96add5b9ce5d39bb7a5b12b39b9678483fa94edd
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / memory / emif.c
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <aneesh@ti.com>
7  * Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
17 #include <linux/io.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <memory/jedec_ddr.h>
29 #include "emif.h"
30 #include "of_memory.h"
31
32 /**
33  * struct emif_data - Per device static data for driver's use
34  * @duplicate:                  Whether the DDR devices attached to this EMIF
35  *                              instance are exactly same as that on EMIF1. In
36  *                              this case we can save some memory and processing
37  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
38  *                              to this EMIF - read from MR4 register. If there
39  *                              are two devices attached to this EMIF, this
40  *                              value is the maximum of the two temperature
41  *                              levels.
42  * @node:                       node in the device list
43  * @base:                       base address of memory-mapped IO registers.
44  * @dev:                        device pointer.
45  * @addressing                  table with addressing information from the spec
46  * @regs_cache:                 An array of 'struct emif_regs' that stores
47  *                              calculated register values for different
48  *                              frequencies, to avoid re-calculating them on
49  *                              each DVFS transition.
50  * @curr_regs:                  The set of register values used in the last
51  *                              frequency change (i.e. corresponding to the
52  *                              frequency in effect at the moment)
53  * @plat_data:                  Pointer to saved platform data.
54  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
55  * @np_ddr:                     Pointer to ddr device tree node
56  */
57 struct emif_data {
58         u8                              duplicate;
59         u8                              temperature_level;
60         u8                              lpmode;
61         struct list_head                node;
62         unsigned long                   irq_state;
63         void __iomem                    *base;
64         struct device                   *dev;
65         const struct lpddr2_addressing  *addressing;
66         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
67         struct emif_regs                *curr_regs;
68         struct emif_platform_data       *plat_data;
69         struct dentry                   *debugfs_root;
70         struct device_node              *np_ddr;
71 };
72
73 static struct emif_data *emif1;
74 static spinlock_t       emif_lock;
75 static unsigned long    irq_state;
76 static u32              t_ck; /* DDR clock period in ps */
77 static LIST_HEAD(device_list);
78
79 #ifdef CONFIG_DEBUG_FS
80 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
81         struct emif_regs *regs)
82 {
83         u32 type = emif->plat_data->device_info->type;
84         u32 ip_rev = emif->plat_data->ip_rev;
85
86         seq_printf(s, "EMIF register cache dump for %dMHz\n",
87                 regs->freq/1000000);
88
89         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
90         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
91         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
92         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
93
94         if (ip_rev == EMIF_4D) {
95                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
96                         regs->read_idle_ctrl_shdw_normal);
97                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98                         regs->read_idle_ctrl_shdw_volt_ramp);
99         } else if (ip_rev == EMIF_4D5) {
100                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
101                         regs->dll_calib_ctrl_shdw_normal);
102                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
103                         regs->dll_calib_ctrl_shdw_volt_ramp);
104         }
105
106         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
107                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
108                         regs->ref_ctrl_shdw_derated);
109                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
110                         regs->sdram_tim1_shdw_derated);
111                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
112                         regs->sdram_tim3_shdw_derated);
113         }
114 }
115
116 static int emif_regdump_show(struct seq_file *s, void *unused)
117 {
118         struct emif_data        *emif   = s->private;
119         struct emif_regs        **regs_cache;
120         int                     i;
121
122         if (emif->duplicate)
123                 regs_cache = emif1->regs_cache;
124         else
125                 regs_cache = emif->regs_cache;
126
127         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
128                 do_emif_regdump_show(s, emif, regs_cache[i]);
129                 seq_printf(s, "\n");
130         }
131
132         return 0;
133 }
134
135 static int emif_regdump_open(struct inode *inode, struct file *file)
136 {
137         return single_open(file, emif_regdump_show, inode->i_private);
138 }
139
140 static const struct file_operations emif_regdump_fops = {
141         .open                   = emif_regdump_open,
142         .read                   = seq_read,
143         .release                = single_release,
144 };
145
146 static int emif_mr4_show(struct seq_file *s, void *unused)
147 {
148         struct emif_data *emif = s->private;
149
150         seq_printf(s, "MR4=%d\n", emif->temperature_level);
151         return 0;
152 }
153
154 static int emif_mr4_open(struct inode *inode, struct file *file)
155 {
156         return single_open(file, emif_mr4_show, inode->i_private);
157 }
158
159 static const struct file_operations emif_mr4_fops = {
160         .open                   = emif_mr4_open,
161         .read                   = seq_read,
162         .release                = single_release,
163 };
164
165 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
166 {
167         struct dentry   *dentry;
168         int             ret;
169
170         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
171         if (!dentry) {
172                 ret = -ENOMEM;
173                 goto err0;
174         }
175         emif->debugfs_root = dentry;
176
177         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
178                         emif->debugfs_root, emif, &emif_regdump_fops);
179         if (!dentry) {
180                 ret = -ENOMEM;
181                 goto err1;
182         }
183
184         dentry = debugfs_create_file("mr4", S_IRUGO,
185                         emif->debugfs_root, emif, &emif_mr4_fops);
186         if (!dentry) {
187                 ret = -ENOMEM;
188                 goto err1;
189         }
190
191         return 0;
192 err1:
193         debugfs_remove_recursive(emif->debugfs_root);
194 err0:
195         return ret;
196 }
197
198 static void __exit emif_debugfs_exit(struct emif_data *emif)
199 {
200         debugfs_remove_recursive(emif->debugfs_root);
201         emif->debugfs_root = NULL;
202 }
203 #else
204 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
205 {
206         return 0;
207 }
208
209 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
210 {
211 }
212 #endif
213
214 /*
215  * Calculate the period of DDR clock from frequency value
216  */
217 static void set_ddr_clk_period(u32 freq)
218 {
219         /* Divide 10^12 by frequency to get period in ps */
220         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
221 }
222
223 /*
224  * Get bus width used by EMIF. Note that this may be different from the
225  * bus width of the DDR devices used. For instance two 16-bit DDR devices
226  * may be connected to a given CS of EMIF. In this case bus width as far
227  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
228  */
229 static u32 get_emif_bus_width(struct emif_data *emif)
230 {
231         u32             width;
232         void __iomem    *base = emif->base;
233
234         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
235                         >> NARROW_MODE_SHIFT;
236         width = width == 0 ? 32 : 16;
237
238         return width;
239 }
240
241 /*
242  * Get the CL from SDRAM_CONFIG register
243  */
244 static u32 get_cl(struct emif_data *emif)
245 {
246         u32             cl;
247         void __iomem    *base = emif->base;
248
249         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
250
251         return cl;
252 }
253
254 static void set_lpmode(struct emif_data *emif, u8 lpmode)
255 {
256         u32 temp;
257         void __iomem *base = emif->base;
258
259         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
260         temp &= ~LP_MODE_MASK;
261         temp |= (lpmode << LP_MODE_SHIFT);
262         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
263 }
264
265 static void do_freq_update(void)
266 {
267         struct emif_data *emif;
268
269         /*
270          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
271          *
272          * i728 DESCRIPTION:
273          * The EMIF automatically puts the SDRAM into self-refresh mode
274          * after the EMIF has not performed accesses during
275          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
276          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
277          * to 0x2. If during a small window the following three events
278          * occur:
279          * - The SR_TIMING counter expires
280          * - And frequency change is requested
281          * - And OCP access is requested
282          * Then it causes instable clock on the DDR interface.
