media: ccs: Differentiate SMIA and MIPI vendors in static data
[platform/kernel/linux-starfive.git] / drivers / media / i2c / ccs / ccs-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/ccs/ccs-core.c
4  *
5  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6  *
7  * Copyright (C) 2020 Intel Corporation
8  * Copyright (C) 2010--2012 Nokia Corporation
9  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Based on smiapp driver by Vimarsh Zutshi
12  * Based on jt8ev1.c by Vimarsh Zutshi
13  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14  */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/smiapp.h>
27 #include <linux/v4l2-mediabus.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-device.h>
30 #include <uapi/linux/ccs.h>
31
32 #include "ccs.h"
33
34 #define CCS_ALIGN_DIM(dim, flags)       \
35         ((flags) & V4L2_SEL_FLAG_GE     \
36          ? ALIGN((dim), 2)              \
37          : (dim) & ~1)
38
39 static struct ccs_limit_offset {
40         u16     lim;
41         u16     info;
42 } ccs_limit_offsets[CCS_L_LAST + 1];
43
44 /*
45  * ccs_module_idents - supported camera modules
46  */
47 static const struct ccs_module_ident ccs_module_idents[] = {
48         CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
49         CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
50         CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
51         CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
52         CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
53         CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
54         CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
55         CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
56         CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
57         CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
58         CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
59 };
60
61 #define CCS_DEVICE_FLAG_IS_SMIA         BIT(0)
62
63 struct ccs_device {
64         unsigned char flags;
65 };
66
67 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
68
69 /*
70  *
71  * Dynamic Capability Identification
72  *
73  */
74
75 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
76 {
77         switch (width) {
78         case sizeof(u8):
79                 *(u8 *)ptr = val;
80                 break;
81         case sizeof(u16):
82                 *(u16 *)ptr = val;
83                 break;
84         case sizeof(u32):
85                 *(u32 *)ptr = val;
86                 break;
87         }
88 }
89
90 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
91                          unsigned int offset, void **__ptr)
92 {
93         const struct ccs_limit *linfo;
94
95         if (WARN_ON(limit >= CCS_L_LAST))
96                 return -EINVAL;
97
98         linfo = &ccs_limits[ccs_limit_offsets[limit].info];
99
100         if (WARN_ON(!sensor->ccs_limits) ||
101             WARN_ON(offset + ccs_reg_width(linfo->reg) >
102                     ccs_limit_offsets[limit + 1].lim))
103                 return -EINVAL;
104
105         *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
106
107         return 0;
108 }
109
110 void ccs_replace_limit(struct ccs_sensor *sensor,
111                        unsigned int limit, unsigned int offset, u32 val)
112 {
113         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
114         const struct ccs_limit *linfo;
115         void *ptr;
116         int ret;
117
118         ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
119         if (ret)
120                 return;
121
122         linfo = &ccs_limits[ccs_limit_offsets[limit].info];
123
124         dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
125                 linfo->reg, linfo->name, offset, val, val);
126
127         ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
128 }
129
130 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
131                   unsigned int offset)
132 {
133         void *ptr;
134         u32 val;
135         int ret;
136
137         ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
138         if (ret)
139                 return 0;
140
141         switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
142         case sizeof(u8):
143                 val = *(u8 *)ptr;
144                 break;
145         case sizeof(u16):
146                 val = *(u16 *)ptr;
147                 break;
148         case sizeof(u32):
149                 val = *(u32 *)ptr;
150                 break;
151         default:
152                 WARN_ON(1);
153                 return 0;
154         }
155
156         return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
157 }
158
159 static int ccs_read_all_limits(struct ccs_sensor *sensor)
160 {
161         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
162         void *ptr, *alloc, *end;
163         unsigned int i, l;
164         int ret;
165
166         kfree(sensor->ccs_limits);
167         sensor->ccs_limits = NULL;
168
169         alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
170         if (!alloc)
171                 return -ENOMEM;
172
173         end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
174
175         for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
176                 u32 reg = ccs_limits[i].reg;
177                 unsigned int width = ccs_reg_width(reg);
178                 unsigned int j;
179
180                 if (l == CCS_L_LAST) {
181                         dev_err(&client->dev,
182                                 "internal error --- end of limit array\n");
183                         ret = -EINVAL;
184                         goto out_err;
185                 }
186
187                 for (j = 0; j < ccs_limits[i].size / width;
188                      j++, reg += width, ptr += width) {
189                         u32 val;
190
191                         ret = ccs_read_addr_noconv(sensor, reg, &val);
192                         if (ret)
193                                 goto out_err;
194
195                         if (ptr + width > end) {
196                                 dev_err(&client->dev,
197                                         "internal error --- no room for regs\n");
198                                 ret = -EINVAL;
199                                 goto out_err;
200                         }
201
202                         if (!val && j)
203                                 break;
204
205                         ccs_assign_limit(ptr, width, val);
206
207                         dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
208                                 reg, ccs_limits[i].name, val, val);
209                 }
210
211                 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
212                         continue;
213
214                 l++;
215                 ptr = alloc + ccs_limit_offsets[l].lim;
216         }
217
218         if (l != CCS_L_LAST) {
219                 dev_err(&client->dev,
220                         "internal error --- insufficient limits\n");
221                 ret = -EINVAL;
222                 goto out_err;
223         }
224
225         sensor->ccs_limits = alloc;
226
227         if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
228                 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
229
230         return 0;
231
232 out_err:
233         kfree(alloc);
234
235         return ret;
236 }
237
238 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
239 {
240         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
241         u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
242         unsigned int i;
243         int pixel_count = 0;
244         int line_count = 0;
245
246         fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
247         fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
248
249         ncol_desc = (fmt_model_subtype
250                      & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
251                 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
252         nrow_desc = fmt_model_subtype
253                 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
254
255         dev_dbg(&client->dev, "format_model_type %s\n",
256                 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
257                 ? "2 byte" :
258                 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
259                 ? "4 byte" : "is simply bad");
260
261         dev_dbg(&client->dev, "%u column and %u row descriptors\n",
262                 ncol_desc, nrow_desc);
263
264         for (i = 0; i < ncol_desc + nrow_desc; i++) {
265                 u32 desc;
266                 u32 pixelcode;
267                 u32 pixels;
268                 char *which;
269                 char *what;
270
271                 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
272                         desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
273
274                         pixelcode =
275                                 (desc
276                                  & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
277                                 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
278                         pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
279                 } else if (fmt_model_type
280                            == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
281                         desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
282
283                         pixelcode =
284                                 (desc
285                                  & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
286                                 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
287                         pixels = desc &
288                                 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
289                 } else {
290                         dev_dbg(&client->dev,
291                                 "invalid frame format model type %u\n",
292                                 fmt_model_type);
293                         return -EINVAL;
294                 }
295
296                 if (i < ncol_desc)
297                         which = "columns";
298                 else
299                         which = "rows";
300
301                 switch (pixelcode) {
302                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
303                         what = "embedded";
304                         break;
305                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
306                         what = "dummy";
307                         break;
308                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
309                         what = "black";
310                         break;
311                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
312                         what = "dark";
313                         break;
314                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
315                         what = "visible";
316                         break;
317                 default:
318                         what = "invalid";
319                         break;
320                 }
321
322                 dev_dbg(&client->dev,
323                         "%s pixels: %u %s (pixelcode %u)\n",
324                         what, pixels, which, pixelcode);
325
326                 if (i < ncol_desc) {
327                         if (pixelcode ==
328                             CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
329                                 sensor->visible_pixel_start = pixel_count;
330                         pixel_count += pixels;
331                         continue;
332                 }
333
334                 /* Handle row descriptors */
335                 switch (pixelcode) {
336                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
337                         if (sensor->embedded_end)
338                                 break;
339                         sensor->embedded_start = line_count;
340                         sensor->embedded_end = line_count + pixels;
341                         break;
342                 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
343                         sensor->image_start = line_count;
344                         break;
345                 }
346                 line_count += pixels;
347         }
348
349         if (sensor->embedded_end > sensor->image_start) {
350                 dev_dbg(&client->dev,
351                         "adjusting image start line to %u (was %u)\n",
352                         sensor->embedded_end, sensor->image_start);
353                 sensor->image_start = sensor->embedded_end;
354         }
355
356         dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
357                 sensor->embedded_start, sensor->embedded_end);
358         dev_dbg(&client->dev, "image data starts at line %u\n",
359                 sensor->image_start);
360
361         return 0;
362 }
363
364 static int ccs_pll_configure(struct ccs_sensor *sensor)
365 {
366         struct ccs_pll *pll = &sensor->pll;
367         int rval;
368
369         rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
370         if (rval < 0)
371                 return rval;
372
373         rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
374         if (rval < 0)
375                 return rval;
376
377         rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
378         if (rval < 0)
379                 return rval;
380
381         rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
382         if (rval < 0)
383                 return rval;
384
385         if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
386               CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
387                 /* Lane op clock ratio does not apply here. */
388                 rval = ccs_write(sensor, REQUESTED_LINK_RATE,
389                                  DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
390                                               1000000 / 256 / 256) *
391                                  (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
392                                   sensor->pll.csi2.lanes : 1) <<
393                                  (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
394                                   1 : 0));
395                 if (rval < 0)
396                         return rval;
397         }
398
399         if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
400                 return 0;
401
402         rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
403         if (rval < 0)
404                 return rval;
405
406         rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
407         if (rval < 0)
408                 return rval;
409
410         if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
411                 return 0;
412
413         rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
414         if (rval < 0)
415                 return rval;
416
417         rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
418                          pll->op_fr.pre_pll_clk_div);
419         if (rval < 0)
420                 return rval;
421
422         return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
423 }
424
425 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
426 {
427         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
428         struct ccs_pll_limits lim = {
429                 .vt_fr = {
430                         .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
431                         .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
432                         .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
433                         .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
434                         .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
435                         .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
436                         .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
437                         .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
438                 },
439                 .op_fr = {
440                         .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
441                         .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
442                         .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
443                         .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
444                         .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
445                         .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
446                         .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
447                         .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
448                 },
449                 .op_bk = {
450                          .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
451                          .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
452                          .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
453                          .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
454                          .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
455                          .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
456                          .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
457                          .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
458                  },
459                 .vt_bk = {
460                          .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
461                          .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
462                          .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
463                          .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
464                          .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
465                          .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
466                          .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
467                          .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
468                  },
469                 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
470                 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
471         };
472
473         return ccs_pll_calculate(&client->dev, &lim, pll);
474 }
475
476 static int ccs_pll_update(struct ccs_sensor *sensor)
477 {
478         struct ccs_pll *pll = &sensor->pll;
479         int rval;
480
481         pll->binning_horizontal = sensor->binning_horizontal;
482         pll->binning_vertical = sensor->binning_vertical;
483         pll->link_freq =
484                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
485         pll->scale_m = sensor->scale_m;
486         pll->bits_per_pixel = sensor->csi_format->compressed;
487
488         rval = ccs_pll_try(sensor, pll);
489         if (rval < 0)
490                 return rval;
491
492         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
493                                  pll->pixel_rate_pixel_array);
494         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
495
496         return 0;
497 }
498
499
500 /*
501  *
502  * V4L2 Controls handling
503  *
504  */
505
506 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
507 {
508         struct v4l2_ctrl *ctrl = sensor->exposure;
509         int max;
510
511         max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
512                 + sensor->vblank->val
513                 - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
514
515         __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
516 }
517
518 /*
519  * Order matters.
