                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
709                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
710         }
711
712         /* Timeout based on DDR frequency */
713         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
714
715         /* The value to be set in register is "log2(timeout) - 3" */
716         if (timeout < 16) {
717                 timeout = 0;
718         } else {
719                 timeout = __fls(timeout) - 3;
720                 if (timeout & (timeout - 1))
721                         timeout++;
722         }
723
724         switch (lpmode) {
725         case EMIF_LP_MODE_CLOCK_STOP:
726                 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
727                                         SR_TIM_MASK | PD_TIM_MASK;
728                 break;
729         case EMIF_LP_MODE_SELF_REFRESH:
730                 /* Workaround for errata i735 */
731                 if (timeout < 6)
732                         timeout = 6;
733
734                 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
735                                         CS_TIM_MASK | PD_TIM_MASK;
736                 break;
737         case EMIF_LP_MODE_PWR_DN:
738                 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
739                                         CS_TIM_MASK | SR_TIM_MASK;
740                 break;
741         case EMIF_LP_MODE_DISABLE:
742         default:
743                 pwr_mgmt_ctrl = CS_TIM_MASK |
744                                         PD_TIM_MASK | SR_TIM_MASK;
745         }
746
747         /* No CS_TIM in EMIF_4D5 */
748         if (ip_rev == EMIF_4D5)
749                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
750
751         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
752
753         return pwr_mgmt_ctrl;
754 }
755
756 /*
757  * Get the temperature level of the EMIF instance:
758  * Reads the MR4 register of attached SDRAM parts to find out the temperature
759  * level. If there are two parts attached(one on each CS), then the temperature
760  * level for the EMIF instance is the higher of the two temperatures.
761  */
762 static void get_temperature_level(struct emif_data *emif)
763 {
764         u32             temp, temperature_level;
765         void __iomem    *base;
766
767         base = emif->base;
768
769         /* Read mode register 4 */
770         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
771         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
772         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
773                                 MR4_SDRAM_REF_RATE_SHIFT;
774
775         if (emif->plat_data->device_info->cs1_used) {
776                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
777                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
778                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
779                                 >> MR4_SDRAM_REF_RATE_SHIFT;
780                 temperature_level = max(temp, temperature_level);
781         }
782
783         /* treat everything less than nominal(3) in MR4 as nominal */
784         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
785                 temperature_level = SDRAM_TEMP_NOMINAL;
786
787         /* if we get reserved value in MR4 persist with the existing value */
788         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
789                 emif->temperature_level = temperature_level;
790 }
791
792 /*
793  * Program EMIF shadow registers that are not dependent on temperature
794  * or voltage
795  */
796 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
797 {
798         void __iomem    *base = emif->base;
799
800         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
801         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
802
803         /* Settings specific for EMIF4D5 */
804         if (emif->plat_data->ip_rev != EMIF_4D5)
805                 return;
806         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
807         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
808         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
809 }
810
811 /*
812  * When voltage ramps dll calibration and forced read idle should
813  * happen more often
814  */
815 static void setup_volt_sensitive_regs(struct emif_data *emif,
816                 struct emif_regs *regs, u32 volt_state)
817 {
818         u32             calib_ctrl;
819         void __iomem    *base = emif->base;
820
821         /*
822          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
823          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
824          * is an alias of the respective read_idle_ctrl_shdw_* (members of
825          * a union). So, the below code takes care of both cases
826          */
827         if (volt_state == DDR_VOLTAGE_RAMPING)
828                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
829         else
830                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
831
832         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
833 }
834
835 /*
836  * setup_temperature_sensitive_regs() - set the timings for temperature
837  * sensitive registers. This happens once at initialisation time based
838  * on the temperature at boot time and subsequently based on the temperature
839  * alert interrupt. Temperature alert can happen when the temperature
840  * increases or drops. So this function can have the effect of either
841  * derating the timings or going back to nominal values.
