4 * Copyright (C) 2012 Texas Instruments, Inc.
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/platform_data/emif_plat.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <memory/jedec_ddr.h>
30 * struct emif_data - Per device static data for driver's use
31 * @duplicate: Whether the DDR devices attached to this EMIF
32 * instance are exactly same as that on EMIF1. In
33 * this case we can save some memory and processing
34 * @temperature_level: Maximum temperature of LPDDR2 devices attached
35 * to this EMIF - read from MR4 register. If there
36 * are two devices attached to this EMIF, this
37 * value is the maximum of the two temperature
39 * @node: node in the device list
40 * @base: base address of memory-mapped IO registers.
41 * @dev: device pointer.
42 * @addressing table with addressing information from the spec
43 * @regs_cache: An array of 'struct emif_regs' that stores
44 * calculated register values for different
45 * frequencies, to avoid re-calculating them on
46 * each DVFS transition.
47 * @curr_regs: The set of register values used in the last
48 * frequency change (i.e. corresponding to the
49 * frequency in effect at the moment)
50 * @plat_data: Pointer to saved platform data.
51 * @debugfs_root: dentry to the root folder for EMIF in debugfs
57 struct list_head node;
58 unsigned long irq_state;
61 const struct lpddr2_addressing *addressing;
62 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
63 struct emif_regs *curr_regs;
64 struct emif_platform_data *plat_data;
65 struct dentry *debugfs_root;
68 static struct emif_data *emif1;
69 static spinlock_t emif_lock;
70 static unsigned long irq_state;
71 static u32 t_ck; /* DDR clock period in ps */
72 static LIST_HEAD(device_list);
74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75 struct emif_regs *regs)
77 u32 type = emif->plat_data->device_info->type;
78 u32 ip_rev = emif->plat_data->ip_rev;
80 seq_printf(s, "EMIF register cache dump for %dMHz\n",
83 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
88 if (ip_rev == EMIF_4D) {
89 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90 regs->read_idle_ctrl_shdw_normal);
91 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92 regs->read_idle_ctrl_shdw_volt_ramp);
93 } else if (ip_rev == EMIF_4D5) {
94 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95 regs->dll_calib_ctrl_shdw_normal);
96 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs->dll_calib_ctrl_shdw_volt_ramp);
100 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102 regs->ref_ctrl_shdw_derated);
103 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104 regs->sdram_tim1_shdw_derated);
105 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106 regs->sdram_tim3_shdw_derated);
110 static int emif_regdump_show(struct seq_file *s, void *unused)
112 struct emif_data *emif = s->private;
113 struct emif_regs **regs_cache;
117 regs_cache = emif1->regs_cache;
119 regs_cache = emif->regs_cache;
121 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122 do_emif_regdump_show(s, emif, regs_cache[i]);
129 static int emif_regdump_open(struct inode *inode, struct file *file)
131 return single_open(file, emif_regdump_show, inode->i_private);
134 static const struct file_operations emif_regdump_fops = {
135 .open = emif_regdump_open,
137 .release = single_release,
140 static int emif_mr4_show(struct seq_file *s, void *unused)
142 struct emif_data *emif = s->private;
144 seq_printf(s, "MR4=%d\n", emif->temperature_level);
148 static int emif_mr4_open(struct inode *inode, struct file *file)
150 return single_open(file, emif_mr4_show, inode->i_private);
153 static const struct file_operations emif_mr4_fops = {
154 .open = emif_mr4_open,
156 .release = single_release,
159 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
161 struct dentry *dentry;
164 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
165 if (IS_ERR(dentry)) {
166 ret = PTR_ERR(dentry);
169 emif->debugfs_root = dentry;
171 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
172 emif->debugfs_root, emif, &emif_regdump_fops);
173 if (IS_ERR(dentry)) {
174 ret = PTR_ERR(dentry);
178 dentry = debugfs_create_file("mr4", S_IRUGO,
179 emif->debugfs_root, emif, &emif_mr4_fops);
180 if (IS_ERR(dentry)) {
181 ret = PTR_ERR(dentry);
187 debugfs_remove_recursive(emif->debugfs_root);
192 static void __exit emif_debugfs_exit(struct emif_data *emif)
194 debugfs_remove_recursive(emif->debugfs_root);
195 emif->debugfs_root = NULL;
199 * Calculate the period of DDR clock from frequency value
201 static void set_ddr_clk_period(u32 freq)
203 /* Divide 10^12 by frequency to get period in ps */
204 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
208 * Get bus width used by EMIF. Note that this may be different from the
209 * bus width of the DDR devices used. For instance two 16-bit DDR devices
210 * may be connected to a given CS of EMIF. In this case bus width as far
211 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
213 static u32 get_emif_bus_width(struct emif_data *emif)
216 void __iomem *base = emif->base;
218 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
219 >> NARROW_MODE_SHIFT;
220 width = width == 0 ? 32 : 16;
226 * Get the CL from SDRAM_CONFIG register
228 static u32 get_cl(struct emif_data *emif)
231 void __iomem *base = emif->base;
233 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
238 static void set_lpmode(struct emif_data *emif, u8 lpmode)