283          *
284          * WORKAROUND
285          * To avoid the occurrence of the three events, the workaround
286          * is to disable the self-refresh when requesting a frequency
287          * change. Before requesting a frequency change the software must
288          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
289          * frequency change has been done, the software can reprogram
290          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
291          */
292         list_for_each_entry(emif, &device_list, node) {
293                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
294                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
295         }
296
297         /*
298          * TODO: Do FREQ_UPDATE here when an API
299          * is available for this as part of the new
300          * clock framework
301          */
302
303         list_for_each_entry(emif, &device_list, node) {
304                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
305                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
306         }
307 }
308
309 /* Find addressing table entry based on the device's type and density */
310 static const struct lpddr2_addressing *get_addressing_table(
311         const struct ddr_device_info *device_info)
312 {
313         u32             index, type, density;
314
315         type = device_info->type;
316         density = device_info->density;
317
318         switch (type) {
319         case DDR_TYPE_LPDDR2_S4:
320                 index = density - 1;
321                 break;
322         case DDR_TYPE_LPDDR2_S2:
323                 switch (density) {
324                 case DDR_DENSITY_1Gb:
325                 case DDR_DENSITY_2Gb:
326                         index = density + 3;
327                         break;
328                 default:
329                         index = density - 1;
330                 }
331                 break;
332         default:
333                 return NULL;
334         }
335
336         return &lpddr2_jedec_addressing_table[index];
337 }
338
339 /*
340  * Find the the right timing table from the array of timing
341  * tables of the device using DDR clock frequency
342  */
343 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
344                 u32 freq)
345 {
346         u32                             i, min, max, freq_nearest;
347         const struct lpddr2_timings     *timings = NULL;
348         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
349         struct                          device *dev = emif->dev;
350
351         /* Start with a very high frequency - 1GHz */
352         freq_nearest = 1000000000;
353
354         /*
355          * Find the timings table such that:
356          *  1. the frequency range covers the required frequency(safe) AND
357          *  2. the max_freq is closest to the required frequency(optimal)
358          */
359         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
360                 max = timings_arr[i].max_freq;
361                 min = timings_arr[i].min_freq;
362                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
363                         freq_nearest = max;
364                         timings = &timings_arr[i];
365                 }
366         }
367
368         if (!timings)
369                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
370                         __func__, freq);
371
372         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
373                 __func__, freq, freq_nearest);
374
375         return timings;
376 }
377
378 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
379                 const struct lpddr2_addressing *addressing)
380 {
381         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
382
383         /* Scale down frequency and t_refi to avoid overflow */
384         freq_khz = freq / 1000;
385         t_refi = addressing->tREFI_ns / 100;
386
387         /*
388          * refresh rate to be set is 'tREFI(in us) * freq in MHz
389          * division by 10000 to account for change in units
390          */
391         val = t_refi * freq_khz / 10000;
392         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
393
394         return ref_ctrl_shdw;
395 }
396
397 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
398                 const struct lpddr2_min_tck *min_tck,
399                 const struct lpddr2_addressing *addressing)
400 {
401         u32 tim1 = 0, val = 0;
402
403         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
404         tim1 |= val << T_WTR_SHIFT;
405
406         if (addressing->num_banks == B8)
407                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
408         else
409                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
410         tim1 |= (val - 1) << T_RRD_SHIFT;
411
412         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
413         tim1 |= val << T_RC_SHIFT;
414
415         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
416         tim1 |= (val - 1) << T_RAS_SHIFT;
417
418         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
419         tim1 |= val << T_WR_SHIFT;
420
421         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
422         tim1 |= val << T_RCD_SHIFT;
423
424         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
425         tim1 |= val << T_RP_SHIFT;
426
427         return tim1;
428 }
429
430 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
431                 const struct lpddr2_min_tck *min_tck,
432                 const struct lpddr2_addressing *addressing)
433 {
434         u32 tim1 = 0, val = 0;
435
436         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437         tim1 = val << T_WTR_SHIFT;
438
439         /*
440          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
441          * to tFAW for de-rating
442          */
443         if (addressing->num_banks == B8) {
444                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
445         } else {
446                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
447                 val = max(min_tck->tRRD, val) - 1;
448         }
449         tim1 |= val << T_RRD_SHIFT;
450
451         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
452         tim1 |= (val - 1) << T_RC_SHIFT;
453
454         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
455         val = max(min_tck->tRASmin, val) - 1;
456         tim1 |= val << T_RAS_SHIFT;
457
458         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
459         tim1 |= val << T_WR_SHIFT;
460
461         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
462         tim1 |= (val - 1) << T_RCD_SHIFT;
463
464         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
465         tim1 |= (val - 1) << T_RP_SHIFT;
466
467         return tim1;
468 }
469
470 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
471                 const struct lpddr2_min_tck *min_tck,
472                 const struct lpddr2_addressing *addressing,
473                 u32 type)
474 {
475         u32 tim2 = 0, val = 0;
476
477         val = min_tck->tCKE - 1;
478         tim2 |= val << T_CKE_SHIFT;
479
480         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
481         tim2 |= val << T_RTP_SHIFT;
482
483         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
484         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
485         tim2 |= val << T_XSNR_SHIFT;
486
487         /* XSRD same as XSNR for LPDDR2 */
488         tim2 |= val << T_XSRD_SHIFT;
489
490         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
491         tim2 |= val << T_XP_SHIFT;
492
493         return tim2;
494 }
495
496 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
497                 const struct lpddr2_min_tck *min_tck,
498                 const struct lpddr2_addressing *addressing,
499                 u32 type, u32 ip_rev, u32 derated)
500 {
501         u32 tim3 = 0, val = 0, t_dqsck;
502
503         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
504         val = val > 0xF ? 0xF : val;
505         tim3 |= val << T_RAS_MAX_SHIFT;
506
507         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
508         tim3 |= val << T_RFC_SHIFT;
509
510         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
511                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
512         if (ip_rev == EMIF_4D5)
513                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
514         else
515                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
516
517         tim3 |= val << T_TDQSCKMAX_SHIFT;
518
519         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
520         tim3 |= val << ZQ_ZQCS_SHIFT;
521
522         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
523         val = max(min_tck->tCKESR, val) - 1;
524         tim3 |= val << T_CKESR_SHIFT;
525
526         if (ip_rev == EMIF_4D5) {
527                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
528
529                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
530                 tim3 |= val << T_PDLL_UL_SHIFT;
531         }
532
533         return tim3;
534 }
535
536 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
537                 bool cs1_used, bool cal_resistors_per_cs)
538 {
539         u32 zq = 0, val = 0;
540
541         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