842  */
843 static void setup_temperature_sensitive_regs(struct emif_data *emif,
844                 struct emif_regs *regs)
845 {
846         u32             tim1, tim3, ref_ctrl, type;
847         void __iomem    *base = emif->base;
848         u32             temperature;
849
850         type = emif->plat_data->device_info->type;
851
852         tim1 = regs->sdram_tim1_shdw;
853         tim3 = regs->sdram_tim3_shdw;
854         ref_ctrl = regs->ref_ctrl_shdw;
855
856         /* No de-rating for non-lpddr2 devices */
857         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
858                 goto out;
859
860         temperature = emif->temperature_level;
861         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
862                 ref_ctrl = regs->ref_ctrl_shdw_derated;
863         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
864                 tim1 = regs->sdram_tim1_shdw_derated;
865                 tim3 = regs->sdram_tim3_shdw_derated;
866                 ref_ctrl = regs->ref_ctrl_shdw_derated;
867         }
868
869 out:
870         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
871         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
872         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
873 }
874
875 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
876 {
877         u32             old_temp_level;
878         irqreturn_t     ret = IRQ_HANDLED;
879
880         spin_lock_irqsave(&emif_lock, irq_state);
881         old_temp_level = emif->temperature_level;
882         get_temperature_level(emif);
883
884         if (unlikely(emif->temperature_level == old_temp_level)) {
885                 goto out;
886         } else if (!emif->curr_regs) {
887                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
888                 goto out;
889         }
890
891         if (emif->temperature_level < old_temp_level ||
892                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
893                 /*
894                  * Temperature coming down - defer handling to thread OR
895                  * Temperature far too high - do kernel_power_off() from
896                  * thread context
897                  */
898                 ret = IRQ_WAKE_THREAD;
899         } else {
900                 /* Temperature is going up - handle immediately */
901                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
902                 do_freq_update();
903         }
904
905 out:
906         spin_unlock_irqrestore(&emif_lock, irq_state);
907         return ret;
908 }
909
910 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
911 {
912         u32                     interrupts;
913         struct emif_data        *emif = dev_id;
914         void __iomem            *base = emif->base;
915         struct device           *dev = emif->dev;
916         irqreturn_t             ret = IRQ_HANDLED;
917
918         /* Save the status and clear it */
919         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
920         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
921
922         /*
923          * Handle temperature alert
924          * Temperature alert should be same for all ports
925          * So, it's enough to process it only for one of the ports
926          */
927         if (interrupts & TA_SYS_MASK)
928                 ret = handle_temp_alert(base, emif);
929
930         if (interrupts & ERR_SYS_MASK)
931                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
932
933         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
934                 /* Save the status and clear it */
935                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
936                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
937
938                 if (interrupts & ERR_LL_MASK)
939                         dev_err(dev, "Access error from LL port - %x\n",
940                                 interrupts);
941         }
942
943         return ret;
944 }
945
946 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
947 {
948         struct emif_data        *emif = dev_id;
949
950         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
951                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
952                 kernel_power_off();
953                 return IRQ_HANDLED;
954         }
955
956         spin_lock_irqsave(&emif_lock, irq_state);
957
958         if (emif->curr_regs) {
959                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
960                 do_freq_update();
961         } else {
962                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
963         }
964
965         spin_unlock_irqrestore(&emif_lock, irq_state);
966
967         return IRQ_HANDLED;
968 }
969
970 static void clear_all_interrupts(struct emif_data *emif)
971 {
972         void __iomem    *base = emif->base;
973
974         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
975                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
976         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
977                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
978                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
979 }
980
981 static void disable_and_clear_all_interrupts(struct emif_data *emif)
982 {
983         void __iomem            *base = emif->base;
984
985         /* Disable all interrupts */
986         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
987                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
988         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
989                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
990                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
991
992         /* Clear all interrupts */
993         clear_all_interrupts(emif);
994 }
995
996 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
997 {
998         u32             interrupts, type;
999         void __iomem    *base = emif->base;
1000
1001         type = emif->plat_data->device_info->type;
1002
1003         clear_all_interrupts(emif);
1004
1005         /* Enable interrupts for SYS interface */
1006         interrupts = EN_ERR_SYS_MASK;
1007         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1008                 interrupts |= EN_TA_SYS_MASK;
1009         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1010
1011         /* Enable interrupts for LL interface */
1012         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1013                 /* TA need not be enabled for LL */
1014                 interrupts = EN_ERR_LL_MASK;
1015                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1016         }
1017
1018         /* setup IRQ handlers */
1019         return devm_request_threaded_irq(emif->dev, irq,
1020                                     emif_interrupt_handler,
1021                                     emif_threaded_isr,
1022                                     0, dev_name(emif->dev),
1023                                     emif);
1024
1025 }
1026
1027 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1028 {
1029         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1030         void __iomem                    *base = emif->base;