520  *
521  * 1. Bits-per-pixel, descending.
522  * 2. Bits-per-pixel compressed, descending.
523  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
524  *    orders must be defined.
525  */
526 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
527         { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
528         { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
529         { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
530         { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
531         { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
532         { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
533         { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
534         { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
535         { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
536         { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
537         { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
538         { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
539         { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
540         { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
541         { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
542         { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
543         { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
544         { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
545         { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
546         { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
547         { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
548         { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
549         { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
550         { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
551 };
552
553 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
554
555 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
556                                  - (unsigned long)ccs_csi_data_formats) \
557                                 / sizeof(*ccs_csi_data_formats))
558
559 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
560 {
561         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
562         int flip = 0;
563
564         if (sensor->hflip) {
565                 if (sensor->hflip->val)
566                         flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
567
568                 if (sensor->vflip->val)
569                         flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
570         }
571
572         dev_dbg(&client->dev, "flip %u\n", flip);
573         return sensor->default_pixel_order ^ flip;
574 }
575
576 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
577 {
578         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
579         unsigned int csi_format_idx =
580                 to_csi_format_idx(sensor->csi_format) & ~3;
581         unsigned int internal_csi_format_idx =
582                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
583         unsigned int pixel_order = ccs_pixel_order(sensor);
584
585         if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
586                          pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
587                 return;
588
589         sensor->mbus_frame_fmts =
590                 sensor->default_mbus_frame_fmts << pixel_order;
591         sensor->csi_format =
592                 &ccs_csi_data_formats[csi_format_idx + pixel_order];
593         sensor->internal_csi_format =
594                 &ccs_csi_data_formats[internal_csi_format_idx
595                                          + pixel_order];
596
597         dev_dbg(&client->dev, "new pixel order %s\n",
598                 pixel_order_str[pixel_order]);
599 }
600
601 static const char * const ccs_test_patterns[] = {
602         "Disabled",
603         "Solid Colour",
604         "Eight Vertical Colour Bars",
605         "Colour Bars With Fade to Grey",
606         "Pseudorandom Sequence (PN9)",
607 };
608
609 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
610 {
611         struct ccs_sensor *sensor =
612                 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
613                         ->sensor;
614         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
615         int pm_status;
616         u32 orient = 0;
617         unsigned int i;
618         int exposure;
619         int rval;
620
621         switch (ctrl->id) {
622         case V4L2_CID_HFLIP:
623         case V4L2_CID_VFLIP:
624                 if (sensor->streaming)
625                         return -EBUSY;
626
627                 if (sensor->hflip->val)
628                         orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
629
630                 if (sensor->vflip->val)
631                         orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
632
633                 ccs_update_mbus_formats(sensor);
634
635                 break;
636         case V4L2_CID_VBLANK:
637                 exposure = sensor->exposure->val;
638
639                 __ccs_update_exposure_limits(sensor);
640
641                 if (exposure > sensor->exposure->maximum) {
642                         sensor->exposure->val = sensor->exposure->maximum;
643                         rval = ccs_set_ctrl(sensor->exposure);
644                         if (rval < 0)
645                                 return rval;
646                 }
647
648                 break;
649         case V4L2_CID_LINK_FREQ:
650                 if (sensor->streaming)
651                         return -EBUSY;
652
653                 rval = ccs_pll_update(sensor);
654                 if (rval)
655                         return rval;
656
657                 return 0;
658         case V4L2_CID_TEST_PATTERN:
659                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
660                         v4l2_ctrl_activate(
661                                 sensor->test_data[i],
662                                 ctrl->val ==
663                                 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
664
665                 break;
666         }
667
668         pm_status = pm_runtime_get_if_active(&client->dev, true);
669         if (!pm_status)
670                 return 0;
671
672         switch (ctrl->id) {
673         case V4L2_CID_ANALOGUE_GAIN:
674                 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
675
676                 break;
677
678         case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
679                 rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
680
681                 break;
682
683         case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
684                 rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
685                                  ctrl->val);
686
687                 break;
688
689         case V4L2_CID_DIGITAL_GAIN:
690                 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
691                     CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
692                         rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
693                                          ctrl->val);
694                         break;
695                 }
696
697                 rval = ccs_write_addr(sensor,
698                                       SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
699                                       ctrl->val);
700                 if (rval)
701                         break;
702
703                 rval = ccs_write_addr(sensor,
704                                       SMIAPP_REG_U16_DIGITAL_GAIN_RED,
705                                       ctrl->val);
706                 if (rval)
707                         break;
708
709                 rval = ccs_write_addr(sensor,
710                                       SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
711                                       ctrl->val);
712                 if (rval)
713                         break;
714
715                 rval = ccs_write_addr(sensor,
716                                       SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
717                                       ctrl->val);
718
719                 break;
720         case V4L2_CID_EXPOSURE:
721                 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
722
723                 break;
724         case V4L2_CID_HFLIP:
725         case V4L2_CID_VFLIP:
726                 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
727
728                 break;
729         case V4L2_CID_VBLANK:
730                 rval = ccs_write(sensor, FRAME_LENGTH_LINES,
731                                  sensor->pixel_array->crop[
732                                          CCS_PA_PAD_SRC].height
733                                  + ctrl->val);
734
735                 break;
736         case V4L2_CID_HBLANK:
737                 rval = ccs_write(sensor, LINE_LENGTH_PCK,
738                                  sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
739                                  + ctrl->val);
740
741                 break;
742         case V4L2_CID_TEST_PATTERN:
743                 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
744
745                 break;
746         case V4L2_CID_TEST_PATTERN_RED:
747                 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
748
749                 break;
750         case V4L2_CID_TEST_PATTERN_GREENR:
751                 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
752
753                 break;
754         case V4L2_CID_TEST_PATTERN_BLUE:
755                 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
756
757                 break;
758         case V4L2_CID_TEST_PATTERN_GREENB:
759                 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
760
761                 break;
762         case V4L2_CID_CCS_SHADING_CORRECTION:
763                 rval = ccs_write(sensor, SHADING_CORRECTION_EN,
764                                  ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
765                                  0);
766
767                 if (!rval && sensor->luminance_level)
768                         v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
769
770                 break;
771         case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
772                 rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
773
774                 break;
775         case V4L2_CID_PIXEL_RATE:
776                 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
777                 rval = 0;
778
779                 break;
780         default:
781                 rval = -EINVAL;
782         }
783
784         if (pm_status > 0) {
785                 pm_runtime_mark_last_busy(&client->dev);
786                 pm_runtime_put_autosuspend(&client->dev);
787         }
788
789         return rval;
790 }
791
792 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
793         .s_ctrl = ccs_set_ctrl,
794 };
795
796 static int ccs_init_controls(struct ccs_sensor *sensor)
797 {
798         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
799         struct v4l2_fwnode_device_properties props;
800         int rval;
801
802         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
803         if (rval)
804                 return rval;
805
806         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
807
808         rval = v4l2_fwnode_device_parse(&client->dev, &props);
809         if (rval)
810                 return rval;
811
812         rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
813                                                &ccs_ctrl_ops, &props);
814         if (rval)
815                 return rval;
816
817         switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
818         case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
819                 struct {
820                         const char *name;
821                         u32 id;
822                         s32 value;
823                 } const gain_ctrls[] = {
824                         { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
825                           CCS_LIM(sensor, ANALOG_GAIN_M0), },
826                         { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
827                           CCS_LIM(sensor, ANALOG_GAIN_C0), },
828                         { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
829                           CCS_LIM(sensor, ANALOG_GAIN_M1), },
830                         { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
831                           CCS_LIM(sensor, ANALOG_GAIN_C1), },
832                 };
833                 struct v4l2_ctrl_config ctrl_cfg = {
834                         .type = V4L2_CTRL_TYPE_INTEGER,
835                         .ops = &ccs_ctrl_ops,
836                         .flags = V4L2_CTRL_FLAG_READ_ONLY,
837                         .step = 1,
838                 };
839                 unsigned int i;
840
841                 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
842                         ctrl_cfg.name = gain_ctrls[i].name;
843                         ctrl_cfg.id = gain_ctrls[i].id;
844                         ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
845                                 gain_ctrls[i].value;
846
847                         v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
848                                              &ctrl_cfg, NULL);
849                 }
850
851                 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
852                                   &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
853                                   CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
854                                   CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
855                                   max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
856                                       1U),
857                                   CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
858         }
859                 break;
860
861         case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
862                 struct {
863                         const char *name;
864                         u32 id;
865                         u16 min, max, step;
866                 } const gain_ctrls[] = {
867                         {
868                                 "Analogue Linear Gain",
869                                 V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
870                                 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
871                                 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
872                                 max(CCS_LIM(sensor,
873                                             ANALOG_LINEAR_GAIN_STEP_SIZE),
874                                     1U),
875                         },
876                         {
877                                 "Analogue Exponential Gain",
878                                 V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
879                                 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
880                                 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
881                                 max(CCS_LIM(sensor,
882                                             ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
883                                     1U),
884                         },
885                 };
886                 struct v4l2_ctrl_config ctrl_cfg = {
887                         .type = V4L2_CTRL_TYPE_INTEGER,
888                         .ops = &ccs_ctrl_ops,
889                 };
890                 unsigned int i;
891
892                 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
893                         ctrl_cfg.name = gain_ctrls[i].name;
894                         ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
895                         ctrl_cfg.max = gain_ctrls[i].max;
896                         ctrl_cfg.step = gain_ctrls[i].step;
897                         ctrl_cfg.id = gain_ctrls[i].id;
898
899                         v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
900                                              &ctrl_cfg, NULL);
901                 }
902         }
903         }
904
905         if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
906             (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
907              CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
908                 const struct v4l2_ctrl_config ctrl_cfg = {
909                         .name = "Shading Correction",
910                         .type = V4L2_CTRL_TYPE_BOOLEAN,
911                         .id = V4L2_CID_CCS_SHADING_CORRECTION,
912                         .ops = &ccs_ctrl_ops,
913                         .max = 1,
914                         .step = 1,
915                 };
916
917                 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
918                                      &ctrl_cfg, NULL);
919         }
920
921         if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
922             CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
923                 const struct v4l2_ctrl_config ctrl_cfg = {
924                         .name = "Luminance Correction Level",
925                         .type = V4L2_CTRL_TYPE_BOOLEAN,
926                         .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
927                         .ops = &ccs_ctrl_ops,
928                         .max = 255,
929                         .step = 1,
930                         .def = 128,
931                 };
932
933                 sensor->luminance_level =
934                         v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
935                                              &ctrl_cfg, NULL);
936         }
937
938         if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
939             CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
940             CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
941             SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
942                 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
943                                   &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
944                                   CCS_LIM(sensor, DIGITAL_GAIN_MIN),
945                                   CCS_LIM(sensor, DIGITAL_GAIN_MAX),
946                                   max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
947                                       1U),
948                                   0x100);
949
950         /* Exposure limits will be updated soon, use just something here. */
951         sensor->exposure = v4l2_ctrl_new_std(
952                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
953                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
954
955         sensor->hflip = v4l2_ctrl_new_std(
956                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
957                 V4L2_CID_HFLIP, 0, 1, 1, 0);
958         sensor->vflip = v4l2_ctrl_new_std(
959                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
960                 V4L2_CID_VFLIP, 0, 1, 1, 0);
961
962         sensor->vblank = v4l2_ctrl_new_std(
963                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
964                 V4L2_CID_VBLANK, 0, 1, 1, 0);
965
966         if (sensor->vblank)
967                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
968
969         sensor->hblank = v4l2_ctrl_new_std(
970                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
971                 V4L2_CID_HBLANK, 0, 1, 1, 0);
972
973         if (sensor->hblank)
974                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
975
976         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
977                 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
978                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
979
980         v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
981                                      &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
982                                      ARRAY_SIZE(ccs_test_patterns) - 1,
983                                      0, 0, ccs_test_patterns);
984
985         if (sensor->pixel_array->ctrl_handler.error) {
986                 dev_err(&client->dev,
987                         "pixel array controls initialization failed (%d)\n",
988                         sensor->pixel_array->ctrl_handler.error);
989                 return sensor->pixel_array->ctrl_handler.error;
990         }
991
992         sensor->pixel_array->sd.ctrl_handler =
993                 &sensor->pixel_array->ctrl_handler;
994
995         v4l2_ctrl_cluster(2, &sensor->hflip);
996
997         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
998         if (rval)
999                 return rval;
1000
1001         sensor->src->ctrl_handler.lock = &sensor->mutex;
1002
1003         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1004                 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1005                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1006
1007         if (sensor->src->ctrl_handler.error) {
1008                 dev_err(&client->dev,
1009                         "src controls initialization failed (%d)\n",
1010                         sensor->src->ctrl_handler.error);
1011                 return sensor->src->ctrl_handler.error;
1012         }
1013
1014         sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * For controls that require information on available media bus codes
1021  * and linke frequencies.