241 void __iomem *base = emif->base;
243 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
244 temp &= ~LP_MODE_MASK;
245 temp |= (lpmode << LP_MODE_SHIFT);
246 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
249 static void do_freq_update(void)
251 struct emif_data *emif;
254 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
257 * The EMIF automatically puts the SDRAM into self-refresh mode
258 * after the EMIF has not performed accesses during
259 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
260 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
261 * to 0x2. If during a small window the following three events
263 * - The SR_TIMING counter expires
264 * - And frequency change is requested
265 * - And OCP access is requested
266 * Then it causes instable clock on the DDR interface.
269 * To avoid the occurrence of the three events, the workaround
270 * is to disable the self-refresh when requesting a frequency
271 * change. Before requesting a frequency change the software must
272 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
273 * frequency change has been done, the software can reprogram
274 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
276 list_for_each_entry(emif, &device_list, node) {
277 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
278 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
282 * TODO: Do FREQ_UPDATE here when an API
283 * is available for this as part of the new
287 list_for_each_entry(emif, &device_list, node) {
288 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
289 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
293 /* Find addressing table entry based on the device's type and density */
294 static const struct lpddr2_addressing *get_addressing_table(
295 const struct ddr_device_info *device_info)
297 u32 index, type, density;
299 type = device_info->type;
300 density = device_info->density;
303 case DDR_TYPE_LPDDR2_S4:
306 case DDR_TYPE_LPDDR2_S2:
308 case DDR_DENSITY_1Gb:
309 case DDR_DENSITY_2Gb:
320 return &lpddr2_jedec_addressing_table[index];
324 * Find the the right timing table from the array of timing
325 * tables of the device using DDR clock frequency
327 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
330 u32 i, min, max, freq_nearest;
331 const struct lpddr2_timings *timings = NULL;
332 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
333 struct device *dev = emif->dev;
335 /* Start with a very high frequency - 1GHz */
336 freq_nearest = 1000000000;
339 * Find the timings table such that:
340 * 1. the frequency range covers the required frequency(safe) AND
341 * 2. the max_freq is closest to the required frequency(optimal)
343 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
344 max = timings_arr[i].max_freq;
345 min = timings_arr[i].min_freq;
346 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
348 timings = &timings_arr[i];
353 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
356 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
357 __func__, freq, freq_nearest);
362 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
363 const struct lpddr2_addressing *addressing)
365 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
367 /* Scale down frequency and t_refi to avoid overflow */
368 freq_khz = freq / 1000;
369 t_refi = addressing->tREFI_ns / 100;
372 * refresh rate to be set is 'tREFI(in us) * freq in MHz
373 * division by 10000 to account for change in units
375 val = t_refi * freq_khz / 10000;
376 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
378 return ref_ctrl_shdw;
381 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
382 const struct lpddr2_min_tck *min_tck,
383 const struct lpddr2_addressing *addressing)
385 u32 tim1 = 0, val = 0;
387 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
388 tim1 |= val << T_WTR_SHIFT;
390 if (addressing->num_banks == B8)
391 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
393 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
394 tim1 |= (val - 1) << T_RRD_SHIFT;
396 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
397 tim1 |= val << T_RC_SHIFT;
399 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
400 tim1 |= (val - 1) << T_RAS_SHIFT;
402 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
403 tim1 |= val << T_WR_SHIFT;
405 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
406 tim1 |= val << T_RCD_SHIFT;
408 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
409 tim1 |= val << T_RP_SHIFT;
414 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
415 const struct lpddr2_min_tck *min_tck,
416 const struct lpddr2_addressing *addressing)
418 u32 tim1 = 0, val = 0;
420 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
421 tim1 = val << T_WTR_SHIFT;
424 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
425 * to tFAW for de-rating
427 if (addressing->num_banks == B8) {
428 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
430 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
431 val = max(min_tck->tRRD, val) - 1;
433 tim1 |= val << T_RRD_SHIFT;
435 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
436 tim1 |= (val - 1) << T_RC_SHIFT;
438 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
439 val = max(min_tck->tRASmin, val) - 1;
440 tim1 |= val << T_RAS_SHIFT;
442 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
443 tim1 |= val << T_WR_SHIFT;
445 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
