df3b5b52e66181c951298c10fced323bb2c73bcc
[platform/kernel/linux-starfive.git] / drivers / media / pci / intel / ipu-bridge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <djrscally@gmail.com> */
3
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/i2c.h>
7 #include <linux/property.h>
8 #include <media/v4l2-fwnode.h>
9
10 #include "ipu-bridge.h"
11
12 /*
13  * Extend this array with ACPI Hardware IDs of devices known to be working
14  * plus the number of link-frequencies expected by their drivers, along with
15  * the frequency values in hertz. This is somewhat opportunistic way of adding
16  * support for this for now in the hopes of a better source for the information
17  * (possibly some encoded value in the SSDB buffer that we're unaware of)
18  * becoming apparent in the future.
19  *
20  * Do not add an entry for a sensor that is not actually supported.
21  */
22 static const struct ipu_sensor_config ipu_supported_sensors[] = {
23         /* Omnivision OV5693 */
24         IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
25         /* Omnivision OV8865 */
26         IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
27         /* Omnivision OV7251 */
28         IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
29         /* Omnivision OV2680 */
30         IPU_SENSOR_CONFIG("OVTI2680", 0),
31         /* Omnivision ov8856 */
32         IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
33         /* Omnivision ov2740 */
34         IPU_SENSOR_CONFIG("INT3474", 1, 360000000),
35         /* Hynix hi556 */
36         IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
37         /* Omnivision ov13b10 */
38         IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
39 };
40
41 static const struct ipu_property_names prop_names = {
42         .clock_frequency = "clock-frequency",
43         .rotation = "rotation",
44         .orientation = "orientation",
45         .bus_type = "bus-type",
46         .data_lanes = "data-lanes",
47         .remote_endpoint = "remote-endpoint",
48         .link_frequencies = "link-frequencies",
49 };
50
51 static const char * const ipu_vcm_types[] = {
52         "ad5823",
53         "dw9714",
54         "ad5816",
55         "dw9719",
56         "dw9718",
57         "dw9806b",
58         "wv517s",
59         "lc898122xa",
60         "lc898212axb",
61 };
62
63 static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
64                                        void *data, u32 size)
65 {
66         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
67         union acpi_object *obj;
68         acpi_status status;
69         int ret = 0;
70
71         status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
72         if (ACPI_FAILURE(status))
73                 return -ENODEV;
74
75         obj = buffer.pointer;
76         if (!obj) {
77                 dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
78                 return -ENODEV;
79         }
80
81         if (obj->type != ACPI_TYPE_BUFFER) {
82                 dev_err(&adev->dev, "Not an ACPI buffer\n");
83                 ret = -ENODEV;
84                 goto out_free_buff;
85         }
86
87         if (obj->buffer.length > size) {
88                 dev_err(&adev->dev, "Given buffer is too small\n");
89                 ret = -EINVAL;
90                 goto out_free_buff;
91         }
92
93         memcpy(data, obj->buffer.pointer, obj->buffer.length);
94
95 out_free_buff:
96         kfree(buffer.pointer);
97         return ret;
98 }
99
100 static u32 ipu_bridge_parse_rotation(struct ipu_sensor *sensor)
101 {
102         switch (sensor->ssdb.degree) {
103         case IPU_SENSOR_ROTATION_NORMAL:
104                 return 0;
105         case IPU_SENSOR_ROTATION_INVERTED:
106                 return 180;
107         default:
108                 dev_warn(&sensor->adev->dev,
109                          "Unknown rotation %d. Assume 0 degree rotation\n",
110                          sensor->ssdb.degree);
111                 return 0;
112         }
113 }
114
115 static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct ipu_sensor *sensor)
116 {
117         switch (sensor->pld->panel) {
118         case ACPI_PLD_PANEL_FRONT:
119                 return V4L2_FWNODE_ORIENTATION_FRONT;
120         case ACPI_PLD_PANEL_BACK:
121                 return V4L2_FWNODE_ORIENTATION_BACK;
122         case ACPI_PLD_PANEL_TOP:
123         case ACPI_PLD_PANEL_LEFT:
124         case ACPI_PLD_PANEL_RIGHT:
125         case ACPI_PLD_PANEL_UNKNOWN:
126                 return V4L2_FWNODE_ORIENTATION_EXTERNAL;
127         default:
128                 dev_warn(&sensor->adev->dev, "Unknown _PLD panel value %d\n",
129                          sensor->pld->panel);
130                 return V4L2_FWNODE_ORIENTATION_EXTERNAL;
131         }
132 }
133
134 static void ipu_bridge_create_fwnode_properties(
135         struct ipu_sensor *sensor,
136         struct ipu_bridge *bridge,
137         const struct ipu_sensor_config *cfg)
138 {
139         u32 rotation;
140         enum v4l2_fwnode_orientation orientation;
141
142         rotation = ipu_bridge_parse_rotation(sensor);
143         orientation = ipu_bridge_parse_orientation(sensor);
144
145         sensor->prop_names = prop_names;
146
147         sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_IPU_ENDPOINT]);
148         sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
149
150         sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
151                                         sensor->prop_names.clock_frequency,
152                                         sensor->ssdb.mclkspeed);
153         sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