542         zq |= val << ZQ_REFINTERVAL_SHIFT;
543
544         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
545         zq |= val << ZQ_ZQCL_MULT_SHIFT;
546
547         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
548         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
549
550         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
551
552         if (cal_resistors_per_cs)
553                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
554         else
555                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
556
557         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
558
559         val = cs1_used ? 1 : 0;
560         zq |= val << ZQ_CS1EN_SHIFT;
561
562         return zq;
563 }
564
565 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
566                 const struct emif_custom_configs *custom_configs, bool cs1_used,
567                 u32 sdram_io_width, u32 emif_bus_width)
568 {
569         u32 alert = 0, interval, devcnt;
570
571         if (custom_configs && (custom_configs->mask &
572                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
573                 interval = custom_configs->temp_alert_poll_interval_ms;
574         else
575                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
576
577         interval *= 1000000;                    /* Convert to ns */
578         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
579         alert |= (interval << TA_REFINTERVAL_SHIFT);
580
581         /*
582          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
583          * also to this form and subtract to get TA_DEVCNT, which is
584          * in log2(x) form.
585          */
586         emif_bus_width = __fls(emif_bus_width) - 1;
587         devcnt = emif_bus_width - sdram_io_width;
588         alert |= devcnt << TA_DEVCNT_SHIFT;
589
590         /* DEVWDT is in 'log2(x) - 3' form */
591         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
592
593         alert |= 1 << TA_SFEXITEN_SHIFT;
594         alert |= 1 << TA_CS0EN_SHIFT;
595         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
596
597         return alert;
598 }
599
600 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
601 {
602         u32 idle = 0, val = 0;
603
604         /*
605          * Maximum value in normal conditions and increased frequency
606          * when voltage is ramping
607          */
608         if (volt_ramp)
609                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
610         else
611                 val = 0x1FF;
612
613         /*
614          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
615          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
616          */
617         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
618         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
619
620         return idle;
621 }
622
623 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
624 {
625         u32 calib = 0, val = 0;
626
627         if (volt_ramp == DDR_VOLTAGE_RAMPING)
628                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
629         else
630                 val = 0; /* Disabled when voltage is stable */
631
632         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
633         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
634
635         return calib;
636 }
637
638 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
639         u32 freq, u8 RL)
640 {
641         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
642
643         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
644         phy |= val << READ_LATENCY_SHIFT_4D;
645
646         if (freq <= 100000000)
647                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
648         else if (freq <= 200000000)
649                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
650         else
651                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
652
653         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
654
655         return phy;
656 }
657
658 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
659 {
660         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
661
662         /*
663          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
664          * half-delay is not needed else set half-delay
665          */
666         if (freq >= 265000000 && freq < 267000000)
667                 half_delay = 0;
668         else
669                 half_delay = 1;
670
671         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
672         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
673                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
674
675         return phy;
676 }
677
678 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
679 {
680         u32 fifo_we_slave_ratio;
681
682         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
683                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
684
685         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
686                 fifo_we_slave_ratio << 22;
687 }
688
689 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
690 {
691         u32 fifo_we_slave_ratio;
692
693         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
694                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
695
696         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
697                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
698 }
699
700 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
701 {
702         u32 fifo_we_slave_ratio;
703
704         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
705                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
706
707         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
708                 fifo_we_slave_ratio << 13;
709 }
710
711 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
712 {
713         u32 pwr_mgmt_ctrl       = 0, timeout;
714         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
715         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
716         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
717         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
718         u32 mask;
719         u8 shift;
720
721         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
722
723         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
724                 lpmode          = cust_cfgs->lpmode;
725                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
726                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
727                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
728         }
729
730         /* Timeout based on DDR frequency */
731         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
732
733         /*
734          * The value to be set in register is "log2(timeout) - 3"
735          * if timeout < 16 load 0 in register
736          * if timeout is not a power of 2, round to next highest power of 2
737          */
738         if (timeout < 16) {
739                 timeout = 0;
740         } else {
741                 if (timeout & (timeout - 1))
742                         timeout <<= 1;
743                 timeout = __fls(timeout) - 3;
744         }
745
746         switch (lpmode) {
747         case EMIF_LP_MODE_CLOCK_STOP:
748                 shift = CS_TIM_SHIFT;
749                 mask = CS_TIM_MASK;
750                 break;
751         case EMIF_LP_MODE_SELF_REFRESH:
752                 /* Workaround for errata i735 */
753                 if (timeout < 6)
754                         timeout = 6;
755
756                 shift = SR_TIM_SHIFT;
757                 mask = SR_TIM_MASK;
758                 break;
759         case EMIF_LP_MODE_PWR_DN:
760                 shift = PD_TIM_SHIFT;
761                 mask = PD_TIM_MASK;
762                 break;
763         case EMIF_LP_MODE_DISABLE:
764         default:
765                 mask = 0;
766                 shift = 0;
767                 break;
768         }
769         /* Round to maximum in case of overflow, BUT warn! */
770         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
771                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
772                        lpmode,
773                        timeout_perf,
774                        timeout_pwr,
775                        freq_threshold);
776                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
777                      timeout, mask >> shift);
778                 timeout = mask >> shift;
779         }
780
781         /* Setup required timing */
782         pwr_mgmt_ctrl = (timeout << shift) & mask;
783         /* setup a default mask for rest of the modes */
784         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
785                           ~mask;
786
787         /* No CS_TIM in EMIF_4D5 */
788         if (ip_rev == EMIF_4D5)
789                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
790
791         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
792
793         return pwr_mgmt_ctrl;
794 }
795
796 /*
797  * Get the temperature level of the EMIF instance:
798  * Reads the MR4 register of attached SDRAM parts to find out the temperature
799  * level. If there are two parts attached(one on each CS), then the temperature
800  * level for the EMIF instance is the higher of the two temperatures.