446 tim1 |= (val - 1) << T_RCD_SHIFT;
448 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
449 tim1 |= (val - 1) << T_RP_SHIFT;
454 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
455 const struct lpddr2_min_tck *min_tck,
456 const struct lpddr2_addressing *addressing,
459 u32 tim2 = 0, val = 0;
461 val = min_tck->tCKE - 1;
462 tim2 |= val << T_CKE_SHIFT;
464 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
465 tim2 |= val << T_RTP_SHIFT;
467 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
468 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
469 tim2 |= val << T_XSNR_SHIFT;
471 /* XSRD same as XSNR for LPDDR2 */
472 tim2 |= val << T_XSRD_SHIFT;
474 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
475 tim2 |= val << T_XP_SHIFT;
480 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
481 const struct lpddr2_min_tck *min_tck,
482 const struct lpddr2_addressing *addressing,
483 u32 type, u32 ip_rev, u32 derated)
485 u32 tim3 = 0, val = 0, t_dqsck;
487 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
488 val = val > 0xF ? 0xF : val;
489 tim3 |= val << T_RAS_MAX_SHIFT;
491 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
492 tim3 |= val << T_RFC_SHIFT;
494 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
495 timings->tDQSCK_max_derated : timings->tDQSCK_max;
496 if (ip_rev == EMIF_4D5)
497 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
499 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
501 tim3 |= val << T_TDQSCKMAX_SHIFT;
503 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
504 tim3 |= val << ZQ_ZQCS_SHIFT;
506 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
507 val = max(min_tck->tCKESR, val) - 1;
508 tim3 |= val << T_CKESR_SHIFT;
510 if (ip_rev == EMIF_4D5) {
511 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
513 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
514 tim3 |= val << T_PDLL_UL_SHIFT;
520 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
521 bool cs1_used, bool cal_resistors_per_cs)
525 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
526 zq |= val << ZQ_REFINTERVAL_SHIFT;
528 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
529 zq |= val << ZQ_ZQCL_MULT_SHIFT;
531 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
532 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
534 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
536 if (cal_resistors_per_cs)
537 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
539 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
541 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
543 val = cs1_used ? 1 : 0;
544 zq |= val << ZQ_CS1EN_SHIFT;
549 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
550 const struct emif_custom_configs *custom_configs, bool cs1_used,
551 u32 sdram_io_width, u32 emif_bus_width)
553 u32 alert = 0, interval, devcnt;
555 if (custom_configs && (custom_configs->mask &
556 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
557 interval = custom_configs->temp_alert_poll_interval_ms;
559 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
561 interval *= 1000000; /* Convert to ns */
562 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
563 alert |= (interval << TA_REFINTERVAL_SHIFT);
566 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
567 * also to this form and subtract to get TA_DEVCNT, which is
570 emif_bus_width = __fls(emif_bus_width) - 1;
571 devcnt = emif_bus_width - sdram_io_width;
572 alert |= devcnt << TA_DEVCNT_SHIFT;
574 /* DEVWDT is in 'log2(x) - 3' form */
575 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
577 alert |= 1 << TA_SFEXITEN_SHIFT;
578 alert |= 1 << TA_CS0EN_SHIFT;
579 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
584 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
586 u32 idle = 0, val = 0;
589 * Maximum value in normal conditions and increased frequency
590 * when voltage is ramping
593 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
598 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
599 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
601 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
602 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
607 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
609 u32 calib = 0, val = 0;
611 if (volt_ramp == DDR_VOLTAGE_RAMPING)
612 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
614 val = 0; /* Disabled when voltage is stable */
616 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
617 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
622 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
625 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
627 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
628 phy |= val << READ_LATENCY_SHIFT_4D;
630 if (freq <= 100000000)
631 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
632 else if (freq <= 200000000)
633 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
635 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
637 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
642 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
644 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
647 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
648 * half-delay is not needed else set half-delay
650 if (freq >= 265000000 && freq < 267000000)
655 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
656 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