1022  */
1023 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1024 {
1025         unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1026                 sensor->csi_format->compressed - sensor->compressed_min_bpp];
1027         unsigned int i;
1028
1029         for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1030                 int max_value = (1 << sensor->csi_format->width) - 1;
1031
1032                 sensor->test_data[i] = v4l2_ctrl_new_std(
1033                                 &sensor->pixel_array->ctrl_handler,
1034                                 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1035                                 0, max_value, 1, max_value);
1036         }
1037
1038         sensor->link_freq = v4l2_ctrl_new_int_menu(
1039                 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1040                 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1041                 __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1042
1043         return sensor->src->ctrl_handler.error;
1044 }
1045
1046 static void ccs_free_controls(struct ccs_sensor *sensor)
1047 {
1048         unsigned int i;
1049
1050         for (i = 0; i < sensor->ssds_used; i++)
1051                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1052 }
1053
1054 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1055 {
1056         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1057         struct ccs_pll *pll = &sensor->pll;
1058         u8 compressed_max_bpp = 0;
1059         unsigned int type, n;
1060         unsigned int i, pixel_order;
1061         int rval;
1062
1063         type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1064
1065         dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1066
1067         rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1068         if (rval)
1069                 return rval;
1070
1071         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1072                 dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1073                 return -EINVAL;
1074         }
1075
1076         dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1077                 pixel_order_str[pixel_order]);
1078
1079         switch (type) {
1080         case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1081                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1082                 break;
1083         case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1084                 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1085                 break;
1086         default:
1087                 return -EINVAL;
1088         }
1089
1090         sensor->default_pixel_order = pixel_order;
1091         sensor->mbus_frame_fmts = 0;
1092
1093         for (i = 0; i < n; i++) {
1094                 unsigned int fmt, j;
1095
1096                 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1097
1098                 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1099                         i, fmt >> 8, (u8)fmt);
1100
1101                 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1102                         const struct ccs_csi_data_format *f =
1103                                 &ccs_csi_data_formats[j];
1104
1105                         if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1106                                 continue;
1107
1108                         if (f->width != fmt >>
1109                             CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1110                             f->compressed !=
1111                             (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1112                                 continue;
1113
1114                         dev_dbg(&client->dev, "jolly good! %u\n", j);
1115
1116                         sensor->default_mbus_frame_fmts |= 1 << j;
1117                 }
1118         }
1119
1120         /* Figure out which BPP values can be used with which formats. */
1121         pll->binning_horizontal = 1;
1122         pll->binning_vertical = 1;
1123         pll->scale_m = sensor->scale_m;
1124
1125         for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1126                 sensor->compressed_min_bpp =
1127                         min(ccs_csi_data_formats[i].compressed,
1128                             sensor->compressed_min_bpp);
1129                 compressed_max_bpp =
1130                         max(ccs_csi_data_formats[i].compressed,
1131                             compressed_max_bpp);
1132         }
1133
1134         sensor->valid_link_freqs = devm_kcalloc(
1135                 &client->dev,
1136                 compressed_max_bpp - sensor->compressed_min_bpp + 1,
1137                 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1138         if (!sensor->valid_link_freqs)
1139                 return -ENOMEM;
1140
1141         for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1142                 const struct ccs_csi_data_format *f =
1143                         &ccs_csi_data_formats[i];
1144                 unsigned long *valid_link_freqs =
1145                         &sensor->valid_link_freqs[
1146                                 f->compressed - sensor->compressed_min_bpp];
1147                 unsigned int j;
1148
1149                 if (!(sensor->default_mbus_frame_fmts & 1 << i))
1150                         continue;
1151
1152                 pll->bits_per_pixel = f->compressed;
1153
1154                 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1155                         pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1156
1157                         rval = ccs_pll_try(sensor, pll);
1158                         dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1159                                 pll->link_freq, pll->bits_per_pixel,
1160                                 rval ? "not ok" : "ok");
1161                         if (rval)
1162                                 continue;
1163
1164                         set_bit(j, valid_link_freqs);
1165                 }
1166
1167                 if (!*valid_link_freqs) {
1168                         dev_info(&client->dev,
1169                                  "no valid link frequencies for %u bpp\n",
1170                                  f->compressed);
1171                         sensor->default_mbus_frame_fmts &= ~BIT(i);
1172                         continue;
1173                 }
1174
1175                 if (!sensor->csi_format
1176                     || f->width > sensor->csi_format->width
1177                     || (f->width == sensor->csi_format->width
1178                         && f->compressed > sensor->csi_format->compressed)) {
1179                         sensor->csi_format = f;
1180                         sensor->internal_csi_format = f;
1181                 }
1182         }
1183
1184         if (!sensor->csi_format) {
1185                 dev_err(&client->dev, "no supported mbus code found\n");
1186                 return -EINVAL;
1187         }
1188
1189         ccs_update_mbus_formats(sensor);
1190
1191         return 0;
1192 }
1193
1194 static void ccs_update_blanking(struct ccs_sensor *sensor)
1195 {
1196         struct v4l2_ctrl *vblank = sensor->vblank;
1197         struct v4l2_ctrl *hblank = sensor->hblank;
1198         u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1199         int min, max;
1200
1201         if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1202                 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1203                 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1204                 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1205                 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1206                 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1207         } else {
1208                 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1209                 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1210                 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1211                 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1212                 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1213         }
1214
1215         min = max_t(int,
1216                     CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1217                     min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1218         max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1219
1220         __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1221
1222         min = max_t(int,
1223                     min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1224                     min_lbp);
1225         max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1226
1227         __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1228
1229         __ccs_update_exposure_limits(sensor);
1230 }
1231
1232 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1233 {
1234         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1235         int rval;
1236
1237         rval = ccs_pll_update(sensor);
1238         if (rval < 0)
1239                 return rval;
1240
1241         /* Output from pixel array, including blanking */
1242         ccs_update_blanking(sensor);
1243
1244         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1245         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1246
1247         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1248                 sensor->pll.pixel_rate_pixel_array /
1249                 ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1250                   + sensor->hblank->val) *
1251                  (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1252                   + sensor->vblank->val) / 100));
1253
1254         return 0;
1255 }
1256
1257 /*
1258  *
1259  * SMIA++ NVM handling
1260  *
1261  */
1262
1263 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1264                              u8 *status)
1265 {
1266         unsigned int i;
1267         int rval;
1268         u32 s;
1269
1270         *status = 0;
1271
1272         rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1273         if (rval)
1274                 return rval;
1275
1276         rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1277                          CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1278         if (rval)
1279                 return rval;
1280
1281         rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1282         if (rval)
1283                 return rval;
1284
1285         if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1286                 *status = s;
1287                 return -ENODATA;
1288         }
1289
1290         if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1291             CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1292                 for (i = 1000; i > 0; i--) {
1293                         if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1294                                 break;
1295
1296                         rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1297                         if (rval)
1298                                 return rval;
1299                 }
1300
1301                 if (!i)
1302                         return -ETIMEDOUT;
1303         }
1304
1305         for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1306                 u32 v;
1307
1308                 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1309                 if (rval)
1310                         return rval;
1311
1312                 *nvm++ = v;
1313         }
1314
1315         return 0;
1316 }
1317
1318 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1319                         size_t nvm_size)
1320 {
1321         u8 status = 0;
1322         u32 p;
1323         int rval = 0, rval2;
1324
1325         for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1326                      && !rval; p++) {
1327                 rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1328                 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1329         }
1330
1331         if (rval == -ENODATA &&
1332             status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1333                 rval = 0;
1334
1335         rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1336         if (rval < 0)
1337                 return rval;
1338         else
1339                 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1340 }
1341
1342 /*
1343  *
1344  * SMIA++ CCI address control
1345  *
1346  */
1347 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1348 {
1349         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350         int rval;
1351         u32 val;
1352
1353         client->addr = sensor->hwcfg.i2c_addr_dfl;
1354
1355         rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1356                          sensor->hwcfg.i2c_addr_alt << 1);
1357         if (rval)
1358                 return rval;
1359
1360         client->addr = sensor->hwcfg.i2c_addr_alt;
1361
1362         /* verify addr change went ok */
1363         rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1364         if (rval)
1365                 return rval;
1366
1367         if (val != sensor->hwcfg.i2c_addr_alt << 1)
1368                 return -ENODEV;
1369
1370         return 0;
1371 }
1372
1373 /*
1374  *
1375  * SMIA++ Mode Control
1376  *
1377  */
1378 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1379 {
1380         struct ccs_flash_strobe_parms *strobe_setup;
1381         unsigned int ext_freq = sensor->hwcfg.ext_clk;
1382         u32 tmp;
1383         u32 strobe_adjustment;
1384         u32 strobe_width_high_rs;
1385         int rval;
1386
1387         strobe_setup = sensor->hwcfg.strobe_setup;
1388
1389         /*
1390          * How to calculate registers related to strobe length. Please
1391          * do not change, or if you do at least know what you're
1392          * doing. :-)
1393          *
1394          * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1395          *
1396          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1397          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1398          *
1399          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1400          * flash_strobe_adjustment E N, [1 - 0xff]
1401          *
1402          * The formula above is written as below to keep it on one
1403          * line:
1404          *
1405          * l / 10^6 = w / e * a
1406          *
1407          * Let's mark w * a by x:
1408          *
1409          * x = w * a
1410          *
1411          * Thus, we get:
1412          *
1413          * x = l * e / 10^6
1414          *
1415          * The strobe width must be at least as long as requested,
1416          * thus rounding upwards is needed.
1417          *
1418          * x = (l * e + 10^6 - 1) / 10^6
1419          * -----------------------------
1420          *
1421          * Maximum possible accuracy is wanted at all times. Thus keep
1422          * a as small as possible.