801  */
802 static void get_temperature_level(struct emif_data *emif)
803 {
804         u32             temp, temperature_level;
805         void __iomem    *base;
806
807         base = emif->base;
808
809         /* Read mode register 4 */
810         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
811         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
812         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
813                                 MR4_SDRAM_REF_RATE_SHIFT;
814
815         if (emif->plat_data->device_info->cs1_used) {
816                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
817                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
818                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
819                                 >> MR4_SDRAM_REF_RATE_SHIFT;
820                 temperature_level = max(temp, temperature_level);
821         }
822
823         /* treat everything less than nominal(3) in MR4 as nominal */
824         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
825                 temperature_level = SDRAM_TEMP_NOMINAL;
826
827         /* if we get reserved value in MR4 persist with the existing value */
828         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
829                 emif->temperature_level = temperature_level;
830 }
831
832 /*
833  * Program EMIF shadow registers that are not dependent on temperature
834  * or voltage
835  */
836 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
837 {
838         void __iomem    *base = emif->base;
839
840         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
841         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
842         writel(regs->pwr_mgmt_ctrl_shdw,
843                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
844
845         /* Settings specific for EMIF4D5 */
846         if (emif->plat_data->ip_rev != EMIF_4D5)
847                 return;
848         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
849         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
850         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
851 }
852
853 /*
854  * When voltage ramps dll calibration and forced read idle should
855  * happen more often
856  */
857 static void setup_volt_sensitive_regs(struct emif_data *emif,
858                 struct emif_regs *regs, u32 volt_state)
859 {
860         u32             calib_ctrl;
861         void __iomem    *base = emif->base;
862
863         /*
864          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
865          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
866          * is an alias of the respective read_idle_ctrl_shdw_* (members of
867          * a union). So, the below code takes care of both cases
868          */
869         if (volt_state == DDR_VOLTAGE_RAMPING)
870                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
871         else
872                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
873
874         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
875 }
876
877 /*
878  * setup_temperature_sensitive_regs() - set the timings for temperature
879  * sensitive registers. This happens once at initialisation time based
880  * on the temperature at boot time and subsequently based on the temperature
881  * alert interrupt. Temperature alert can happen when the temperature
882  * increases or drops. So this function can have the effect of either
883  * derating the timings or going back to nominal values.
884  */
885 static void setup_temperature_sensitive_regs(struct emif_data *emif,
886                 struct emif_regs *regs)
887 {
888         u32             tim1, tim3, ref_ctrl, type;
889         void __iomem    *base = emif->base;
890         u32             temperature;
891
892         type = emif->plat_data->device_info->type;
893
894         tim1 = regs->sdram_tim1_shdw;
895         tim3 = regs->sdram_tim3_shdw;
896         ref_ctrl = regs->ref_ctrl_shdw;
897
898         /* No de-rating for non-lpddr2 devices */
899         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
900                 goto out;
901
902         temperature = emif->temperature_level;
903         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
904                 ref_ctrl = regs->ref_ctrl_shdw_derated;
905         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
906                 tim1 = regs->sdram_tim1_shdw_derated;
907                 tim3 = regs->sdram_tim3_shdw_derated;
908                 ref_ctrl = regs->ref_ctrl_shdw_derated;
909         }
910
911 out:
912         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
913         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
914         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
915 }
916
917 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
918 {
919         u32             old_temp_level;
920         irqreturn_t     ret = IRQ_HANDLED;
921         struct emif_custom_configs *custom_configs;
922
923         spin_lock_irqsave(&emif_lock, irq_state);
924         old_temp_level = emif->temperature_level;
925         get_temperature_level(emif);
926
927         if (unlikely(emif->temperature_level == old_temp_level)) {
928                 goto out;
929         } else if (!emif->curr_regs) {
930                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
931                 goto out;
932         }
933
934         custom_configs = emif->plat_data->custom_configs;
935
936         /*
937          * IF we detect higher than "nominal rating" from DDR sensor
938          * on an unsupported DDR part, shutdown system
939          */
940         if (custom_configs && !(custom_configs->mask &
941                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
942                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
943                         dev_err(emif->dev,
944                                 "%s:NOT Extended temperature capable memory."