657 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
662 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
664 u32 fifo_we_slave_ratio;
666 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
667 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
669 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
670 fifo_we_slave_ratio << 22;
673 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
675 u32 fifo_we_slave_ratio;
677 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
678 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
680 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
681 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
684 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
686 u32 fifo_we_slave_ratio;
688 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
689 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
691 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
692 fifo_we_slave_ratio << 13;
695 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
697 u32 pwr_mgmt_ctrl = 0, timeout;
698 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
699 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
700 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
701 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
703 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
705 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
706 lpmode = cust_cfgs->lpmode;
707 timeout_perf = cust_cfgs->lpmode_timeout_performance;
708 timeout_pwr = cust_cfgs->lpmode_timeout_power;
709 freq_threshold = cust_cfgs->lpmode_freq_threshold;
712 /* Timeout based on DDR frequency */
713 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
715 /* The value to be set in register is "log2(timeout) - 3" */
719 timeout = __fls(timeout) - 3;
720 if (timeout & (timeout - 1))
725 case EMIF_LP_MODE_CLOCK_STOP:
726 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
727 SR_TIM_MASK | PD_TIM_MASK;
729 case EMIF_LP_MODE_SELF_REFRESH:
730 /* Workaround for errata i735 */
734 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
735 CS_TIM_MASK | PD_TIM_MASK;
737 case EMIF_LP_MODE_PWR_DN:
738 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
739 CS_TIM_MASK | SR_TIM_MASK;
741 case EMIF_LP_MODE_DISABLE:
743 pwr_mgmt_ctrl = CS_TIM_MASK |
744 PD_TIM_MASK | SR_TIM_MASK;
747 /* No CS_TIM in EMIF_4D5 */
748 if (ip_rev == EMIF_4D5)
749 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
751 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
753 return pwr_mgmt_ctrl;
757 * Get the temperature level of the EMIF instance:
758 * Reads the MR4 register of attached SDRAM parts to find out the temperature
759 * level. If there are two parts attached(one on each CS), then the temperature
760 * level for the EMIF instance is the higher of the two temperatures.
762 static void get_temperature_level(struct emif_data *emif)
764 u32 temp, temperature_level;
769 /* Read mode register 4 */
770 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
771 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
772 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
773 MR4_SDRAM_REF_RATE_SHIFT;
775 if (emif->plat_data->device_info->cs1_used) {
776 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
777 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
778 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
779 >> MR4_SDRAM_REF_RATE_SHIFT;
780 temperature_level = max(temp, temperature_level);
783 /* treat everything less than nominal(3) in MR4 as nominal */
784 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
785 temperature_level = SDRAM_TEMP_NOMINAL;
787 /* if we get reserved value in MR4 persist with the existing value */
788 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
789 emif->temperature_level = temperature_level;
793 * Program EMIF shadow registers that are not dependent on temperature
796 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
798 void __iomem *base = emif->base;
800 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
801 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
803 /* Settings specific for EMIF4D5 */
804 if (emif->plat_data->ip_rev != EMIF_4D5)
806 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
807 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
808 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
812 * When voltage ramps dll calibration and forced read idle should
815 static void setup_volt_sensitive_regs(struct emif_data *emif,
816 struct emif_regs *regs, u32 volt_state)
819 void __iomem *base = emif->base;
822 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
823 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
824 * is an alias of the respective read_idle_ctrl_shdw_* (members of
825 * a union). So, the below code takes care of both cases
827 if (volt_state == DDR_VOLTAGE_RAMPING)
828 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
830 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
832 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
836 * setup_temperature_sensitive_regs() - set the timings for temperature
837 * sensitive registers. This happens once at initialisation time based
838 * on the temperature at boot time and subsequently based on the temperature
839 * alert interrupt. Temperature alert can happen when the temperature
840 * increases or drops. So this function can have the effect of either
841 * derating the timings or going back to nominal values.