1423          *
1424          * Calculate a, assuming maximum w, with rounding upwards:
1425          *
1426          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1427          * -------------------------------------
1428          *
1429          * Thus, we also get w, with that a, with rounding upwards:
1430          *
1431          * w = (x + a - 1) / a
1432          * -------------------
1433          *
1434          * To get limits:
1435          *
1436          * x E [1, (2^16 - 1) * (2^8 - 1)]
1437          *
1438          * Substituting maximum x to the original formula (with rounding),
1439          * the maximum l is thus
1440          *
1441          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1442          *
1443          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1444          * --------------------------------------------------
1445          *
1446          * flash_strobe_length must be clamped between 1 and
1447          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1448          *
1449          * Then,
1450          *
1451          * flash_strobe_adjustment = ((flash_strobe_length *
1452          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1453          *
1454          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1455          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1456          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1457          */
1458         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1459                       1000000 + 1, ext_freq);
1460         strobe_setup->strobe_width_high_us =
1461                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1462
1463         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1464                         1000000 - 1), 1000000ULL);
1465         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1466         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1467                                 strobe_adjustment;
1468
1469         rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1470         if (rval < 0)
1471                 goto out;
1472
1473         rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1474         if (rval < 0)
1475                 goto out;
1476
1477         rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1478                          strobe_width_high_rs);
1479         if (rval < 0)
1480                 goto out;
1481
1482         rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1483                          strobe_setup->strobe_delay);
1484         if (rval < 0)
1485                 goto out;
1486
1487         rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1488                          strobe_setup->stobe_start_point);
1489         if (rval < 0)
1490                 goto out;
1491
1492         rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1493
1494 out:
1495         sensor->hwcfg.strobe_setup->trigger = 0;
1496
1497         return rval;
1498 }
1499
1500 /* -----------------------------------------------------------------------------
1501  * Power management
1502  */
1503
1504 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1505 {
1506         int rval;
1507
1508         rval = ccs_write_data_regs(sensor,
1509                                    sensor->sdata.sensor_manufacturer_regs,
1510                                    sensor->sdata.num_sensor_manufacturer_regs);
1511         if (rval)
1512                 return rval;
1513
1514         return ccs_write_data_regs(sensor,
1515                                    sensor->mdata.module_manufacturer_regs,
1516                                    sensor->mdata.num_module_manufacturer_regs);
1517 }
1518
1519 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1520 {
1521         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1522         u8 val;
1523
1524         if (!sensor->ccs_limits)
1525                 return 0;
1526
1527         if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1528             CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1529                 val = CCS_PHY_CTRL_AUTO;
1530         } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1531                    CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1532                 val = CCS_PHY_CTRL_UI;
1533         } else {
1534                 dev_err(&client->dev, "manual PHY control not supported\n");
1535                 return -EINVAL;
1536         }
1537
1538         return ccs_write(sensor, PHY_CTRL, val);
1539 }
1540
1541 static int ccs_power_on(struct device *dev)
1542 {
1543         struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1544         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1545         /*
1546          * The sub-device related to the I2C device is always the
1547          * source one, i.e. ssds[0].
1548          */
1549         struct ccs_sensor *sensor =
1550                 container_of(ssd, struct ccs_sensor, ssds[0]);
1551         const struct ccs_device *ccsdev = device_get_match_data(dev);
1552         int rval;
1553
1554         rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1555                                      sensor->regulators);
1556         if (rval) {
1557                 dev_err(dev, "failed to enable vana regulator\n");
1558                 return rval;
1559         }
1560
1561         if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1562                 unsigned int sleep;
1563
1564                 rval = clk_prepare_enable(sensor->ext_clk);
1565                 if (rval < 0) {
1566                         dev_dbg(dev, "failed to enable xclk\n");
1567                         goto out_xclk_fail;
1568                 }
1569
1570                 gpiod_set_value(sensor->reset, 0);
1571                 gpiod_set_value(sensor->xshutdown, 1);
1572
1573                 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1574                         sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1575                 else
1576                         sleep = 5000;
1577
1578                 usleep_range(sleep, sleep);
1579         }
1580
1581         /*
1582          * Failures to respond to the address change command have been noticed.
1583          * Those failures seem to be caused by the sensor requiring a longer
1584          * boot time than advertised. An additional 10ms delay seems to work
1585          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1586          * unnecessary. The failures need to be investigated to find a proper
1587          * fix, and a delay will likely need to be added here if the I2C write
1588          * retry hack is reverted before the root cause of the boot time issue
1589          * is found.
1590          */
1591
1592         if (!sensor->reset && !sensor->xshutdown) {
1593                 u8 retry = 100;
1594                 u32 reset;
1595
1596                 rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1597                 if (rval < 0) {
1598                         dev_err(dev, "software reset failed\n");
1599                         goto out_cci_addr_fail;
1600                 }
1601
1602                 do {
1603                         rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1604                         reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1605                         if (reset)
1606                                 break;
1607
1608                         usleep_range(1000, 2000);
1609                 } while (--retry);
1610
1611                 if (!reset) {
1612                         dev_err(dev, "software reset failed\n");
1613                         rval = -EIO;
1614                         goto out_cci_addr_fail;
1615                 }
1616         }
1617
1618         if (sensor->hwcfg.i2c_addr_alt) {
1619                 rval = ccs_change_cci_addr(sensor);
1620                 if (rval) {
1621                         dev_err(dev, "cci address change error\n");
1622                         goto out_cci_addr_fail;
1623                 }
1624         }
1625
1626         rval = ccs_write(sensor, COMPRESSION_MODE,
1627                          CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1628         if (rval) {
1629                 dev_err(dev, "compression mode set failed\n");
1630                 goto out_cci_addr_fail;
1631         }
1632
1633         rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1634                          sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1635         if (rval) {
1636                 dev_err(dev, "extclk frequency set failed\n");
1637                 goto out_cci_addr_fail;
1638         }
1639
1640         rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1641         if (rval) {
1642                 dev_err(dev, "csi lane mode set failed\n");
1643                 goto out_cci_addr_fail;
1644         }
1645
1646         rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1647                          CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1648         if (rval) {
1649                 dev_err(dev, "fast standby set failed\n");
1650                 goto out_cci_addr_fail;
1651         }
1652
1653         rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1654                          sensor->hwcfg.csi_signalling_mode);
1655         if (rval) {
1656                 dev_err(dev, "csi signalling mode set failed\n");
1657                 goto out_cci_addr_fail;
1658         }
1659
1660         rval = ccs_update_phy_ctrl(sensor);
1661         if (rval < 0)
1662                 goto out_cci_addr_fail;
1663
1664         rval = ccs_write_msr_regs(sensor);
1665         if (rval)
1666                 goto out_cci_addr_fail;
1667
1668         rval = ccs_call_quirk(sensor, post_poweron);
1669         if (rval) {
1670                 dev_err(dev, "post_poweron quirks failed\n");
1671                 goto out_cci_addr_fail;
1672         }
1673
1674         return 0;
1675
1676 out_cci_addr_fail:
1677         gpiod_set_value(sensor->reset, 1);
1678         gpiod_set_value(sensor->xshutdown, 0);
1679         clk_disable_unprepare(sensor->ext_clk);
1680
1681 out_xclk_fail:
1682         regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1683                                sensor->regulators);
1684
1685         return rval;
1686 }
1687
1688 static int ccs_power_off(struct device *dev)
1689 {
1690         struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1691         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1692         struct ccs_sensor *sensor =
1693                 container_of(ssd, struct ccs_sensor, ssds[0]);
1694
1695         /*
1696          * Currently power/clock to lens are enable/disabled separately
1697          * but they are essentially the same signals. So if the sensor is
1698          * powered off while the lens is powered on the sensor does not
1699          * really see a power off and next time the cci address change
1700          * will fail. So do a soft reset explicitly here.
1701          */
1702         if (sensor->hwcfg.i2c_addr_alt)
1703                 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1704
1705         gpiod_set_value(sensor->reset, 1);
1706         gpiod_set_value(sensor->xshutdown, 0);
1707         clk_disable_unprepare(sensor->ext_clk);
1708         usleep_range(5000, 5000);
1709         regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1710                                sensor->regulators);
1711         sensor->streaming = false;
1712
1713         return 0;
1714 }
1715
1716 /* -----------------------------------------------------------------------------
1717  * Video stream management
1718  */
1719
1720 static int ccs_start_streaming(struct ccs_sensor *sensor)
1721 {
1722         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1723         unsigned int binning_mode;
1724         int rval;
1725
1726         mutex_lock(&sensor->mutex);
1727
1728         rval = ccs_write(sensor, CSI_DATA_FORMAT,
1729                          (sensor->csi_format->width << 8) |
1730                          sensor->csi_format->compressed);
1731         if (rval)
1732                 goto out;
1733
1734         /* Binning configuration */
1735         if (sensor->binning_horizontal == 1 &&
1736             sensor->binning_vertical == 1) {
1737                 binning_mode = 0;
1738         } else {
1739                 u8 binning_type =
1740                         (sensor->binning_horizontal << 4)
1741                         | sensor->binning_vertical;
1742
1743                 rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1744                 if (rval < 0)
1745                         goto out;
1746
1747                 binning_mode = 1;
1748         }
1749         rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1750         if (rval < 0)
1751                 goto out;
1752
1753         /* Set up PLL */
1754         rval = ccs_pll_configure(sensor);
1755         if (rval)
1756                 goto out;
1757
1758         /* Analog crop start coordinates */
1759         rval = ccs_write(sensor, X_ADDR_START,
1760                          sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1761         if (rval < 0)
1762                 goto out;
1763
1764         rval = ccs_write(sensor, Y_ADDR_START,
1765                          sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1766         if (rval < 0)
1767                 goto out;
1768
1769         /* Analog crop end coordinates */
1770         rval = ccs_write(
1771                 sensor, X_ADDR_END,
1772                 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1773                 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1774         if (rval < 0)
1775                 goto out;
1776
1777         rval = ccs_write(
1778                 sensor, Y_ADDR_END,
1779                 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1780                 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1781         if (rval < 0)
1782                 goto out;
1783
1784         /*
1785          * Output from pixel array, including blanking, is set using
1786          * controls below. No need to set here.