945                                 "Converting MR4=0x%02x as shutdown event\n",
946                                 __func__, emif->temperature_level);
947                         /*
948                          * Temperature far too high - do kernel_power_off()
949                          * from thread context
950                          */
951                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
952                         ret = IRQ_WAKE_THREAD;
953                         goto out;
954                 }
955         }
956
957         if (emif->temperature_level < old_temp_level ||
958                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
959                 /*
960                  * Temperature coming down - defer handling to thread OR
961                  * Temperature far too high - do kernel_power_off() from
962                  * thread context
963                  */
964                 ret = IRQ_WAKE_THREAD;
965         } else {
966                 /* Temperature is going up - handle immediately */
967                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
968                 do_freq_update();
969         }
970
971 out:
972         spin_unlock_irqrestore(&emif_lock, irq_state);
973         return ret;
974 }
975
976 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
977 {
978         u32                     interrupts;
979         struct emif_data        *emif = dev_id;
980         void __iomem            *base = emif->base;
981         struct device           *dev = emif->dev;
982         irqreturn_t             ret = IRQ_HANDLED;
983
984         /* Save the status and clear it */
985         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
986         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
987
988         /*
989          * Handle temperature alert
990          * Temperature alert should be same for all ports
991          * So, it's enough to process it only for one of the ports
992          */
993         if (interrupts & TA_SYS_MASK)
994                 ret = handle_temp_alert(base, emif);
995
996         if (interrupts & ERR_SYS_MASK)
997                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
998
999         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1000                 /* Save the status and clear it */
1001                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1002                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1003
1004                 if (interrupts & ERR_LL_MASK)
1005                         dev_err(dev, "Access error from LL port - %x\n",
1006                                 interrupts);
1007         }
1008
1009         return ret;
1010 }
1011
1012 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1013 {
1014         struct emif_data        *emif = dev_id;
1015
1016         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1017                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1018                 kernel_power_off();
1019                 return IRQ_HANDLED;
1020         }
1021
1022         spin_lock_irqsave(&emif_lock, irq_state);
1023
1024         if (emif->curr_regs) {
1025                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1026                 do_freq_update();
1027         } else {
1028                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1029         }
1030
1031         spin_unlock_irqrestore(&emif_lock, irq_state);
1032
1033         return IRQ_HANDLED;
1034 }
1035
1036 static void clear_all_interrupts(struct emif_data *emif)
1037 {
1038         void __iomem    *base = emif->base;
1039
1040         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1041                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1042         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1043                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1044                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1045 }
1046
1047 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1048 {
1049         void __iomem            *base = emif->base;
1050
1051         /* Disable all interrupts */
1052         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1053                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1054         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1055                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1056                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1057
1058         /* Clear all interrupts */
1059         clear_all_interrupts(emif);
1060 }
1061
1062 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1063 {
1064         u32             interrupts, type;
1065         void __iomem    *base = emif->base;
1066
1067         type = emif->plat_data->device_info->type;
1068
1069         clear_all_interrupts(emif);
1070
1071         /* Enable interrupts for SYS interface */
1072         interrupts = EN_ERR_SYS_MASK;
1073         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1074                 interrupts |= EN_TA_SYS_MASK;
1075         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1076
1077         /* Enable interrupts for LL interface */
1078         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1079                 /* TA need not be enabled for LL */
1080                 interrupts = EN_ERR_LL_MASK;
1081                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1082         }
1083
1084         /* setup IRQ handlers */
1085         return devm_request_threaded_irq(emif->dev, irq,
1086                                     emif_interrupt_handler,
1087                                     emif_threaded_isr,
1088                                     0, dev_name(emif->dev),
1089                                     emif);
1090
1091 }
1092
1093 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1094 {
1095         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1096         void __iomem                    *base = emif->base;
1097         const struct lpddr2_addressing  *addressing;
1098         const struct ddr_device_info    *device_info;
1099
1100         device_info = emif->plat_data->device_info;
1101         addressing = get_addressing_table(device_info);
1102
1103         /*
1104          * Init power management settings
1105          * We don't know the frequency yet. Use a high frequency
1106          * value for a conservative timeout setting
1107          */
1108         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1109                         emif->plat_data->ip_rev);
1110         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1111         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1112
1113         /* Init ZQ calibration settings */
1114         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1115                 device_info->cal_resistors_per_cs);
1116         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1117
1118         /* Check temperature level temperature level*/
1119         get_temperature_level(emif);
1120         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1121                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1122
1123         /* Init temperature polling */
1124         temp_alert_cfg = get_temp_alert_config(addressing,
1125                 emif->plat_data->custom_configs, device_info->cs1_used,
1126                 device_info->io_width, get_emif_bus_width(emif));
1127         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1128
1129         /*
1130          * Program external PHY control registers that are not frequency
1131          * dependent
1132          */
1133         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1134                 return;
1135         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1136         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1137         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1138         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1139         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1140         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1141         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1142         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1143         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1144         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1145         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1146         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1147         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1148         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1149         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1150         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1151         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1152         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1153         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1154         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1155         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1156 }
1157
1158 static void get_default_timings(struct emif_data *emif)
1159 {
1160         struct emif_platform_data *pd = emif->plat_data;
1161
1162         pd->timings             = lpddr2_jedec_timings;
1163         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1164
1165         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1166 }
1167
1168 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1169                 u32 ip_rev, struct device *dev)
1170 {
1171         int valid;
1172
1173         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1174                         type == DDR_TYPE_LPDDR2_S2)
1175                 && (density >= DDR_DENSITY_64Mb
1176                         && density <= DDR_DENSITY_8Gb)
1177                 && (io_width >= DDR_IO_WIDTH_8
1178                         && io_width <= DDR_IO_WIDTH_32);
1179