843 static void setup_temperature_sensitive_regs(struct emif_data *emif,
844 struct emif_regs *regs)
846 u32 tim1, tim3, ref_ctrl, type;
847 void __iomem *base = emif->base;
850 type = emif->plat_data->device_info->type;
852 tim1 = regs->sdram_tim1_shdw;
853 tim3 = regs->sdram_tim3_shdw;
854 ref_ctrl = regs->ref_ctrl_shdw;
856 /* No de-rating for non-lpddr2 devices */
857 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
860 temperature = emif->temperature_level;
861 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
862 ref_ctrl = regs->ref_ctrl_shdw_derated;
863 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
864 tim1 = regs->sdram_tim1_shdw_derated;
865 tim3 = regs->sdram_tim3_shdw_derated;
866 ref_ctrl = regs->ref_ctrl_shdw_derated;
870 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
871 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
872 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
875 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
878 irqreturn_t ret = IRQ_HANDLED;
880 spin_lock_irqsave(&emif_lock, irq_state);
881 old_temp_level = emif->temperature_level;
882 get_temperature_level(emif);
884 if (unlikely(emif->temperature_level == old_temp_level)) {
886 } else if (!emif->curr_regs) {
887 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
891 if (emif->temperature_level < old_temp_level ||
892 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
894 * Temperature coming down - defer handling to thread OR
895 * Temperature far too high - do kernel_power_off() from
898 ret = IRQ_WAKE_THREAD;
900 /* Temperature is going up - handle immediately */
901 setup_temperature_sensitive_regs(emif, emif->curr_regs);
906 spin_unlock_irqrestore(&emif_lock, irq_state);
910 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
913 struct emif_data *emif = dev_id;
914 void __iomem *base = emif->base;
915 struct device *dev = emif->dev;
916 irqreturn_t ret = IRQ_HANDLED;
918 /* Save the status and clear it */
919 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
920 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
923 * Handle temperature alert
924 * Temperature alert should be same for all ports
925 * So, it's enough to process it only for one of the ports
927 if (interrupts & TA_SYS_MASK)
928 ret = handle_temp_alert(base, emif);
930 if (interrupts & ERR_SYS_MASK)
931 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
933 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
934 /* Save the status and clear it */
935 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
936 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
938 if (interrupts & ERR_LL_MASK)
939 dev_err(dev, "Access error from LL port - %x\n",
946 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
948 struct emif_data *emif = dev_id;
950 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
951 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
956 spin_lock_irqsave(&emif_lock, irq_state);
958 if (emif->curr_regs) {
959 setup_temperature_sensitive_regs(emif, emif->curr_regs);
962 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
965 spin_unlock_irqrestore(&emif_lock, irq_state);
970 static void clear_all_interrupts(struct emif_data *emif)
972 void __iomem *base = emif->base;
974 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
975 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
976 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
977 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
978 base + EMIF_LL_OCP_INTERRUPT_STATUS);
981 static void disable_and_clear_all_interrupts(struct emif_data *emif)
983 void __iomem *base = emif->base;
985 /* Disable all interrupts */
986 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
987 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
988 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
989 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
990 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
992 /* Clear all interrupts */
993 clear_all_interrupts(emif);
996 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
998 u32 interrupts, type;
999 void __iomem *base = emif->base;
1001 type = emif->plat_data->device_info->type;
1003 clear_all_interrupts(emif);
1005 /* Enable interrupts for SYS interface */
1006 interrupts = EN_ERR_SYS_MASK;
1007 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1008 interrupts |= EN_TA_SYS_MASK;
1009 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1011 /* Enable interrupts for LL interface */
1012 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1013 /* TA need not be enabled for LL */
1014 interrupts = EN_ERR_LL_MASK;
1015 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1018 /* setup IRQ handlers */
1019 return devm_request_threaded_irq(emif->dev, irq,
1020 emif_interrupt_handler,
1022 0, dev_name(emif->dev),
1027 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1029 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1030 void __iomem *base = emif->base;
1031 const struct lpddr2_addressing *addressing;
1032 const struct ddr_device_info *device_info;