1787          */
1788
1789         /* Digital crop */
1790         if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1791             == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1792                 rval = ccs_write(
1793                         sensor, DIGITAL_CROP_X_OFFSET,
1794                         sensor->scaler->crop[CCS_PAD_SINK].left);
1795                 if (rval < 0)
1796                         goto out;
1797
1798                 rval = ccs_write(
1799                         sensor, DIGITAL_CROP_Y_OFFSET,
1800                         sensor->scaler->crop[CCS_PAD_SINK].top);
1801                 if (rval < 0)
1802                         goto out;
1803
1804                 rval = ccs_write(
1805                         sensor, DIGITAL_CROP_IMAGE_WIDTH,
1806                         sensor->scaler->crop[CCS_PAD_SINK].width);
1807                 if (rval < 0)
1808                         goto out;
1809
1810                 rval = ccs_write(
1811                         sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1812                         sensor->scaler->crop[CCS_PAD_SINK].height);
1813                 if (rval < 0)
1814                         goto out;
1815         }
1816
1817         /* Scaling */
1818         if (CCS_LIM(sensor, SCALING_CAPABILITY)
1819             != CCS_SCALING_CAPABILITY_NONE) {
1820                 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1821                 if (rval < 0)
1822                         goto out;
1823
1824                 rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1825                 if (rval < 0)
1826                         goto out;
1827         }
1828
1829         /* Output size from sensor */
1830         rval = ccs_write(sensor, X_OUTPUT_SIZE,
1831                          sensor->src->crop[CCS_PAD_SRC].width);
1832         if (rval < 0)
1833                 goto out;
1834         rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1835                          sensor->src->crop[CCS_PAD_SRC].height);
1836         if (rval < 0)
1837                 goto out;
1838
1839         if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1840             (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1841              SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1842             sensor->hwcfg.strobe_setup != NULL &&
1843             sensor->hwcfg.strobe_setup->trigger != 0) {
1844                 rval = ccs_setup_flash_strobe(sensor);
1845                 if (rval)
1846                         goto out;
1847         }
1848
1849         rval = ccs_call_quirk(sensor, pre_streamon);
1850         if (rval) {
1851                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1852                 goto out;
1853         }
1854
1855         rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1856
1857 out:
1858         mutex_unlock(&sensor->mutex);
1859
1860         return rval;
1861 }
1862
1863 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1864 {
1865         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1866         int rval;
1867
1868         mutex_lock(&sensor->mutex);
1869         rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1870         if (rval)
1871                 goto out;
1872
1873         rval = ccs_call_quirk(sensor, post_streamoff);
1874         if (rval)
1875                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1876
1877 out:
1878         mutex_unlock(&sensor->mutex);
1879         return rval;
1880 }
1881
1882 /* -----------------------------------------------------------------------------
1883  * V4L2 subdev video operations
1884  */
1885
1886 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1887 {
1888         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1889         int rval;
1890
1891         /*
1892          * It can't use pm_runtime_resume_and_get() here, as the driver
1893          * relies at the returned value to detect if the device was already
1894          * active or not.
1895          */
1896         rval = pm_runtime_get_sync(&client->dev);
1897         if (rval < 0)
1898                 goto error;
1899
1900         /* Device was already active, so don't set controls */
1901         if (rval == 1)
1902                 return 0;
1903
1904         /* Restore V4L2 controls to the previously suspended device */
1905         rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1906         if (rval)
1907                 goto error;
1908
1909         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1910         if (rval)
1911                 goto error;
1912
1913         /* Keep PM runtime usage_count incremented on success */
1914         return 0;
1915 error:
1916         pm_runtime_put(&client->dev);
1917         return rval;
1918 }
1919
1920 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1921 {
1922         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1923         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1924         int rval;
1925
1926         if (sensor->streaming == enable)
1927                 return 0;
1928
1929         if (!enable) {
1930                 ccs_stop_streaming(sensor);
1931                 sensor->streaming = false;
1932                 pm_runtime_mark_last_busy(&client->dev);
1933                 pm_runtime_put_autosuspend(&client->dev);
1934
1935                 return 0;
1936         }
1937
1938         rval = ccs_pm_get_init(sensor);
1939         if (rval)
1940                 return rval;
1941
1942         sensor->streaming = true;
1943
1944         rval = ccs_start_streaming(sensor);
1945         if (rval < 0) {
1946                 sensor->streaming = false;
1947                 pm_runtime_mark_last_busy(&client->dev);
1948                 pm_runtime_put_autosuspend(&client->dev);
1949         }
1950
1951         return rval;
1952 }
1953
1954 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1955 {
1956         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1957         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1958         int rval;
1959
1960         if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1961                 switch (sensor->hwcfg.csi_signalling_mode) {
1962                 case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1963                         if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1964                               CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1965                                 return -EACCES;
1966                         break;
1967                 case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1968                         if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1969                               CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1970                                 return -EACCES;
1971                         break;
1972                 default:
1973                         return -EACCES;
1974                 }
1975         }
1976
1977         rval = ccs_pm_get_init(sensor);
1978         if (rval)
1979                 return rval;
1980
1981         if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1982                 rval = ccs_write(sensor, MANUAL_LP_CTRL,
1983                                  CCS_MANUAL_LP_CTRL_ENABLE);
1984                 if (rval)
1985                         pm_runtime_put(&client->dev);
1986         }
1987
1988         return rval;
1989 }
1990
1991 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1992 {
1993         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1994         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1995
1996         return pm_runtime_put(&client->dev);
1997 }
1998
1999 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
2000                               struct v4l2_subdev_state *sd_state,
2001                               struct v4l2_subdev_mbus_code_enum *code)
2002 {
2003         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2004         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2005         unsigned int i;
2006         int idx = -1;
2007         int rval = -EINVAL;
2008
2009         mutex_lock(&sensor->mutex);
2010
2011         dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
2012                 subdev->name, code->pad, code->index);
2013
2014         if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2015                 if (code->index)
2016                         goto out;
2017
2018                 code->code = sensor->internal_csi_format->code;
2019                 rval = 0;
2020                 goto out;
2021         }
2022
2023         for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2024                 if (sensor->mbus_frame_fmts & (1 << i))
2025                         idx++;
2026
2027                 if (idx == code->index) {
2028                         code->code = ccs_csi_data_formats[i].code;
2029                         dev_err(&client->dev, "found index %u, i %u, code %x\n",
2030                                 code->index, i, code->code);
2031                         rval = 0;
2032                         break;
2033                 }
2034         }
2035
2036 out:
2037         mutex_unlock(&sensor->mutex);
2038
2039         return rval;
2040 }
2041
2042 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2043 {
2044         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2045
2046         if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2047                 return sensor->csi_format->code;
2048         else
2049                 return sensor->internal_csi_format->code;
2050 }
2051
2052 static int __ccs_get_format(struct v4l2_subdev *subdev,
2053                             struct v4l2_subdev_state *sd_state,
2054                             struct v4l2_subdev_format *fmt)
2055 {
2056         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2057
2058         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
2059                 fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
2060                                                           fmt->pad);
2061         } else {
2062                 struct v4l2_rect *r;
2063
2064                 if (fmt->pad == ssd->source_pad)
2065                         r = &ssd->crop[ssd->source_pad];
2066                 else
2067                         r = &ssd->sink_fmt;
2068
2069                 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2070                 fmt->format.width = r->width;
2071                 fmt->format.height = r->height;
2072                 fmt->format.field = V4L2_FIELD_NONE;
2073         }
2074
2075         return 0;
2076 }
2077
2078 static int ccs_get_format(struct v4l2_subdev *subdev,
2079                           struct v4l2_subdev_state *sd_state,
2080                           struct v4l2_subdev_format *fmt)
2081 {
2082         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2083         int rval;
2084
2085         mutex_lock(&sensor->mutex);
2086         rval = __ccs_get_format(subdev, sd_state, fmt);
2087         mutex_unlock(&sensor->mutex);
2088
2089         return rval;
2090 }
2091
2092 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2093                                  struct v4l2_subdev_state *sd_state,
2094                                  struct v4l2_rect **crops,
2095                                  struct v4l2_rect **comps, int which)
2096 {
2097         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2098         unsigned int i;
2099
2100         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2101                 if (crops)
2102                         for (i = 0; i < subdev->entity.num_pads; i++)
2103                                 crops[i] = &ssd->crop[i];
2104                 if (comps)
2105                         *comps = &ssd->compose;
2106         } else {
2107                 if (crops) {
2108                         for (i = 0; i < subdev->entity.num_pads; i++)
2109                                 crops[i] = v4l2_subdev_get_try_crop(subdev,
2110                                                                     sd_state,
2111                                                                     i);
2112                 }
2113                 if (comps)
2114                         *comps = v4l2_subdev_get_try_compose(subdev, sd_state,
2115                                                              CCS_PAD_SINK);
2116         }
2117 }
2118
2119 /* Changes require propagation only on sink pad. */
2120 static void ccs_propagate(struct v4l2_subdev *subdev,
2121                           struct v4l2_subdev_state *sd_state, int which,
2122                           int target)
2123 {
2124         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2125         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2126         struct v4l2_rect *comp, *crops[CCS_PADS];
2127
2128         ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
2129
2130         switch (target) {
2131         case V4L2_SEL_TGT_CROP:
2132                 comp->width = crops[CCS_PAD_SINK]->width;
2133                 comp->height = crops[CCS_PAD_SINK]->height;
2134                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2135                         if (ssd == sensor->scaler) {
2136                                 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2137                                 sensor->scaling_mode =
2138                                         CCS_SCALING_MODE_NO_SCALING;
2139                         } else if (ssd == sensor->binner) {
2140                                 sensor->binning_horizontal = 1;
2141                                 sensor->binning_vertical = 1;
2142                         }
2143                 }
2144                 fallthrough;
2145         case V4L2_SEL_TGT_COMPOSE:
2146                 *crops[CCS_PAD_SRC] = *comp;
2147                 break;
2148         default:
2149                 WARN_ON_ONCE(1);
2150         }
2151 }
2152
2153 static const struct ccs_csi_data_format
2154 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2155 {
2156         unsigned int i;
2157
2158         for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2159                 if (sensor->mbus_frame_fmts & (1 << i) &&
2160                     ccs_csi_data_formats[i].code == code)
2161                         return &ccs_csi_data_formats[i];
2162         }
2163
2164         return sensor->csi_format;
2165 }
2166
2167 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2168                                  struct v4l2_subdev_state *sd_state,
2169                                  struct v4l2_subdev_format *fmt)
2170 {
2171         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2172         const struct ccs_csi_data_format *csi_format,
2173                 *old_csi_format = sensor->csi_format;
2174         unsigned long *valid_link_freqs;
2175         u32 code = fmt->format.code;
2176         unsigned int i;
2177         int rval;
2178
2179         rval = __ccs_get_format(subdev, sd_state, fmt);
2180         if (rval)
2181                 return rval;
2182
2183         /*
2184          * Media bus code is changeable on src subdev's source pad. On
2185          * other source pads we just get format here.
2186          */
2187         if (subdev != &sensor->src->sd)
2188                 return 0;
2189
2190         csi_format = ccs_validate_csi_data_format(sensor, code);
2191
2192         fmt->format.code = csi_format->code;
2193
2194         if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2195                 return 0;
2196
2197         sensor->csi_format = csi_format;
2198
2199         if (csi_format->width != old_csi_format->width)
2200                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2201                         __v4l2_ctrl_modify_range(
2202                                 sensor->test_data[i], 0,
2203                                 (1 << csi_format->width) - 1, 1, 0);
2204
2205         if (csi_format->compressed == old_csi_format->compressed)
2206                 return 0;
2207
2208         valid_link_freqs =
2209                 &sensor->valid_link_freqs[sensor->csi_format->compressed
2210                                           - sensor->compressed_min_bpp];
2211
2212         __v4l2_ctrl_modify_range(
2213                 sensor->link_freq, 0,
2214                 __fls(*valid_link_freqs), ~*valid_link_freqs,
2215                 __ffs(*valid_link_freqs));
2216
2217         return ccs_pll_update(sensor);
2218 }
2219
2220 static int ccs_set_format(struct v4l2_subdev *subdev,
2221                           struct v4l2_subdev_state *sd_state,
2222                           struct v4l2_subdev_format *fmt)
2223 {
2224         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2225         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2226         struct v4l2_rect *crops[CCS_PADS];
2227
2228         mutex_lock(&sensor->mutex);
2229
2230         if (fmt->pad == ssd->source_pad) {
2231                 int rval;
2232
2233                 rval = ccs_set_format_source(subdev, sd_state, fmt);
2234
2235                 mutex_unlock(&sensor->mutex);
2236
2237                 return rval;
2238         }
2239
2240         /* Sink pad. Width and height are changeable here. */
2241         fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2242         fmt->format.width &= ~1;
2243         fmt->format.height &= ~1;
2244         fmt->format.field = V4L2_FIELD_NONE;
2245
2246         fmt->format.width =
2247                 clamp(fmt->format.width,
2248                       CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2249                       CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2250         fmt->format.height =
2251                 clamp(fmt->format.height,
2252                       CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2253                       CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2254
2255         ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
2256
2257         crops[ssd->sink_pad]->left = 0;
2258         crops[ssd->sink_pad]->top = 0;
2259         crops[ssd->sink_pad]->width = fmt->format.width;
2260         crops[ssd->sink_pad]->height = fmt->format.height;
2261         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2262                 ssd->sink_fmt = *crops[ssd->sink_pad];
2263         ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2264
2265         mutex_unlock(&sensor->mutex);
2266
2267         return 0;
2268 }
2269
2270 /*
2271  * Calculate goodness of scaled image size compared to expected image
2272  * size and flags provided.