1180         /* Combinations of EMIF and PHY revisions that we support today */
1181         switch (ip_rev) {
1182         case EMIF_4D:
1183                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1184                 break;
1185         case EMIF_4D5:
1186                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1187                 break;
1188         default:
1189                 valid = 0;
1190         }
1191
1192         if (!valid)
1193                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1194         return valid;
1195 }
1196
1197 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1198                 struct device *dev)
1199 {
1200         int valid = 1;
1201
1202         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1203                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1204                 valid = cust_cfgs->lpmode_freq_threshold &&
1205                         cust_cfgs->lpmode_timeout_performance &&
1206                         cust_cfgs->lpmode_timeout_power;
1207
1208         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1209                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1210
1211         if (!valid)
1212                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1213
1214         return valid;
1215 }
1216
1217 #if defined(CONFIG_OF)
1218 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1219                 struct emif_data *emif)
1220 {
1221         struct emif_custom_configs      *cust_cfgs = NULL;
1222         int                             len;
1223         const int                       *lpmode, *poll_intvl;
1224
1225         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1226         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1227
1228         if (lpmode || poll_intvl)
1229                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1230                         GFP_KERNEL);
1231
1232         if (!cust_cfgs)
1233                 return;
1234
1235         if (lpmode) {
1236                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1237                 cust_cfgs->lpmode = *lpmode;
1238                 of_property_read_u32(np_emif,
1239                                 "low-power-mode-timeout-performance",
1240                                 &cust_cfgs->lpmode_timeout_performance);
1241                 of_property_read_u32(np_emif,
1242                                 "low-power-mode-timeout-power",
1243                                 &cust_cfgs->lpmode_timeout_power);
1244                 of_property_read_u32(np_emif,
1245                                 "low-power-mode-freq-threshold",
1246                                 &cust_cfgs->lpmode_freq_threshold);
1247         }
1248
1249         if (poll_intvl) {
1250                 cust_cfgs->mask |=
1251                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1252                 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1253         }
1254
1255         if (of_find_property(np_emif, "extended-temp-part", &len))
1256                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1257
1258         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1259                 devm_kfree(emif->dev, cust_cfgs);
1260                 return;
1261         }
1262
1263         emif->plat_data->custom_configs = cust_cfgs;
1264 }
1265
1266 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1267                 struct device_node *np_ddr,
1268                 struct ddr_device_info *dev_info)
1269 {
1270         u32 density = 0, io_width = 0;
1271         int len;
1272
1273         if (of_find_property(np_emif, "cs1-used", &len))
1274                 dev_info->cs1_used = true;
1275
1276         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1277                 dev_info->cal_resistors_per_cs = true;
1278
1279         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1280                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1281         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1282                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1283
1284         of_property_read_u32(np_ddr, "density", &density);
1285         of_property_read_u32(np_ddr, "io-width", &io_width);
1286
1287         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1288         if (density & (density - 1))
1289                 dev_info->density = 0;
1290         else
1291                 dev_info->density = __fls(density) - 5;
1292
1293         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1294         if (io_width & (io_width - 1))
1295                 dev_info->io_width = 0;
1296         else
1297                 dev_info->io_width = __fls(io_width) - 1;
1298 }
1299
1300 static struct emif_data * __init_or_module of_get_memory_device_details(
1301                 struct device_node *np_emif, struct device *dev)
1302 {
1303         struct emif_data                *emif = NULL;
1304         struct ddr_device_info          *dev_info = NULL;
1305         struct emif_platform_data       *pd = NULL;
1306         struct device_node              *np_ddr;
1307         int                             len;
1308
1309         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1310         if (!np_ddr)
1311                 goto error;
1312         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1313         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1314         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1315
1316         if (!emif || !pd || !dev_info) {
1317                 dev_err(dev, "%s: Out of memory!!\n",
1318                         __func__);
1319                 goto error;
1320         }
1321
1322         emif->plat_data         = pd;
1323         pd->device_info         = dev_info;
1324         emif->dev               = dev;
1325         emif->np_ddr            = np_ddr;
1326         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1327
1328         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1329                 emif->plat_data->ip_rev = EMIF_4D;
1330         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1331                 emif->plat_data->ip_rev = EMIF_4D5;
1332
1333         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1334
1335         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1336                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1337
1338         of_get_ddr_info(np_emif, np_ddr, dev_info);
1339         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1340                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1341                         emif->dev)) {
1342                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1343                 goto error;
1344         }
1345         /*
1346          * For EMIF instances other than EMIF1 see if the devices connected
1347          * are exactly same as on EMIF1(which is typically the case). If so,
1348          * mark it as a duplicate of EMIF1. This will save some memory and
1349          * computation.
1350          */
1351         if (emif1 && emif1->np_ddr == np_ddr) {
1352                 emif->duplicate = true;
1353                 goto out;
1354         } else if (emif1) {
1355                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1356                         __func__);
1357         }
1358
1359         of_get_custom_configs(np_emif, emif);
1360         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1361                                         emif->plat_data->device_info->type,
1362                                         &emif->plat_data->timings_arr_size);
1363
1364         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1365         goto out;
1366
1367 error:
1368         return NULL;
1369 out:
1370         return emif;
1371 }
1372
1373 #else
1374
1375 static struct emif_data * __init_or_module of_get_memory_device_details(
1376                 struct device_node *np_emif, struct device *dev)
1377 {
1378         return NULL;
1379 }
1380 #endif
1381
1382 static struct emif_data *__init_or_module get_device_details(
1383                 struct platform_device *pdev)
1384 {
1385         u32                             size;
1386         struct emif_data                *emif = NULL;
1387         struct ddr_device_info          *dev_info;
1388         struct emif_custom_configs      *cust_cfgs;
1389         struct emif_platform_data       *pd;
1390         struct device                   *dev;
1391         void                            *temp;
1392
1393         pd = pdev->dev.platform_data;
1394         dev = &pdev->dev;
1395
1396         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1397                         pd->device_info->density, pd->device_info->io_width,
1398                         pd->phy_type, pd->ip_rev, dev))) {
1399                 dev_err(dev, "%s: invalid device data\n", __func__);
1400                 goto error;
1401         }
1402
1403         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1404         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1405         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1406
1407         if (!emif || !pd || !dev_info) {
1408                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1409                 goto error;
1410         }
1411
1412         memcpy(temp, pd, sizeof(*pd));
1413         pd = temp;
1414         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1415
1416         pd->device_info         = dev_info;
1417         emif->plat_data         = pd;
1418         emif->dev               = dev;
1419         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1420
1421         /*
1422          * For EMIF instances other than EMIF1 see if the devices connected
1423          * are exactly same as on EMIF1(which is typically the case). If so,
1424          * mark it as a duplicate of EMIF1 and skip copying timings data.
1425          * This will save some memory and some computation later.