1034 device_info = emif->plat_data->device_info;
1035 addressing = get_addressing_table(device_info);
1038 * Init power management settings
1039 * We don't know the frequency yet. Use a high frequency
1040 * value for a conservative timeout setting
1042 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1043 emif->plat_data->ip_rev);
1044 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1045 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1047 /* Init ZQ calibration settings */
1048 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1049 device_info->cal_resistors_per_cs);
1050 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1052 /* Check temperature level temperature level*/
1053 get_temperature_level(emif);
1054 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1055 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1057 /* Init temperature polling */
1058 temp_alert_cfg = get_temp_alert_config(addressing,
1059 emif->plat_data->custom_configs, device_info->cs1_used,
1060 device_info->io_width, get_emif_bus_width(emif));
1061 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1064 * Program external PHY control registers that are not frequency
1067 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1069 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1070 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1071 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1072 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1073 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1074 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1075 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1076 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1077 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1078 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1079 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1080 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1081 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1082 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1083 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1084 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1085 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1086 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1087 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1088 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1089 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1092 static void get_default_timings(struct emif_data *emif)
1094 struct emif_platform_data *pd = emif->plat_data;
1096 pd->timings = lpddr2_jedec_timings;
1097 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1099 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1102 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1103 u32 ip_rev, struct device *dev)
1107 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1108 type == DDR_TYPE_LPDDR2_S2)
1109 && (density >= DDR_DENSITY_64Mb
1110 && density <= DDR_DENSITY_8Gb)
1111 && (io_width >= DDR_IO_WIDTH_8
1112 && io_width <= DDR_IO_WIDTH_32);
1114 /* Combinations of EMIF and PHY revisions that we support today */
1117 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1120 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1127 dev_err(dev, "%s: invalid DDR details\n", __func__);
1131 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1136 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1137 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1138 valid = cust_cfgs->lpmode_freq_threshold &&
1139 cust_cfgs->lpmode_timeout_performance &&
1140 cust_cfgs->lpmode_timeout_power;
1142 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1143 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1146 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1151 static struct emif_data *__init_or_module get_device_details(
1152 struct platform_device *pdev)
1155 struct emif_data *emif = NULL;
1156 struct ddr_device_info *dev_info;
1157 struct emif_custom_configs *cust_cfgs;
1158 struct emif_platform_data *pd;
1162 pd = pdev->dev.platform_data;
1165 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1166 pd->device_info->density, pd->device_info->io_width,
1167 pd->phy_type, pd->ip_rev, dev))) {
1168 dev_err(dev, "%s: invalid device data\n", __func__);
1172 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1173 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1174 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1176 if (!emif || !pd || !dev_info) {
1177 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1181 memcpy(temp, pd, sizeof(*pd));
1183 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1185 pd->device_info = dev_info;
1186 emif->plat_data = pd;
1188 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1191 * For EMIF instances other than EMIF1 see if the devices connected
1192 * are exactly same as on EMIF1(which is typically the case). If so,
1193 * mark it as a duplicate of EMIF1 and skip copying timings data.
1194 * This will save some memory and some computation later.