1031         const struct lpddr2_addressing  *addressing;
1032         const struct ddr_device_info    *device_info;
1033
1034         device_info = emif->plat_data->device_info;
1035         addressing = get_addressing_table(device_info);
1036
1037         /*
1038          * Init power management settings
1039          * We don't know the frequency yet. Use a high frequency
1040          * value for a conservative timeout setting
1041          */
1042         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1043                         emif->plat_data->ip_rev);
1044         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1045         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1046
1047         /* Init ZQ calibration settings */
1048         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1049                 device_info->cal_resistors_per_cs);
1050         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1051
1052         /* Check temperature level temperature level*/
1053         get_temperature_level(emif);
1054         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1055                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1056
1057         /* Init temperature polling */
1058         temp_alert_cfg = get_temp_alert_config(addressing,
1059                 emif->plat_data->custom_configs, device_info->cs1_used,
1060                 device_info->io_width, get_emif_bus_width(emif));
1061         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1062
1063         /*
1064          * Program external PHY control registers that are not frequency
1065          * dependent
1066          */
1067         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1068                 return;
1069         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1070         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1071         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1072         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1073         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1074         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1075         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1076         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1077         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1078         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1079         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1080         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1081         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1082         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1083         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1084         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1085         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1086         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1087         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1088         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1089         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1090 }
1091
1092 static void get_default_timings(struct emif_data *emif)
1093 {
1094         struct emif_platform_data *pd = emif->plat_data;
1095
1096         pd->timings             = lpddr2_jedec_timings;
1097         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1098
1099         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1100 }
1101
1102 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1103                 u32 ip_rev, struct device *dev)
1104 {
1105         int valid;
1106
1107         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1108                         type == DDR_TYPE_LPDDR2_S2)
1109                 && (density >= DDR_DENSITY_64Mb
1110                         && density <= DDR_DENSITY_8Gb)
1111                 && (io_width >= DDR_IO_WIDTH_8
1112                         && io_width <= DDR_IO_WIDTH_32);
1113
1114         /* Combinations of EMIF and PHY revisions that we support today */
1115         switch (ip_rev) {
1116         case EMIF_4D:
1117                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1118                 break;
1119         case EMIF_4D5:
1120                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1121                 break;
1122         default:
1123                 valid = 0;
1124         }
1125
1126         if (!valid)
1127                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1128         return valid;
1129 }
1130
1131 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1132                 struct device *dev)
1133 {
1134         int valid = 1;
1135
1136         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1137                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1138                 valid = cust_cfgs->lpmode_freq_threshold &&
1139                         cust_cfgs->lpmode_timeout_performance &&
1140                         cust_cfgs->lpmode_timeout_power;
1141
1142         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1143                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1144
1145         if (!valid)
1146                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1147
1148         return valid;
1149 }
1150
1151 static struct emif_data *__init_or_module get_device_details(
1152                 struct platform_device *pdev)
1153 {
1154         u32                             size;
1155         struct emif_data                *emif = NULL;
1156         struct ddr_device_info          *dev_info;
1157         struct emif_custom_configs      *cust_cfgs;
1158         struct emif_platform_data       *pd;
1159         struct device                   *dev;
1160         void                            *temp;
1161
1162         pd = pdev->dev.platform_data;
1163         dev = &pdev->dev;
1164
1165         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1166                         pd->device_info->density, pd->device_info->io_width,
1167                         pd->phy_type, pd->ip_rev, dev))) {
1168                 dev_err(dev, "%s: invalid device data\n", __func__);
1169                 goto error;
1170         }
1171
1172         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1173         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1174         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1175
1176         if (!emif || !pd || !dev_info) {
1177                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1178                 goto error;
1179         }
1180
1181         memcpy(temp, pd, sizeof(*pd));
1182         pd = temp;
1183         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1184
1185         pd->device_info         = dev_info;
1186         emif->plat_data         = pd;
1187         emif->dev               = dev;
1188         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1189
1190         /*
1191          * For EMIF instances other than EMIF1 see if the devices connected
1192          * are exactly same as on EMIF1(which is typically the case). If so,
1193          * mark it as a duplicate of EMIF1 and skip copying timings data.
1194          * This will save some memory and some computation later.