1426          */
1427         emif->duplicate = emif1 && (memcmp(dev_info,
1428                 emif1->plat_data->device_info,
1429                 sizeof(struct ddr_device_info)) == 0);
1430
1431         if (emif->duplicate) {
1432                 pd->timings = NULL;
1433                 pd->min_tck = NULL;
1434                 goto out;
1435         } else if (emif1) {
1436                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1437                         __func__);
1438         }
1439
1440         /*
1441          * Copy custom configs - ignore allocation error, if any, as
1442          * custom_configs is not very critical
1443          */
1444         cust_cfgs = pd->custom_configs;
1445         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1446                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1447                 if (temp)
1448                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1449                 else
1450                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1451                                 __LINE__);
1452                 pd->custom_configs = temp;
1453         }
1454
1455         /*
1456          * Copy timings and min-tck values from platform data. If it is not
1457          * available or if memory allocation fails, use JEDEC defaults
1458          */
1459         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1460         if (pd->timings) {
1461                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1462                 if (temp) {
1463                         memcpy(temp, pd->timings, sizeof(*pd->timings));
1464                         pd->timings = temp;
1465                 } else {
1466                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1467                                 __LINE__);
1468                         get_default_timings(emif);
1469                 }
1470         } else {
1471                 get_default_timings(emif);
1472         }
1473
1474         if (pd->min_tck) {
1475                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1476                 if (temp) {
1477                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1478                         pd->min_tck = temp;
1479                 } else {
1480                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1481                                 __LINE__);
1482                         pd->min_tck = &lpddr2_jedec_min_tck;
1483                 }
1484         } else {
1485                 pd->min_tck = &lpddr2_jedec_min_tck;
1486         }
1487
1488 out:
1489         return emif;
1490
1491 error:
1492         return NULL;
1493 }
1494
1495 static int __init_or_module emif_probe(struct platform_device *pdev)
1496 {
1497         struct emif_data        *emif;
1498         struct resource         *res;
1499         int                     irq;
1500
1501         if (pdev->dev.of_node)
1502                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1503         else
1504                 emif = get_device_details(pdev);
1505
1506         if (!emif) {
1507                 pr_err("%s: error getting device data\n", __func__);
1508                 goto error;
1509         }
1510
1511         list_add(&emif->node, &device_list);
1512         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1513
1514         /* Save pointers to each other in emif and device structures */
1515         emif->dev = &pdev->dev;
1516         platform_set_drvdata(pdev, emif);
1517
1518         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1519         if (!res) {
1520                 dev_err(emif->dev, "%s: error getting memory resource\n",
1521                         __func__);
1522                 goto error;
1523         }
1524
1525         emif->base = devm_ioremap_resource(emif->dev, res);
1526         if (IS_ERR(emif->base))
1527                 goto error;
1528
1529         irq = platform_get_irq(pdev, 0);
1530         if (irq < 0) {
1531                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1532                         __func__, irq);
1533                 goto error;
1534         }
1535
1536         emif_onetime_settings(emif);
1537         emif_debugfs_init(emif);
1538         disable_and_clear_all_interrupts(emif);
1539         setup_interrupts(emif, irq);
1540
1541         /* One-time actions taken on probing the first device */
1542         if (!emif1) {
1543                 emif1 = emif;
1544                 spin_lock_init(&emif_lock);
1545
1546                 /*
1547                  * TODO: register notifiers for frequency and voltage
1548                  * change here once the respective frameworks are
1549                  * available
1550                  */
1551         }
1552
1553         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1554                 __func__, emif->base, irq);
1555
1556         return 0;
1557 error:
1558         return -ENODEV;
1559 }
1560
1561 static int __exit emif_remove(struct platform_device *pdev)
1562 {
1563         struct emif_data *emif = platform_get_drvdata(pdev);
1564
1565         emif_debugfs_exit(emif);
1566
1567         return 0;
1568 }
1569
1570 static void emif_shutdown(struct platform_device *pdev)
1571 {
1572         struct emif_data        *emif = platform_get_drvdata(pdev);
1573
1574         disable_and_clear_all_interrupts(emif);
1575 }
1576
1577 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1578                 struct emif_regs *regs)
1579 {
1580         u32                             cs1_used, ip_rev, phy_type;
1581         u32                             cl, type;
1582         const struct lpddr2_timings     *timings;
1583         const struct lpddr2_min_tck     *min_tck;
1584         const struct ddr_device_info    *device_info;
1585         const struct lpddr2_addressing  *addressing;
1586         struct emif_data                *emif_for_calc;
1587         struct device                   *dev;
1588         const struct emif_custom_configs *custom_configs;
1589
1590         dev = emif->dev;
1591         /*
1592          * If the devices on this EMIF instance is duplicate of EMIF1,
1593          * use EMIF1 details for the calculation
1594          */
1595         emif_for_calc   = emif->duplicate ? emif1 : emif;
1596         timings         = get_timings_table(emif_for_calc, freq);
1597         addressing      = emif_for_calc->addressing;
1598         if (!timings || !addressing) {
1599                 dev_err(dev, "%s: not enough data available for %dHz",
1600                         __func__, freq);
1601                 return -1;
1602         }
1603
1604         device_info     = emif_for_calc->plat_data->device_info;
1605         type            = device_info->type;
1606         cs1_used        = device_info->cs1_used;
1607         ip_rev          = emif_for_calc->plat_data->ip_rev;
1608         phy_type        = emif_for_calc->plat_data->phy_type;
1609
1610         min_tck         = emif_for_calc->plat_data->min_tck;
1611         custom_configs  = emif_for_calc->plat_data->custom_configs;
1612
1613         set_ddr_clk_period(freq);
1614
1615         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1616         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1617                         addressing);
1618         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1619                         addressing, type);
1620         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1621                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1622
1623         cl = get_cl(emif);
1624
1625         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1626                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1627                         timings, freq, cl);
1628         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1629                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1630                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1631                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1632                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1633         } else {
1634                 return -1;
1635         }
1636
1637         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1638         regs->pwr_mgmt_ctrl_shdw =
1639                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1640                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1641
1642         if (ip_rev & EMIF_4D) {
1643                 regs->read_idle_ctrl_shdw_normal =
1644                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1645
1646                 regs->read_idle_ctrl_shdw_volt_ramp =
1647                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1648         } else if (ip_rev & EMIF_4D5) {
1649                 regs->dll_calib_ctrl_shdw_normal =
1650                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1651
1652                 regs->dll_calib_ctrl_shdw_volt_ramp =
1653                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1654         }
1655
1656         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1657                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1658                         addressing);
1659
1660                 regs->sdram_tim1_shdw_derated =
1661                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1662                                 addressing);
1663
1664                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1665                         min_tck, addressing, type, ip_rev,
1666                         EMIF_DERATED_TIMINGS);
1667         }
1668
1669         regs->freq = freq;
1670
1671         return 0;
1672 }
1673
1674 /*
1675  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1676  * given frequency(freq):
1677  *
1678  * As an optimisation, every EMIF instance other than EMIF1 shares the
1679  * register cache with EMIF1 if the devices connected on this instance
1680  * are same as that on EMIF1(indicated by the duplicate flag)
1681  *
1682  * If we do not have an entry corresponding to the frequency given, we
1683  * allocate a new entry and calculate the values
1684  *
1685  * Upon finding the right reg dump, save it in curr_regs. It can be
1686  * directly used for thermal de-rating and voltage ramping changes.