1196 emif->duplicate = emif1 && (memcmp(dev_info,
1197 emif1->plat_data->device_info,
1198 sizeof(struct ddr_device_info)) == 0);
1200 if (emif->duplicate) {
1205 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1210 * Copy custom configs - ignore allocation error, if any, as
1211 * custom_configs is not very critical
1213 cust_cfgs = pd->custom_configs;
1214 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1215 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1217 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1219 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1221 pd->custom_configs = temp;
1225 * Copy timings and min-tck values from platform data. If it is not
1226 * available or if memory allocation fails, use JEDEC defaults
1228 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1230 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1232 memcpy(temp, pd->timings, sizeof(*pd->timings));
1235 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1237 get_default_timings(emif);
1240 get_default_timings(emif);
1244 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1246 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1249 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1251 pd->min_tck = &lpddr2_jedec_min_tck;
1254 pd->min_tck = &lpddr2_jedec_min_tck;
1264 static int __init_or_module emif_probe(struct platform_device *pdev)
1266 struct emif_data *emif;
1267 struct resource *res;
1270 emif = get_device_details(pdev);
1272 pr_err("%s: error getting device data\n", __func__);
1276 list_add(&emif->node, &device_list);
1277 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1279 /* Save pointers to each other in emif and device structures */
1280 emif->dev = &pdev->dev;
1281 platform_set_drvdata(pdev, emif);
1283 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1285 dev_err(emif->dev, "%s: error getting memory resource\n",
1290 emif->base = devm_request_and_ioremap(emif->dev, res);
1292 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1297 irq = platform_get_irq(pdev, 0);
1299 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1304 emif_onetime_settings(emif);
1305 emif_debugfs_init(emif);
1306 disable_and_clear_all_interrupts(emif);
1307 setup_interrupts(emif, irq);
1309 /* One-time actions taken on probing the first device */
1312 spin_lock_init(&emif_lock);
1315 * TODO: register notifiers for frequency and voltage
1316 * change here once the respective frameworks are
1321 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1322 __func__, emif->base, irq);
1329 static int __exit emif_remove(struct platform_device *pdev)
1331 struct emif_data *emif = platform_get_drvdata(pdev);
1333 emif_debugfs_exit(emif);
1338 static void emif_shutdown(struct platform_device *pdev)
1340 struct emif_data *emif = platform_get_drvdata(pdev);
1342 disable_and_clear_all_interrupts(emif);
1345 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1346 struct emif_regs *regs)
1348 u32 cs1_used, ip_rev, phy_type;
1350 const struct lpddr2_timings *timings;
1351 const struct lpddr2_min_tck *min_tck;
1352 const struct ddr_device_info *device_info;
1353 const struct lpddr2_addressing *addressing;
1354 struct emif_data *emif_for_calc;
1356 const struct emif_custom_configs *custom_configs;
1360 * If the devices on this EMIF instance is duplicate of EMIF1,
1361 * use EMIF1 details for the calculation
1363 emif_for_calc = emif->duplicate ? emif1 : emif;
1364 timings = get_timings_table(emif_for_calc, freq);
1365 addressing = emif_for_calc->addressing;
1366 if (!timings || !addressing) {
1367 dev_err(dev, "%s: not enough data available for %dHz",
1372 device_info = emif_for_calc->plat_data->device_info;
1373 type = device_info->type;
1374 cs1_used = device_info->cs1_used;
1375 ip_rev = emif_for_calc->plat_data->ip_rev;
1376 phy_type = emif_for_calc->plat_data->phy_type;
1378 min_tck = emif_for_calc->plat_data->min_tck;
1379 custom_configs = emif_for_calc->plat_data->custom_configs;
1381 set_ddr_clk_period(freq);
1383 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1384 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1386 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1388 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1389 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1393 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1394 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1396 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1397 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1398 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1399 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1400 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1405 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1406 regs->pwr_mgmt_ctrl_shdw =
1407 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1408 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1410 if (ip_rev & EMIF_4D) {
1411 regs->read_idle_ctrl_shdw_normal =
1412 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1414 regs->read_idle_ctrl_shdw_volt_ramp =
1415 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1416 } else if (ip_rev & EMIF_4D5) {
1417 regs->dll_calib_ctrl_shdw_normal =
1418 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1420 regs->dll_calib_ctrl_shdw_volt_ramp =
1421 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1424 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1425 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1428 regs->sdram_tim1_shdw_derated =
1429 get_sdram_tim_1_shdw_derated(timings, min_tck,
1432 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1433 min_tck, addressing, type, ip_rev,
1434 EMIF_DERATED_TIMINGS);
1443 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1444 * given frequency(freq):
1446 * As an optimisation, every EMIF instance other than EMIF1 shares the
1447 * register cache with EMIF1 if the devices connected on this instance
1448 * are same as that on EMIF1(indicated by the duplicate flag)
1450 * If we do not have an entry corresponding to the frequency given, we
1451 * allocate a new entry and calculate the values
1453 * Upon finding the right reg dump, save it in curr_regs. It can be
1454 * directly used for thermal de-rating and voltage ramping changes.