1195          */
1196         emif->duplicate = emif1 && (memcmp(dev_info,
1197                 emif1->plat_data->device_info,
1198                 sizeof(struct ddr_device_info)) == 0);
1199
1200         if (emif->duplicate) {
1201                 pd->timings = NULL;
1202                 pd->min_tck = NULL;
1203                 goto out;
1204         } else if (emif1) {
1205                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1206                         __func__);
1207         }
1208
1209         /*
1210          * Copy custom configs - ignore allocation error, if any, as
1211          * custom_configs is not very critical
1212          */
1213         cust_cfgs = pd->custom_configs;
1214         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1215                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1216                 if (temp)
1217                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1218                 else
1219                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1220                                 __LINE__);
1221                 pd->custom_configs = temp;
1222         }
1223
1224         /*
1225          * Copy timings and min-tck values from platform data. If it is not
1226          * available or if memory allocation fails, use JEDEC defaults
1227          */
1228         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1229         if (pd->timings) {
1230                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1231                 if (temp) {
1232                         memcpy(temp, pd->timings, sizeof(*pd->timings));
1233                         pd->timings = temp;
1234                 } else {
1235                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1236                                 __LINE__);
1237                         get_default_timings(emif);
1238                 }
1239         } else {
1240                 get_default_timings(emif);
1241         }
1242
1243         if (pd->min_tck) {
1244                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1245                 if (temp) {
1246                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1247                         pd->min_tck = temp;
1248                 } else {
1249                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1250                                 __LINE__);
1251                         pd->min_tck = &lpddr2_jedec_min_tck;
1252                 }
1253         } else {
1254                 pd->min_tck = &lpddr2_jedec_min_tck;
1255         }
1256
1257 out:
1258         return emif;
1259
1260 error:
1261         return NULL;
1262 }
1263
1264 static int __init_or_module emif_probe(struct platform_device *pdev)
1265 {
1266         struct emif_data        *emif;
1267         struct resource         *res;
1268         int                     irq;
1269
1270         emif = get_device_details(pdev);
1271         if (!emif) {
1272                 pr_err("%s: error getting device data\n", __func__);
1273                 goto error;
1274         }
1275
1276         list_add(&emif->node, &device_list);
1277         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1278
1279         /* Save pointers to each other in emif and device structures */
1280         emif->dev = &pdev->dev;
1281         platform_set_drvdata(pdev, emif);
1282
1283         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1284         if (!res) {
1285                 dev_err(emif->dev, "%s: error getting memory resource\n",
1286                         __func__);
1287                 goto error;
1288         }
1289
1290         emif->base = devm_request_and_ioremap(emif->dev, res);
1291         if (!emif->base) {
1292                 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1293                         __func__);
1294                 goto error;
1295         }
1296
1297         irq = platform_get_irq(pdev, 0);
1298         if (irq < 0) {
1299                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1300                         __func__, irq);
1301                 goto error;
1302         }
1303
1304         emif_onetime_settings(emif);
1305         emif_debugfs_init(emif);
1306         disable_and_clear_all_interrupts(emif);
1307         setup_interrupts(emif, irq);
1308
1309         /* One-time actions taken on probing the first device */
1310         if (!emif1) {
1311                 emif1 = emif;
1312                 spin_lock_init(&emif_lock);
1313
1314                 /*
1315                  * TODO: register notifiers for frequency and voltage
1316                  * change here once the respective frameworks are
1317                  * available
1318                  */
1319         }
1320
1321         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1322                 __func__, emif->base, irq);
1323
1324         return 0;
1325 error:
1326         return -ENODEV;
1327 }
1328
1329 static int __exit emif_remove(struct platform_device *pdev)
1330 {
1331         struct emif_data *emif = platform_get_drvdata(pdev);
1332
1333         emif_debugfs_exit(emif);
1334
1335         return 0;
1336 }
1337
1338 static void emif_shutdown(struct platform_device *pdev)
1339 {
1340         struct emif_data        *emif = platform_get_drvdata(pdev);
1341
1342         disable_and_clear_all_interrupts(emif);
1343 }
1344
1345 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1346                 struct emif_regs *regs)
1347 {
1348         u32                             cs1_used, ip_rev, phy_type;
1349         u32                             cl, type;
1350         const struct lpddr2_timings     *timings;
1351         const struct lpddr2_min_tck     *min_tck;
1352         const struct ddr_device_info    *device_info;
1353         const struct lpddr2_addressing  *addressing;
1354         struct emif_data                *emif_for_calc;
1355         struct device                   *dev;
1356         const struct emif_custom_configs *custom_configs;
1357
1358         dev = emif->dev;
1359         /*
1360          * If the devices on this EMIF instance is duplicate of EMIF1,
1361          * use EMIF1 details for the calculation
1362          */
1363         emif_for_calc   = emif->duplicate ? emif1 : emif;
1364         timings         = get_timings_table(emif_for_calc, freq);
1365         addressing      = emif_for_calc->addressing;
1366         if (!timings || !addressing) {
1367                 dev_err(dev, "%s: not enough data available for %dHz",
1368                         __func__, freq);
1369                 return -1;
1370         }
1371
1372         device_info     = emif_for_calc->plat_data->device_info;
1373         type            = device_info->type;