154                                         sensor->prop_names.rotation,
155                                         rotation);
156         sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
157                                         sensor->prop_names.orientation,
158                                         orientation);
159         if (sensor->ssdb.vcmtype) {
160                 sensor->vcm_ref[0] =
161                         SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
162                 sensor->dev_properties[3] =
163                         PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
164         }
165
166         sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
167                                         sensor->prop_names.bus_type,
168                                         V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
169         sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
170                                         sensor->prop_names.data_lanes,
171                                         bridge->data_lanes,
172                                         sensor->ssdb.lanes);
173         sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
174                                         sensor->prop_names.remote_endpoint,
175                                         sensor->local_ref);
176
177         if (cfg->nr_link_freqs > 0)
178                 sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
179                         sensor->prop_names.link_frequencies,
180                         cfg->link_freqs,
181                         cfg->nr_link_freqs);
182
183         sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
184                                         sensor->prop_names.data_lanes,
185                                         bridge->data_lanes,
186                                         sensor->ssdb.lanes);
187         sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
188                                         sensor->prop_names.remote_endpoint,
189                                         sensor->remote_ref);
190 }
191
192 static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
193 {
194         snprintf(sensor->node_names.remote_port,
195                  sizeof(sensor->node_names.remote_port),
196                  SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
197         snprintf(sensor->node_names.port,
198                  sizeof(sensor->node_names.port),
199                  SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
200         snprintf(sensor->node_names.endpoint,
201                  sizeof(sensor->node_names.endpoint),
202                  SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
203         if (sensor->ssdb.vcmtype) {
204                 /* append ssdb.link to distinguish nodes with same model VCM */
205                 snprintf(sensor->node_names.vcm, sizeof(sensor->node_names.vcm),
206                          "%s-%u", ipu_vcm_types[sensor->ssdb.vcmtype - 1],
207                          sensor->ssdb.link);
208         }
209 }
210
211 static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
212 {
213         struct software_node *nodes = sensor->swnodes;
214
215         sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
216         sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
217         sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
218         sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
219         sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
220         if (sensor->ssdb.vcmtype)
221                 sensor->group[SWNODE_VCM] =  &nodes[SWNODE_VCM];
222 }
223
224 static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
225                                                  struct ipu_sensor *sensor)
226 {
227         struct software_node *nodes = sensor->swnodes;
228
229         ipu_bridge_init_swnode_names(sensor);
230
231         nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
232                                                sensor->dev_properties);
233         nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
234                                               &nodes[SWNODE_SENSOR_HID]);
235         nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
236                                                 sensor->node_names.endpoint,
237                                                 &nodes[SWNODE_SENSOR_PORT],
238                                                 sensor->ep_properties);
239         nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
240                                            &bridge->ipu_hid_node);
241         nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
242                                                 sensor->node_names.endpoint,
243                                                 &nodes[SWNODE_IPU_PORT],
244                                                 sensor->ipu_properties);
245         nodes[SWNODE_VCM] = NODE_VCM(sensor->node_names.vcm);
246
247         ipu_bridge_init_swnode_group(sensor);
248 }
249
250 static void ipu_bridge_instantiate_vcm_i2c_client(struct ipu_sensor *sensor)
251 {
252         struct i2c_board_info board_info = { };
253         char name[16];
254
255         if (!sensor->ssdb.vcmtype)
256                 return;
257
258         snprintf(name, sizeof(name), "%s-VCM", acpi_dev_name(sensor->adev));
259         board_info.dev_name = name;
260         strscpy(board_info.type, ipu_vcm_types[sensor->ssdb.vcmtype - 1],
261                 ARRAY_SIZE(board_info.type));
262         board_info.swnode = &sensor->swnodes[SWNODE_VCM];