1456 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1459 struct emif_regs **regs_cache;
1460 struct emif_regs *regs = NULL;
1464 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1465 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1466 return emif->curr_regs;
1469 if (emif->duplicate)
1470 regs_cache = emif1->regs_cache;
1472 regs_cache = emif->regs_cache;
1474 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1475 if (regs_cache[i]->freq == freq) {
1476 regs = regs_cache[i];
1478 "%s: reg dump found in reg cache for %u Hz\n",
1485 * If we don't have an entry for this frequency in the cache create one
1486 * and calculate the values
1489 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1493 if (get_emif_reg_values(emif, freq, regs)) {
1494 devm_kfree(emif->dev, regs);
1499 * Now look for an un-used entry in the cache and save the
1500 * newly created struct. If there are no free entries
1501 * over-write the last entry
1503 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1506 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1507 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1509 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1510 devm_kfree(emif->dev, regs_cache[i]);
1512 regs_cache[i] = regs;
1518 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1520 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1523 if (!emif->curr_regs) {
1525 "%s: volt-notify before registers are ready: %d\n",
1526 __func__, volt_state);
1530 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1534 * TODO: voltage notify handling should be hooked up to
1535 * regulator framework as soon as the necessary support
1536 * is available in mainline kernel. This function is un-used
1539 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1541 struct emif_data *emif;
1543 spin_lock_irqsave(&emif_lock, irq_state);
1545 list_for_each_entry(emif, &device_list, node)
1546 do_volt_notify_handling(emif, volt_state);
1549 spin_unlock_irqrestore(&emif_lock, irq_state);
1552 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1554 struct emif_regs *regs;
1556 regs = get_regs(emif, new_freq);
1560 emif->curr_regs = regs;
1563 * Update the shadow registers:
1564 * Temperature and voltage-ramp sensitive settings are also configured
1565 * in terms of DDR cycles. So, we need to update them too when there
1568 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1569 __func__, new_freq);
1570 setup_registers(emif, regs);
1571 setup_temperature_sensitive_regs(emif, regs);
1572 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1575 * Part of workaround for errata i728. See do_freq_update()
1578 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1579 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1583 * TODO: frequency notify handling should be hooked up to
1584 * clock framework as soon as the necessary support is
1585 * available in mainline kernel. This function is un-used
1588 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1590 struct emif_data *emif;
1593 * NOTE: we are taking the spin-lock here and releases it
1594 * only in post-notifier. This doesn't look good and
1595 * Sparse complains about it, but this seems to be
1596 * un-avoidable. We need to lock a sequence of events
1597 * that is split between EMIF and clock framework.
1599 * 1. EMIF driver updates EMIF timings in shadow registers in the
1600 * frequency pre-notify callback from clock framework
1601 * 2. clock framework sets up the registers for the new frequency
1602 * 3. clock framework initiates a hw-sequence that updates
1603 * the frequency EMIF timings synchronously.
1605 * All these 3 steps should be performed as an atomic operation
1606 * vis-a-vis similar sequence in the EMIF interrupt handler
1607 * for temperature events. Otherwise, there could be race
1608 * conditions that could result in incorrect EMIF timings for
1611 spin_lock_irqsave(&emif_lock, irq_state);
1613 list_for_each_entry(emif, &device_list, node)
1614 do_freq_pre_notify_handling(emif, new_freq);
1617 static void do_freq_post_notify_handling(struct emif_data *emif)
1620 * Part of workaround for errata i728. See do_freq_update()
1623 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1624 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1628 * TODO: frequency notify handling should be hooked up to
1629 * clock framework as soon as the necessary support is
1630 * available in mainline kernel. This function is un-used
1633 static void __attribute__((unused)) freq_post_notify_handling(void)
1635 struct emif_data *emif;
1637 list_for_each_entry(emif, &device_list, node)
1638 do_freq_post_notify_handling(emif);
1641 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1644 spin_unlock_irqrestore(&emif_lock, irq_state);
1647 static struct platform_driver emif_driver = {
1648 .remove = __exit_p(emif_remove),
1649 .shutdown = emif_shutdown,
1655 static int __init_or_module emif_register(void)
1657 return platform_driver_probe(&emif_driver, emif_probe);
1660 static void __exit emif_unregister(void)
1662 platform_driver_unregister(&emif_driver);
1665 module_init(emif_register);
1666 module_exit(emif_unregister);
1667 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1668 MODULE_LICENSE("GPL");
1669 MODULE_ALIAS("platform:emif");
1670 MODULE_AUTHOR("Texas Instruments Inc");