1374         cs1_used        = device_info->cs1_used;
1375         ip_rev          = emif_for_calc->plat_data->ip_rev;
1376         phy_type        = emif_for_calc->plat_data->phy_type;
1377
1378         min_tck         = emif_for_calc->plat_data->min_tck;
1379         custom_configs  = emif_for_calc->plat_data->custom_configs;
1380
1381         set_ddr_clk_period(freq);
1382
1383         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1384         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1385                         addressing);
1386         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1387                         addressing, type);
1388         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1389                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1390
1391         cl = get_cl(emif);
1392
1393         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1394                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1395                         timings, freq, cl);
1396         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1397                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1398                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1399                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1400                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1401         } else {
1402                 return -1;
1403         }
1404
1405         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1406         regs->pwr_mgmt_ctrl_shdw =
1407                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1408                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1409
1410         if (ip_rev & EMIF_4D) {
1411                 regs->read_idle_ctrl_shdw_normal =
1412                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1413
1414                 regs->read_idle_ctrl_shdw_volt_ramp =
1415                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1416         } else if (ip_rev & EMIF_4D5) {
1417                 regs->dll_calib_ctrl_shdw_normal =
1418                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1419
1420                 regs->dll_calib_ctrl_shdw_volt_ramp =
1421                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1422         }
1423
1424         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1425                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1426                         addressing);
1427
1428                 regs->sdram_tim1_shdw_derated =
1429                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1430                                 addressing);
1431
1432                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1433                         min_tck, addressing, type, ip_rev,
1434                         EMIF_DERATED_TIMINGS);
1435         }
1436
1437         regs->freq = freq;
1438
1439         return 0;
1440 }
1441
1442 /*
1443  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1444  * given frequency(freq):
1445  *
1446  * As an optimisation, every EMIF instance other than EMIF1 shares the
1447  * register cache with EMIF1 if the devices connected on this instance
1448  * are same as that on EMIF1(indicated by the duplicate flag)
1449  *
1450  * If we do not have an entry corresponding to the frequency given, we
1451  * allocate a new entry and calculate the values
1452  *
1453  * Upon finding the right reg dump, save it in curr_regs. It can be
1454  * directly used for thermal de-rating and voltage ramping changes.
1455  */
1456 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1457 {
1458         int                     i;
1459         struct emif_regs        **regs_cache;
1460         struct emif_regs        *regs = NULL;
1461         struct device           *dev;
1462
1463         dev = emif->dev;
1464         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1465                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1466                 return emif->curr_regs;
1467         }
1468
1469         if (emif->duplicate)
1470                 regs_cache = emif1->regs_cache;
1471         else
1472                 regs_cache = emif->regs_cache;
1473
1474         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1475                 if (regs_cache[i]->freq == freq) {
1476                         regs = regs_cache[i];
1477                         dev_dbg(dev,
1478                                 "%s: reg dump found in reg cache for %u Hz\n",
1479                                 __func__, freq);
1480                         break;
1481                 }
1482         }
1483
1484         /*
1485          * If we don't have an entry for this frequency in the cache create one
1486          * and calculate the values
1487          */
1488         if (!regs) {
1489                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1490                 if (!regs)
1491                         return NULL;
1492
1493                 if (get_emif_reg_values(emif, freq, regs)) {
1494                         devm_kfree(emif->dev, regs);
1495                         return NULL;
1496                 }
1497
1498                 /*
1499                  * Now look for an un-used entry in the cache and save the
1500                  * newly created struct. If there are no free entries
1501                  * over-write the last entry
1502                  */
1503                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1504                         ;
1505
1506                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1507                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1508                                 __func__);
1509                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1510                         devm_kfree(emif->dev, regs_cache[i]);
1511                 }
1512                 regs_cache[i] = regs;
1513         }
1514
1515         return regs;
1516 }
1517
1518 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1519 {
1520         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1521                 volt_state);
1522
1523         if (!emif->curr_regs) {
1524                 dev_err(emif->dev,
1525                         "%s: volt-notify before registers are ready: %d\n",
1526                         __func__, volt_state);
1527                 return;
1528         }
1529
1530         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1531 }
1532
1533 /*
1534  * TODO: voltage notify handling should be hooked up to
1535  * regulator framework as soon as the necessary support
1536  * is available in mainline kernel. This function is un-used
1537  * right now.