2273  */
2274 #define SCALING_GOODNESS                100000
2275 #define SCALING_GOODNESS_EXTREME        100000000
2276 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2277                             int h, int ask_h, u32 flags)
2278 {
2279         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2280         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2281         int val = 0;
2282
2283         w &= ~1;
2284         ask_w &= ~1;
2285         h &= ~1;
2286         ask_h &= ~1;
2287
2288         if (flags & V4L2_SEL_FLAG_GE) {
2289                 if (w < ask_w)
2290                         val -= SCALING_GOODNESS;
2291                 if (h < ask_h)
2292                         val -= SCALING_GOODNESS;
2293         }
2294
2295         if (flags & V4L2_SEL_FLAG_LE) {
2296                 if (w > ask_w)
2297                         val -= SCALING_GOODNESS;
2298                 if (h > ask_h)
2299                         val -= SCALING_GOODNESS;
2300         }
2301
2302         val -= abs(w - ask_w);
2303         val -= abs(h - ask_h);
2304
2305         if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2306                 val -= SCALING_GOODNESS_EXTREME;
2307
2308         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2309                 w, ask_w, h, ask_h, val);
2310
2311         return val;
2312 }
2313
2314 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2315                                    struct v4l2_subdev_state *sd_state,
2316                                    struct v4l2_subdev_selection *sel,
2317                                    struct v4l2_rect **crops,
2318                                    struct v4l2_rect *comp)
2319 {
2320         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2321         unsigned int i;
2322         unsigned int binh = 1, binv = 1;
2323         int best = scaling_goodness(
2324                 subdev,
2325                 crops[CCS_PAD_SINK]->width, sel->r.width,
2326                 crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2327
2328         for (i = 0; i < sensor->nbinning_subtypes; i++) {
2329                 int this = scaling_goodness(
2330                         subdev,
2331                         crops[CCS_PAD_SINK]->width
2332                         / sensor->binning_subtypes[i].horizontal,
2333                         sel->r.width,
2334                         crops[CCS_PAD_SINK]->height
2335                         / sensor->binning_subtypes[i].vertical,
2336                         sel->r.height, sel->flags);
2337
2338                 if (this > best) {
2339                         binh = sensor->binning_subtypes[i].horizontal;
2340                         binv = sensor->binning_subtypes[i].vertical;
2341                         best = this;
2342                 }
2343         }
2344         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2345                 sensor->binning_vertical = binv;
2346                 sensor->binning_horizontal = binh;
2347         }
2348
2349         sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2350         sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2351 }
2352
2353 /*
2354  * Calculate best scaling ratio and mode for given output resolution.
2355  *
2356  * Try all of these: horizontal ratio, vertical ratio and smallest
2357  * size possible (horizontally).
2358  *
2359  * Also try whether horizontal scaler or full scaler gives a better
2360  * result.
2361  */
2362 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2363                                    struct v4l2_subdev_state *sd_state,
2364                                    struct v4l2_subdev_selection *sel,
2365                                    struct v4l2_rect **crops,
2366                                    struct v4l2_rect *comp)
2367 {
2368         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2369         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2370         u32 min, max, a, b, max_m;
2371         u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2372         int mode = CCS_SCALING_MODE_HORIZONTAL;
2373         u32 try[4];
2374         u32 ntry = 0;
2375         unsigned int i;
2376         int best = INT_MIN;
2377
2378         sel->r.width = min_t(unsigned int, sel->r.width,
2379                              crops[CCS_PAD_SINK]->width);
2380         sel->r.height = min_t(unsigned int, sel->r.height,
2381                               crops[CCS_PAD_SINK]->height);
2382
2383         a = crops[CCS_PAD_SINK]->width
2384                 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2385         b = crops[CCS_PAD_SINK]->height
2386                 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2387         max_m = crops[CCS_PAD_SINK]->width
2388                 * CCS_LIM(sensor, SCALER_N_MIN)
2389                 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2390
2391         a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2392                   CCS_LIM(sensor, SCALER_M_MAX));
2393         b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2394                   CCS_LIM(sensor, SCALER_M_MAX));
2395         max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2396                       CCS_LIM(sensor, SCALER_M_MAX));
2397
2398         dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2399
2400         min = min(max_m, min(a, b));
2401         max = min(max_m, max(a, b));
2402
2403         try[ntry] = min;
2404         ntry++;
2405         if (min != max) {
2406                 try[ntry] = max;
2407                 ntry++;
2408         }
2409         if (max != max_m) {
2410                 try[ntry] = min + 1;
2411                 ntry++;
2412                 if (min != max) {
2413                         try[ntry] = max + 1;
2414                         ntry++;
2415                 }
2416         }
2417
2418         for (i = 0; i < ntry; i++) {
2419                 int this = scaling_goodness(
2420                         subdev,
2421                         crops[CCS_PAD_SINK]->width
2422                         / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2423                         sel->r.width,
2424                         crops[CCS_PAD_SINK]->height,
2425                         sel->r.height,
2426                         sel->flags);
2427
2428                 dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2429
2430                 if (this > best) {
2431                         scale_m = try[i];
2432                         mode = CCS_SCALING_MODE_HORIZONTAL;
2433                         best = this;
2434                 }
2435
2436                 if (CCS_LIM(sensor, SCALING_CAPABILITY)
2437                     == CCS_SCALING_CAPABILITY_HORIZONTAL)
2438                         continue;
2439
2440                 this = scaling_goodness(
2441                         subdev, crops[CCS_PAD_SINK]->width
2442                         / try[i]
2443                         * CCS_LIM(sensor, SCALER_N_MIN),
2444                         sel->r.width,
2445                         crops[CCS_PAD_SINK]->height
2446                         / try[i]
2447                         * CCS_LIM(sensor, SCALER_N_MIN),
2448                         sel->r.height,
2449                         sel->flags);
2450
2451                 if (this > best) {
2452                         scale_m = try[i];
2453                         mode = SMIAPP_SCALING_MODE_BOTH;
2454                         best = this;
2455                 }
2456         }
2457
2458         sel->r.width =
2459                 (crops[CCS_PAD_SINK]->width
2460                  / scale_m
2461                  * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2462         if (mode == SMIAPP_SCALING_MODE_BOTH)
2463                 sel->r.height =
2464                         (crops[CCS_PAD_SINK]->height
2465                          / scale_m
2466                          * CCS_LIM(sensor, SCALER_N_MIN))
2467                         & ~1;
2468         else
2469                 sel->r.height = crops[CCS_PAD_SINK]->height;
2470
2471         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2472                 sensor->scale_m = scale_m;
2473                 sensor->scaling_mode = mode;
2474         }
2475 }
2476 /* We're only called on source pads. This function sets scaling. */
2477 static int ccs_set_compose(struct v4l2_subdev *subdev,
2478                            struct v4l2_subdev_state *sd_state,
2479                            struct v4l2_subdev_selection *sel)
2480 {
2481         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2482         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2483         struct v4l2_rect *comp, *crops[CCS_PADS];
2484
2485         ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2486
2487         sel->r.top = 0;
2488         sel->r.left = 0;
2489
2490         if (ssd == sensor->binner)
2491                 ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2492         else
2493                 ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2494
2495         *comp = sel->r;
2496         ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2497
2498         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2499                 return ccs_pll_blanking_update(sensor);
2500
2501         return 0;
2502 }
2503
2504 static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2505                                struct v4l2_subdev_selection *sel)
2506 {
2507         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2508         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2509
2510         /* We only implement crop in three places. */
2511         switch (sel->target) {
2512         case V4L2_SEL_TGT_CROP:
2513         case V4L2_SEL_TGT_CROP_BOUNDS:
2514                 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2515                         return 0;
2516                 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2517                         return 0;
2518                 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2519                     CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2520                     == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2521                         return 0;
2522                 return -EINVAL;
2523         case V4L2_SEL_TGT_NATIVE_SIZE:
2524                 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2525                         return 0;
2526                 return -EINVAL;
2527         case V4L2_SEL_TGT_COMPOSE:
2528         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2529                 if (sel->pad == ssd->source_pad)
2530                         return -EINVAL;
2531                 if (ssd == sensor->binner)
2532                         return 0;
2533                 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2534                     != CCS_SCALING_CAPABILITY_NONE)
2535                         return 0;
2536                 fallthrough;
2537         default:
2538                 return -EINVAL;
2539         }
2540 }
2541
2542 static int ccs_set_crop(struct v4l2_subdev *subdev,
2543                         struct v4l2_subdev_state *sd_state,
2544                         struct v4l2_subdev_selection *sel)
2545 {
2546         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2547         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2548         struct v4l2_rect *src_size, *crops[CCS_PADS];
2549         struct v4l2_rect _r;
2550
2551         ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
2552
2553         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2554                 if (sel->pad == ssd->sink_pad)
2555                         src_size = &ssd->sink_fmt;
2556                 else
2557                         src_size = &ssd->compose;
2558         } else {
2559                 if (sel->pad == ssd->sink_pad) {
2560                         _r.left = 0;
2561                         _r.top = 0;
2562                         _r.width = v4l2_subdev_get_try_format(subdev,
2563                                                               sd_state,
2564                                                               sel->pad)
2565                                 ->width;
2566                         _r.height = v4l2_subdev_get_try_format(subdev,
2567                                                                sd_state,
2568                                                                sel->pad)
2569                                 ->height;
2570                         src_size = &_r;
2571                 } else {
2572                         src_size = v4l2_subdev_get_try_compose(
2573                                 subdev, sd_state, ssd->sink_pad);
2574                 }
2575         }
2576
2577         if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2578                 sel->r.left = 0;
2579                 sel->r.top = 0;
2580         }
2581
2582         sel->r.width = min(sel->r.width, src_size->width);
2583         sel->r.height = min(sel->r.height, src_size->height);
2584
2585         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2586         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2587