1687  */
1688 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1689 {
1690         int                     i;
1691         struct emif_regs        **regs_cache;
1692         struct emif_regs        *regs = NULL;
1693         struct device           *dev;
1694
1695         dev = emif->dev;
1696         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1697                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1698                 return emif->curr_regs;
1699         }
1700
1701         if (emif->duplicate)
1702                 regs_cache = emif1->regs_cache;
1703         else
1704                 regs_cache = emif->regs_cache;
1705
1706         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1707                 if (regs_cache[i]->freq == freq) {
1708                         regs = regs_cache[i];
1709                         dev_dbg(dev,
1710                                 "%s: reg dump found in reg cache for %u Hz\n",
1711                                 __func__, freq);
1712                         break;
1713                 }
1714         }
1715
1716         /*
1717          * If we don't have an entry for this frequency in the cache create one
1718          * and calculate the values
1719          */
1720         if (!regs) {
1721                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1722                 if (!regs)
1723                         return NULL;
1724
1725                 if (get_emif_reg_values(emif, freq, regs)) {
1726                         devm_kfree(emif->dev, regs);
1727                         return NULL;
1728                 }
1729
1730                 /*
1731                  * Now look for an un-used entry in the cache and save the
1732                  * newly created struct. If there are no free entries
1733                  * over-write the last entry
1734                  */
1735                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1736                         ;
1737
1738                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1739                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1740                                 __func__);
1741                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1742                         devm_kfree(emif->dev, regs_cache[i]);
1743                 }
1744                 regs_cache[i] = regs;
1745         }
1746
1747         return regs;
1748 }
1749
1750 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1751 {
1752         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1753                 volt_state);
1754
1755         if (!emif->curr_regs) {
1756                 dev_err(emif->dev,
1757                         "%s: volt-notify before registers are ready: %d\n",
1758                         __func__, volt_state);
1759                 return;
1760         }
1761
1762         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1763 }
1764
1765 /*
1766  * TODO: voltage notify handling should be hooked up to
1767  * regulator framework as soon as the necessary support
1768  * is available in mainline kernel. This function is un-used
1769  * right now.
1770  */
1771 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1772 {
1773         struct emif_data *emif;
1774
1775         spin_lock_irqsave(&emif_lock, irq_state);
1776
1777         list_for_each_entry(emif, &device_list, node)
1778                 do_volt_notify_handling(emif, volt_state);
1779         do_freq_update();
1780
1781         spin_unlock_irqrestore(&emif_lock, irq_state);
1782 }
1783
1784 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1785 {
1786         struct emif_regs *regs;
1787
1788         regs = get_regs(emif, new_freq);
1789         if (!regs)
1790                 return;
1791
1792         emif->curr_regs = regs;
1793
1794         /*
1795          * Update the shadow registers:
1796          * Temperature and voltage-ramp sensitive settings are also configured
1797          * in terms of DDR cycles. So, we need to update them too when there
1798          * is a freq change
1799          */
1800         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1801                 __func__, new_freq);
1802         setup_registers(emif, regs);
1803         setup_temperature_sensitive_regs(emif, regs);
1804         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1805
1806         /*
1807          * Part of workaround for errata i728. See do_freq_update()
1808          * for more details
1809          */
1810         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1811                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1812 }
1813
1814 /*
1815  * TODO: frequency notify handling should be hooked up to
1816  * clock framework as soon as the necessary support is
1817  * available in mainline kernel. This function is un-used
1818  * right now.
1819  */
1820 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1821 {
1822         struct emif_data *emif;
1823
1824         /*
1825          * NOTE: we are taking the spin-lock here and releases it
1826          * only in post-notifier. This doesn't look good and
1827          * Sparse complains about it, but this seems to be
1828          * un-avoidable. We need to lock a sequence of events
1829          * that is split between EMIF and clock framework.
1830          *
1831          * 1. EMIF driver updates EMIF timings in shadow registers in the
1832          *    frequency pre-notify callback from clock framework
1833          * 2. clock framework sets up the registers for the new frequency
1834          * 3. clock framework initiates a hw-sequence that updates
1835          *    the frequency EMIF timings synchronously.
1836          *
1837          * All these 3 steps should be performed as an atomic operation
1838          * vis-a-vis similar sequence in the EMIF interrupt handler
1839          * for temperature events. Otherwise, there could be race
1840          * conditions that could result in incorrect EMIF timings for
1841          * a given frequency
1842          */
1843         spin_lock_irqsave(&emif_lock, irq_state);
1844
1845         list_for_each_entry(emif, &device_list, node)
1846                 do_freq_pre_notify_handling(emif, new_freq);
1847 }
1848
1849 static void do_freq_post_notify_handling(struct emif_data *emif)
1850 {
1851         /*
1852          * Part of workaround for errata i728. See do_freq_update()
1853          * for more details
1854          */
1855         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1856                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1857 }
1858
1859 /*
1860  * TODO: frequency notify handling should be hooked up to
1861  * clock framework as soon as the necessary support is
1862  * available in mainline kernel. This function is un-used
1863  * right now.
1864  */
1865 static void __attribute__((unused)) freq_post_notify_handling(void)
1866 {
1867         struct emif_data *emif;
1868
1869         list_for_each_entry(emif, &device_list, node)
1870                 do_freq_post_notify_handling(emif);
1871
1872         /*
1873          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1874          * for more details
1875          */
1876         spin_unlock_irqrestore(&emif_lock, irq_state);
1877 }
1878
1879 #if defined(CONFIG_OF)
1880 static const struct of_device_id emif_of_match[] = {
1881                 { .compatible = "ti,emif-4d" },
1882                 { .compatible = "ti,emif-4d5" },
1883                 {},
1884 };
1885 MODULE_DEVICE_TABLE(of, emif_of_match);
1886 #endif
1887
1888 static struct platform_driver emif_driver = {
1889         .remove         = __exit_p(emif_remove),
1890         .shutdown       = emif_shutdown,
1891         .driver = {
1892                 .name = "emif",
1893                 .of_match_table = of_match_ptr(emif_of_match),
1894         },
1895 };
1896
1897 module_platform_driver_probe(emif_driver, emif_probe);
1898
1899 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1900 MODULE_LICENSE("GPL");
1901 MODULE_ALIAS("platform:emif");
1902 MODULE_AUTHOR("Texas Instruments Inc");