1538  */
1539 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1540 {
1541         struct emif_data *emif;
1542
1543         spin_lock_irqsave(&emif_lock, irq_state);
1544
1545         list_for_each_entry(emif, &device_list, node)
1546                 do_volt_notify_handling(emif, volt_state);
1547         do_freq_update();
1548
1549         spin_unlock_irqrestore(&emif_lock, irq_state);
1550 }
1551
1552 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1553 {
1554         struct emif_regs *regs;
1555
1556         regs = get_regs(emif, new_freq);
1557         if (!regs)
1558                 return;
1559
1560         emif->curr_regs = regs;
1561
1562         /*
1563          * Update the shadow registers:
1564          * Temperature and voltage-ramp sensitive settings are also configured
1565          * in terms of DDR cycles. So, we need to update them too when there
1566          * is a freq change
1567          */
1568         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1569                 __func__, new_freq);
1570         setup_registers(emif, regs);
1571         setup_temperature_sensitive_regs(emif, regs);
1572         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1573
1574         /*
1575          * Part of workaround for errata i728. See do_freq_update()
1576          * for more details
1577          */
1578         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1579                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1580 }
1581
1582 /*
1583  * TODO: frequency notify handling should be hooked up to
1584  * clock framework as soon as the necessary support is
1585  * available in mainline kernel. This function is un-used
1586  * right now.
1587  */
1588 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1589 {
1590         struct emif_data *emif;
1591
1592         /*
1593          * NOTE: we are taking the spin-lock here and releases it
1594          * only in post-notifier. This doesn't look good and
1595          * Sparse complains about it, but this seems to be
1596          * un-avoidable. We need to lock a sequence of events
1597          * that is split between EMIF and clock framework.
1598          *
1599          * 1. EMIF driver updates EMIF timings in shadow registers in the
1600          *    frequency pre-notify callback from clock framework
1601          * 2. clock framework sets up the registers for the new frequency
1602          * 3. clock framework initiates a hw-sequence that updates
1603          *    the frequency EMIF timings synchronously.
1604          *
1605          * All these 3 steps should be performed as an atomic operation
1606          * vis-a-vis similar sequence in the EMIF interrupt handler
1607          * for temperature events. Otherwise, there could be race
1608          * conditions that could result in incorrect EMIF timings for
1609          * a given frequency
1610          */
1611         spin_lock_irqsave(&emif_lock, irq_state);
1612
1613         list_for_each_entry(emif, &device_list, node)
1614                 do_freq_pre_notify_handling(emif, new_freq);
1615 }
1616
1617 static void do_freq_post_notify_handling(struct emif_data *emif)
1618 {
1619         /*
1620          * Part of workaround for errata i728. See do_freq_update()
1621          * for more details
1622          */
1623         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1624                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1625 }
1626
1627 /*
1628  * TODO: frequency notify handling should be hooked up to
1629  * clock framework as soon as the necessary support is
1630  * available in mainline kernel. This function is un-used
1631  * right now.
1632  */
1633 static void __attribute__((unused)) freq_post_notify_handling(void)
1634 {
1635         struct emif_data *emif;
1636
1637         list_for_each_entry(emif, &device_list, node)
1638                 do_freq_post_notify_handling(emif);
1639
1640         /*
1641          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1642          * for more details
1643          */
1644         spin_unlock_irqrestore(&emif_lock, irq_state);
1645 }
1646
1647 static struct platform_driver emif_driver = {
1648         .remove         = __exit_p(emif_remove),
1649         .shutdown       = emif_shutdown,
1650         .driver = {
1651                 .name = "emif",
1652         },
1653 };
1654
1655 static int __init_or_module emif_register(void)
1656 {
1657         return platform_driver_probe(&emif_driver, emif_probe);
1658 }
1659
1660 static void __exit emif_unregister(void)
1661 {
1662         platform_driver_unregister(&emif_driver);
1663 }
1664
1665 module_init(emif_register);
1666 module_exit(emif_unregister);
1667 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1668 MODULE_LICENSE("GPL");
1669 MODULE_ALIAS("platform:emif");
1670 MODULE_AUTHOR("Texas Instruments Inc");