263
264         sensor->vcm_i2c_client =
265                 i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(sensor->adev),
266                                               1, &board_info);
267         if (IS_ERR(sensor->vcm_i2c_client)) {
268                 dev_warn(&sensor->adev->dev, "Error instantiation VCM i2c-client: %ld\n",
269                          PTR_ERR(sensor->vcm_i2c_client));
270                 sensor->vcm_i2c_client = NULL;
271         }
272 }
273
274 static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
275 {
276         struct ipu_sensor *sensor;
277         unsigned int i;
278
279         for (i = 0; i < bridge->n_sensors; i++) {
280                 sensor = &bridge->sensors[i];
281                 software_node_unregister_node_group(sensor->group);
282                 ACPI_FREE(sensor->pld);
283                 acpi_dev_put(sensor->adev);
284                 i2c_unregister_device(sensor->vcm_i2c_client);
285         }
286 }
287
288 static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
289                                      struct ipu_bridge *bridge)
290 {
291         struct fwnode_handle *fwnode, *primary;
292         struct ipu_sensor *sensor;
293         struct acpi_device *adev;
294         acpi_status status;
295         int ret;
296
297         for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
298                 if (!adev->status.enabled)
299                         continue;
300
301                 if (bridge->n_sensors >= IPU_MAX_PORTS) {
302                         acpi_dev_put(adev);
303                         dev_err(bridge->dev, "Exceeded available IPU ports\n");
304                         return -EINVAL;
305                 }
306
307                 sensor = &bridge->sensors[bridge->n_sensors];
308                 /*
309                  * Borrow our adev ref to the sensor for now, on success
310                  * acpi_dev_get(adev) is done further below.
311                  */
312                 sensor->adev = adev;
313
314                 ret = ipu_bridge_read_acpi_buffer(adev, "SSDB",
315                                                   &sensor->ssdb,
316                                                   sizeof(sensor->ssdb));
317                 if (ret)
318                         goto err_put_adev;
319
320                 snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
321                          cfg->hid, sensor->ssdb.link);
322
323                 if (sensor->ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
324                         dev_warn(&adev->dev, "Unknown VCM type %d\n",
325                                  sensor->ssdb.vcmtype);
326                         sensor->ssdb.vcmtype = 0;
327                 }
328
329                 status = acpi_get_physical_device_location(adev->handle, &sensor->pld);
330                 if (ACPI_FAILURE(status)) {
331                         ret = -ENODEV;
332                         goto err_put_adev;
333                 }
334
335                 if (sensor->ssdb.lanes > IPU_MAX_LANES) {
336                         dev_err(&adev->dev,
337                                 "Number of lanes in SSDB is invalid\n");
338                         ret = -EINVAL;
339                         goto err_free_pld;
340                 }
341
342                 ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
343                 ipu_bridge_create_connection_swnodes(bridge, sensor);
344
345                 ret = software_node_register_node_group(sensor->group);
346                 if (ret)
347                         goto err_free_pld;
348
349                 fwnode = software_node_fwnode(&sensor->swnodes[
350                                                       SWNODE_SENSOR_HID]);
351                 if (!fwnode) {
352                         ret = -ENODEV;
353                         goto err_free_swnodes;
354                 }
355
356                 sensor->adev = acpi_dev_get(adev);
357
358                 primary = acpi_fwnode_handle(adev);
359                 primary->secondary = fwnode;
360
361                 ipu_bridge_instantiate_vcm_i2c_client(sensor);
362
363                 dev_info(bridge->dev, "Found supported sensor %s\n",
364                          acpi_dev_name(adev));
365
366                 bridge->n_sensors++;
367         }
368
369         return 0;
370
371 err_free_swnodes:
372         software_node_unregister_node_group(sensor->group);
373 err_free_pld:
374         ACPI_FREE(sensor->pld);
375 err_put_adev:
376         acpi_dev_put(adev);
377         return ret;
378 }
379
380 static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge)
381 {
382         unsigned int i;
383         int ret;
384
385         for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
386                 const struct ipu_sensor_config *cfg =
387                         &ipu_supported_sensors[i];
388
389                 ret = ipu_bridge_connect_sensor(cfg, bridge);
390                 if (ret)
391                         goto err_unregister_sensors;
392         }
393
394         return 0;
395
396 err_unregister_sensors:
397         ipu_bridge_unregister_sensors(bridge);
398         return ret;
399 }
400
401 /*
402  * The VCM cannot be probed until the PMIC is completely setup. We cannot rely
403  * on -EPROBE_DEFER for this, since the consumer<->supplier relations between
404  * the VCM and regulators/clks are not described in ACPI, instead they are
405  * passed as board-data to the PMIC drivers. Since -PROBE_DEFER does not work
406  * for the clks/regulators the VCM i2c-clients must not be instantiated until
407  * the PMIC is fully setup.