2588         *crops[sel->pad] = sel->r;
2589
2590         if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2591                 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2592
2593         return 0;
2594 }
2595
2596 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2597 {
2598         r->top = 0;
2599         r->left = 0;
2600         r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2601         r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2602 }
2603
2604 static int __ccs_get_selection(struct v4l2_subdev *subdev,
2605                                struct v4l2_subdev_state *sd_state,
2606                                struct v4l2_subdev_selection *sel)
2607 {
2608         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2609         struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2610         struct v4l2_rect *comp, *crops[CCS_PADS];
2611         struct v4l2_rect sink_fmt;
2612         int ret;
2613
2614         ret = __ccs_sel_supported(subdev, sel);
2615         if (ret)
2616                 return ret;
2617
2618         ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2619
2620         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2621                 sink_fmt = ssd->sink_fmt;
2622         } else {
2623                 struct v4l2_mbus_framefmt *fmt =
2624                         v4l2_subdev_get_try_format(subdev, sd_state,
2625                                                    ssd->sink_pad);
2626
2627                 sink_fmt.left = 0;
2628                 sink_fmt.top = 0;
2629                 sink_fmt.width = fmt->width;
2630                 sink_fmt.height = fmt->height;
2631         }
2632
2633         switch (sel->target) {
2634         case V4L2_SEL_TGT_CROP_BOUNDS:
2635         case V4L2_SEL_TGT_NATIVE_SIZE:
2636                 if (ssd == sensor->pixel_array)
2637                         ccs_get_native_size(ssd, &sel->r);
2638                 else if (sel->pad == ssd->sink_pad)
2639                         sel->r = sink_fmt;
2640                 else
2641                         sel->r = *comp;
2642                 break;
2643         case V4L2_SEL_TGT_CROP:
2644         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2645                 sel->r = *crops[sel->pad];
2646                 break;
2647         case V4L2_SEL_TGT_COMPOSE:
2648                 sel->r = *comp;
2649                 break;
2650         }
2651
2652         return 0;
2653 }
2654
2655 static int ccs_get_selection(struct v4l2_subdev *subdev,
2656                              struct v4l2_subdev_state *sd_state,
2657                              struct v4l2_subdev_selection *sel)
2658 {
2659         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2660         int rval;
2661
2662         mutex_lock(&sensor->mutex);
2663         rval = __ccs_get_selection(subdev, sd_state, sel);
2664         mutex_unlock(&sensor->mutex);
2665
2666         return rval;
2667 }
2668
2669 static int ccs_set_selection(struct v4l2_subdev *subdev,
2670                              struct v4l2_subdev_state *sd_state,
2671                              struct v4l2_subdev_selection *sel)
2672 {
2673         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2674         int ret;
2675
2676         ret = __ccs_sel_supported(subdev, sel);
2677         if (ret)
2678                 return ret;
2679
2680         mutex_lock(&sensor->mutex);
2681
2682         sel->r.left = max(0, sel->r.left & ~1);
2683         sel->r.top = max(0, sel->r.top & ~1);
2684         sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2685         sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2686
2687         sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2688                              sel->r.width);
2689         sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2690                               sel->r.height);
2691
2692         switch (sel->target) {
2693         case V4L2_SEL_TGT_CROP:
2694                 ret = ccs_set_crop(subdev, sd_state, sel);
2695                 break;
2696         case V4L2_SEL_TGT_COMPOSE:
2697                 ret = ccs_set_compose(subdev, sd_state, sel);
2698                 break;
2699         default:
2700                 ret = -EINVAL;
2701         }
2702
2703         mutex_unlock(&sensor->mutex);
2704         return ret;
2705 }
2706
2707 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2708 {
2709         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2710
2711         *frames = sensor->frame_skip;
2712         return 0;
2713 }
2714
2715 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2716 {
2717         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2718
2719         *lines = sensor->image_start;
2720
2721         return 0;
2722 }
2723
2724 /* -----------------------------------------------------------------------------
2725  * sysfs attributes
2726  */
2727
2728 static ssize_t
2729 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2730 {
2731         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2732         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2733         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2734         int rval;
2735
2736         if (!sensor->dev_init_done)
2737                 return -EBUSY;
2738
2739         rval = ccs_pm_get_init(sensor);
2740         if (rval < 0)
2741                 return -ENODEV;
2742
2743         rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2744         if (rval < 0) {
2745                 pm_runtime_put(&client->dev);
2746                 dev_err(&client->dev, "nvm read failed\n");
2747                 return -ENODEV;
2748         }
2749
2750         pm_runtime_mark_last_busy(&client->dev);
2751         pm_runtime_put_autosuspend(&client->dev);
2752
2753         /*
2754          * NVM is still way below a PAGE_SIZE, so we can safely
2755          * assume this for now.
2756          */
2757         return rval;
2758 }
2759 static DEVICE_ATTR_RO(nvm);
2760
2761 static ssize_t
2762 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2763 {
2764         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2765         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2766         struct ccs_module_info *minfo = &sensor->minfo;
2767
2768         if (minfo->mipi_manufacturer_id)
2769                 return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2770                                     minfo->mipi_manufacturer_id, minfo->model_id,
2771                                     minfo->revision_number) + 1;
2772         else
2773                 return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2774                                     minfo->smia_manufacturer_id, minfo->model_id,
2775                                     minfo->revision_number) + 1;
2776 }
2777 static DEVICE_ATTR_RO(ident);
2778
2779 /* -----------------------------------------------------------------------------
2780  * V4L2 subdev core operations
2781  */
2782
2783 static int ccs_identify_module(struct ccs_sensor *sensor)
2784 {
2785         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2786         struct ccs_module_info *minfo = &sensor->minfo;
2787         unsigned int i;
2788         u32 rev;
2789         int rval = 0;
2790
2791         /* Module info */
2792         rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2793                         &minfo->mipi_manufacturer_id);
2794         if (!rval && !minfo->mipi_manufacturer_id)
2795                 rval = ccs_read_addr_8only(sensor,
2796                                            SMIAPP_REG_U8_MANUFACTURER_ID,
2797                                            &minfo->smia_manufacturer_id);
2798         if (!rval)
2799                 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2800                                            &minfo->model_id);
2801         if (!rval)
2802                 rval = ccs_read_addr_8only(sensor,
2803                                            CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2804                                            &rev);
2805         if (!rval) {
2806                 rval = ccs_read_addr_8only(sensor,
2807                                            CCS_R_MODULE_REVISION_NUMBER_MINOR,
2808                                            &minfo->revision_number);
2809                 minfo->revision_number |= rev << 8;
2810         }
2811         if (!rval)
2812                 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2813                                            &minfo->module_year);
2814         if (!rval)
2815                 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2816                                            &minfo->module_month);
2817         if (!rval)
2818                 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2819                                            &minfo->module_day);
2820
2821         /* Sensor info */
2822         if (!rval)
2823                 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2824                                 &minfo->sensor_mipi_manufacturer_id);
2825         if (!rval && !minfo->sensor_mipi_manufacturer_id)
2826                 rval = ccs_read_addr_8only(sensor,
2827                                            CCS_R_SENSOR_MANUFACTURER_ID,
2828                                            &minfo->sensor_smia_manufacturer_id);
2829         if (!rval)
2830                 rval = ccs_read_addr_8only(sensor,
2831                                            CCS_R_SENSOR_MODEL_ID,
2832                                            &minfo->sensor_model_id);
2833         if (!rval)
2834                 rval = ccs_read_addr_8only(sensor,
2835                                            CCS_R_SENSOR_REVISION_NUMBER,
2836                                            &minfo->sensor_revision_number);
2837         if (!rval && !minfo->sensor_revision_number)
2838                 rval = ccs_read_addr_8only(sensor,
2839                                            CCS_R_SENSOR_REVISION_NUMBER_16,
2840                                            &minfo->sensor_revision_number);
2841         if (!rval)
2842                 rval = ccs_read_addr_8only(sensor,
2843                                            CCS_R_SENSOR_FIRMWARE_VERSION,
2844                                            &minfo->sensor_firmware_version);
2845
2846         /* SMIA */
2847         if (!rval)
2848                 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2849         if (!rval && !minfo->ccs_version)
2850                 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2851                                            &minfo->smia_version);
2852         if (!rval && !minfo->ccs_version)
2853                 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2854                                            &minfo->smiapp_version);
2855
2856         if (rval) {
2857                 dev_err(&client->dev, "sensor detection failed\n");
2858                 return -ENODEV;
2859         }
2860
2861         if (minfo->mipi_manufacturer_id)
2862                 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2863                         minfo->mipi_manufacturer_id, minfo->model_id);
2864         else
2865                 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2866                         minfo->smia_manufacturer_id, minfo->model_id);
2867
2868         dev_dbg(&client->dev,
2869                 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2870                 minfo->revision_number, minfo->module_year, minfo->module_month,
2871                 minfo->module_day);
2872
2873         if (minfo->sensor_mipi_manufacturer_id)
2874                 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2875                         minfo->sensor_mipi_manufacturer_id,
2876                         minfo->sensor_model_id);
2877         else
2878                 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2879                         minfo->sensor_smia_manufacturer_id,
2880                         minfo->sensor_model_id);
2881
2882         dev_dbg(&client->dev,
2883                 "sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2884                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2885
2886         if (minfo->ccs_version) {
2887                 dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2888                         (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2889                         >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2890                         (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2891                 minfo->name = CCS_NAME;
2892         } else {
2893                 dev_dbg(&client->dev,
2894                         "smia version %2.2d smiapp version %2.2d\n",
2895                         minfo->smia_version, minfo->smiapp_version);
2896                 minfo->name = SMIAPP_NAME;
2897                 /*
2898                  * Some modules have bad data in the lvalues below. Hope the
2899                  * rvalues have better stuff. The lvalues are module
2900                  * parameters whereas the rvalues are sensor parameters.