408  *
409  * The sensor/VCM ACPI device has an ACPI _DEP on the PMIC, check this using the
410  * acpi_dev_ready_for_enumeration() helper, like the i2c-core-acpi code does
411  * for the sensors.
412  */
413 static int ipu_bridge_sensors_are_ready(void)
414 {
415         struct acpi_device *adev;
416         bool ready = true;
417         unsigned int i;
418
419         for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
420                 const struct ipu_sensor_config *cfg =
421                         &ipu_supported_sensors[i];
422
423                 for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
424                         if (!adev->status.enabled)
425                                 continue;
426
427                         if (!acpi_dev_ready_for_enumeration(adev))
428                                 ready = false;
429                 }
430         }
431
432         return ready;
433 }
434
435 int ipu_bridge_init(struct device *dev)
436 {
437         struct fwnode_handle *fwnode;
438         struct ipu_bridge *bridge;
439         unsigned int i;
440         int ret;
441
442         if (!ipu_bridge_sensors_are_ready())
443                 return -EPROBE_DEFER;
444
445         bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
446         if (!bridge)
447                 return -ENOMEM;
448
449         strscpy(bridge->ipu_node_name, IPU_HID,
450                 sizeof(bridge->ipu_node_name));
451         bridge->ipu_hid_node.name = bridge->ipu_node_name;
452         bridge->dev = dev;
453
454         ret = software_node_register(&bridge->ipu_hid_node);
455         if (ret < 0) {
456                 dev_err(dev, "Failed to register the IPU HID node\n");
457                 goto err_free_bridge;
458         }
459
460         /*
461          * Map the lane arrangement, which is fixed for the IPU3 (meaning we
462          * only need one, rather than one per sensor). We include it as a
463          * member of the struct ipu_bridge rather than a global variable so
464          * that it survives if the module is unloaded along with the rest of
465          * the struct.
466          */
467         for (i = 0; i < IPU_MAX_LANES; i++)
468                 bridge->data_lanes[i] = i + 1;
469
470         ret = ipu_bridge_connect_sensors(bridge);
471         if (ret || bridge->n_sensors == 0)
472                 goto err_unregister_ipu;
473
474         dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
475
476         fwnode = software_node_fwnode(&bridge->ipu_hid_node);
477         if (!fwnode) {
478                 dev_err(dev, "Error getting fwnode from ipu software_node\n");
479                 ret = -ENODEV;
480                 goto err_unregister_sensors;
481         }
482
483         set_secondary_fwnode(dev, fwnode);
484
485         return 0;
486
487 err_unregister_sensors:
488         ipu_bridge_unregister_sensors(bridge);
489 err_unregister_ipu:
490         software_node_unregister(&bridge->ipu_hid_node);
491 err_free_bridge:
492         kfree(bridge);
493
494         return ret;
495 }
496 EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
497
498 MODULE_LICENSE("GPL");
499 MODULE_DESCRIPTION("Intel IPU Sensors Bridge driver");