2901                  */
2902                 if (minfo->sensor_smia_manufacturer_id &&
2903                     !minfo->smia_manufacturer_id && !minfo->model_id) {
2904                         minfo->smia_manufacturer_id =
2905                                 minfo->sensor_smia_manufacturer_id;
2906                         minfo->model_id = minfo->sensor_model_id;
2907                         minfo->revision_number = minfo->sensor_revision_number;
2908                 }
2909         }
2910
2911         for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2912                 if (ccs_module_idents[i].mipi_manufacturer_id &&
2913                     ccs_module_idents[i].mipi_manufacturer_id
2914                     != minfo->mipi_manufacturer_id)
2915                         continue;
2916                 if (ccs_module_idents[i].smia_manufacturer_id &&
2917                     ccs_module_idents[i].smia_manufacturer_id
2918                     != minfo->smia_manufacturer_id)
2919                         continue;
2920                 if (ccs_module_idents[i].model_id != minfo->model_id)
2921                         continue;
2922                 if (ccs_module_idents[i].flags
2923                     & CCS_MODULE_IDENT_FLAG_REV_LE) {
2924                         if (ccs_module_idents[i].revision_number_major
2925                             < (minfo->revision_number >> 8))
2926                                 continue;
2927                 } else {
2928                         if (ccs_module_idents[i].revision_number_major
2929                             != (minfo->revision_number >> 8))
2930                                 continue;
2931                 }
2932
2933                 minfo->name = ccs_module_idents[i].name;
2934                 minfo->quirk = ccs_module_idents[i].quirk;
2935                 break;
2936         }
2937
2938         if (i >= ARRAY_SIZE(ccs_module_idents))
2939                 dev_warn(&client->dev,
2940                          "no quirks for this module; let's hope it's fully compliant\n");
2941
2942         dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2943
2944         return 0;
2945 }
2946
2947 static const struct v4l2_subdev_ops ccs_ops;
2948 static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2949 static const struct media_entity_operations ccs_entity_ops;
2950
2951 static int ccs_register_subdev(struct ccs_sensor *sensor,
2952                                struct ccs_subdev *ssd,
2953                                struct ccs_subdev *sink_ssd,
2954                                u16 source_pad, u16 sink_pad, u32 link_flags)
2955 {
2956         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2957         int rval;
2958
2959         if (!sink_ssd)
2960                 return 0;
2961
2962         rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2963         if (rval) {
2964                 dev_err(&client->dev, "media_entity_pads_init failed\n");
2965                 return rval;
2966         }
2967
2968         rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2969         if (rval) {
2970                 dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2971                 return rval;
2972         }
2973
2974         rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2975                                      &sink_ssd->sd.entity, sink_pad,
2976                                      link_flags);
2977         if (rval) {
2978                 dev_err(&client->dev, "media_create_pad_link failed\n");
2979                 v4l2_device_unregister_subdev(&ssd->sd);
2980                 return rval;
2981         }
2982
2983         return 0;
2984 }
2985
2986 static void ccs_unregistered(struct v4l2_subdev *subdev)
2987 {
2988         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2989         unsigned int i;
2990
2991         for (i = 1; i < sensor->ssds_used; i++)
2992                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2993 }
2994
2995 static int ccs_registered(struct v4l2_subdev *subdev)
2996 {
2997         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2998         int rval;
2999
3000         if (sensor->scaler) {
3001                 rval = ccs_register_subdev(sensor, sensor->binner,
3002                                            sensor->scaler,
3003                                            CCS_PAD_SRC, CCS_PAD_SINK,
3004                                            MEDIA_LNK_FL_ENABLED |
3005                                            MEDIA_LNK_FL_IMMUTABLE);
3006                 if (rval < 0)
3007                         return rval;
3008         }
3009
3010         rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
3011                                    CCS_PA_PAD_SRC, CCS_PAD_SINK,
3012                                    MEDIA_LNK_FL_ENABLED |
3013                                    MEDIA_LNK_FL_IMMUTABLE);
3014         if (rval)
3015                 goto out_err;
3016
3017         return 0;
3018
3019 out_err:
3020         ccs_unregistered(subdev);
3021
3022         return rval;
3023 }
3024
3025 static void ccs_cleanup(struct ccs_sensor *sensor)
3026 {
3027         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3028
3029         device_remove_file(&client->dev, &dev_attr_nvm);
3030         device_remove_file(&client->dev, &dev_attr_ident);
3031
3032         ccs_free_controls(sensor);
3033 }
3034
3035 static void ccs_create_subdev(struct ccs_sensor *sensor,
3036                               struct ccs_subdev *ssd, const char *name,
3037                               unsigned short num_pads, u32 function)
3038 {
3039         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3040
3041         if (!ssd)
3042                 return;
3043
3044         if (ssd != sensor->src)
3045                 v4l2_subdev_init(&ssd->sd, &ccs_ops);
3046
3047         ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3048         ssd->sd.entity.function = function;
3049         ssd->sensor = sensor;
3050
3051         ssd->npads = num_pads;
3052         ssd->source_pad = num_pads - 1;
3053
3054         v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
3055
3056         ccs_get_native_size(ssd, &ssd->sink_fmt);
3057
3058         ssd->compose.width = ssd->sink_fmt.width;
3059         ssd->compose.height = ssd->sink_fmt.height;
3060         ssd->crop[ssd->source_pad] = ssd->compose;
3061         ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3062         if (ssd != sensor->pixel_array) {
3063                 ssd->crop[ssd->sink_pad] = ssd->compose;
3064                 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
3065         }
3066
3067         ssd->sd.entity.ops = &ccs_entity_ops;
3068
3069         if (ssd == sensor->src)
3070                 return;
3071
3072         ssd->sd.internal_ops = &ccs_internal_ops;
3073         ssd->sd.owner = THIS_MODULE;
3074         ssd->sd.dev = &client->dev;
3075         v4l2_set_subdevdata(&ssd->sd, client);
3076 }
3077
3078 static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
3079 {
3080         struct ccs_subdev *ssd = to_ccs_subdev(sd);
3081         struct ccs_sensor *sensor = ssd->sensor;
3082         unsigned int i;
3083
3084         mutex_lock(&sensor->mutex);
3085
3086         for (i = 0; i < ssd->npads; i++) {
3087                 struct v4l2_mbus_framefmt *try_fmt =
3088                         v4l2_subdev_get_try_format(sd, fh->state, i);
3089                 struct v4l2_rect *try_crop =
3090                         v4l2_subdev_get_try_crop(sd, fh->state, i);
3091                 struct v4l2_rect *try_comp;
3092
3093                 ccs_get_native_size(ssd, try_crop);
3094
3095                 try_fmt->width = try_crop->width;
3096                 try_fmt->height = try_crop->height;
3097                 try_fmt->code = sensor->internal_csi_format->code;
3098                 try_fmt->field = V4L2_FIELD_NONE;
3099
3100                 if (ssd != sensor->pixel_array)
3101                         continue;
3102
3103                 try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
3104                 *try_comp = *try_crop;
3105         }
3106
3107         mutex_unlock(&sensor->mutex);
3108
3109         return 0;
3110 }
3111
3112 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3113         .s_stream = ccs_set_stream,
3114         .pre_streamon = ccs_pre_streamon,
3115         .post_streamoff = ccs_post_streamoff,
3116 };
3117
3118 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3119         .enum_mbus_code = ccs_enum_mbus_code,
3120         .get_fmt = ccs_get_format,
3121         .set_fmt = ccs_set_format,
3122         .get_selection = ccs_get_selection,
3123         .set_selection = ccs_set_selection,
3124 };
3125
3126 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3127         .g_skip_frames = ccs_get_skip_frames,
3128         .g_skip_top_lines = ccs_get_skip_top_lines,
3129 };
3130
3131 static const struct v4l2_subdev_ops ccs_ops = {
3132         .video = &ccs_video_ops,
3133         .pad = &ccs_pad_ops,
3134         .sensor = &ccs_sensor_ops,
3135 };
3136
3137 static const struct media_entity_operations ccs_entity_ops = {
3138         .link_validate = v4l2_subdev_link_validate,
3139 };
3140
3141 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3142         .registered = ccs_registered,
3143         .unregistered = ccs_unregistered,
3144         .open = ccs_open,
3145 };
3146
3147 static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
3148         .open = ccs_open,
3149 };
3150
3151 /* -----------------------------------------------------------------------------
3152  * I2C Driver
3153  */
3154
3155 static int __maybe_unused ccs_suspend(struct device *dev)
3156 {
3157         struct i2c_client *client = to_i2c_client(dev);
3158         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3159         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3160         bool streaming = sensor->streaming;
3161         int rval;
3162
3163         rval = pm_runtime_resume_and_get(dev);
3164         if (rval < 0)
3165                 return rval;
3166
3167         if (sensor->streaming)
3168                 ccs_stop_streaming(sensor);
3169
3170         /* save state for resume */
3171         sensor->streaming = streaming;
3172
3173         return 0;
3174 }
3175
3176 static int __maybe_unused ccs_resume(struct device *dev)
3177 {
3178         struct i2c_client *client = to_i2c_client(dev);
3179         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3180         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3181         int rval = 0;
3182
3183         pm_runtime_put(dev);
3184
3185         if (sensor->streaming)
3186                 rval = ccs_start_streaming(sensor);
3187
3188         return rval;
3189 }
3190
3191 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3192 {
3193         struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3194         struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3195         struct fwnode_handle *ep;
3196         struct fwnode_handle *fwnode = dev_fwnode(dev);
3197         unsigned int i;
3198         int rval;
3199
3200         ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3201                                              FWNODE_GRAPH_ENDPOINT_NEXT);
3202         if (!ep)
3203                 return -ENODEV;
3204
3205         /*
3206          * Note that we do need to rely on detecting the bus type between CSI-2
3207          * D-PHY and CCP2 as the old bindings did not require it.
3208          */
3209         rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3210         if (rval)
3211                 goto out_err;
3212
3213         switch (bus_cfg.bus_type) {
3214         case V4L2_MBUS_CSI2_DPHY:
3215                 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3216                 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3217                 break;
3218         case V4L2_MBUS_CSI2_CPHY:
3219                 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3220                 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3221                 break;
3222         case V4L2_MBUS_CSI1:
3223         case V4L2_MBUS_CCP2:
3224                 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3225                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3226                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3227                 hwcfg->lanes = 1;
3228                 break;
3229         default:
3230                 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3231                 rval = -EINVAL;
3232                 goto out_err;
3233         }
3234
3235         rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3236                                         &hwcfg->ext_clk);
3237         if (rval)
3238                 dev_info(dev, "can't get clock-frequency\n");
3239
3240         dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3241                 hwcfg->csi_signalling_mode);
3242
3243         if (!bus_cfg.nr_of_link_frequencies) {
3244                 dev_warn(dev, "no link frequencies defined\n");
3245                 rval = -EINVAL;
3246                 goto out_err;
3247         }
3248
3249         hwcfg->op_sys_clock = devm_kcalloc(
3250                 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3251                 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3252         if (!hwcfg->op_sys_clock) {
3253                 rval = -ENOMEM;
3254                 goto out_err;
3255         }
3256
3257         for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3258                 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3259                 dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3260         }
3261
3262         v4l2_fwnode_endpoint_free(&bus_cfg);
3263         fwnode_handle_put(ep);
3264
3265         return 0;
3266
3267 out_err:
3268         v4l2_fwnode_endpoint_free(&bus_cfg);
3269         fwnode_handle_put(ep);
3270
3271         return rval;
3272 }
3273
3274 static int ccs_firmware_name(struct i2c_client *client,
3275                              struct ccs_sensor *sensor, char *filename,
3276                              size_t filename_size, bool is_module)
3277 {
3278         const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3279         bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3280         bool is_smiapp = sensor->minfo.smiapp_version;
3281         u16 manufacturer_id;
3282         u16 model_id;
3283         u16 revision_number;
3284
3285         /*
3286          * Old SMIA is module-agnostic. Its sensor identification is based on
3287          * what now are those of the module.
3288          */
3289         if (is_module || (!is_ccs && !is_smiapp)) {
3290                 manufacturer_id = is_ccs ?
3291                         sensor->minfo.mipi_manufacturer_id :
3292                         sensor->minfo.smia_manufacturer_id;
3293                 model_id = sensor->minfo.model_id;
3294                 revision_number = sensor->minfo.revision_number;
3295         } else {
3296                 manufacturer_id = is_ccs ?
3297                         sensor->minfo.sensor_mipi_manufacturer_id :
3298                         sensor->minfo.sensor_smia_manufacturer_id;
3299                 model_id = sensor->minfo.sensor_model_id;
3300                 revision_number = sensor->minfo.sensor_revision_number;
3301         }
3302
3303         return snprintf(filename, filename_size,
3304                         "ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3305                         is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3306                         is_module || (!is_ccs && !is_smiapp) ?
3307                                 "module" : "sensor",
3308                         is_ccs ? 4 : 2, manufacturer_id, model_id,
3309                         !is_ccs && !is_module ? 2 : 4, revision_number);
3310 }
3311
3312 static int ccs_probe(struct i2c_client *client)
3313 {
3314         const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3315         struct ccs_sensor *sensor;
3316         const struct firmware *fw;
3317         char filename[40];
3318         unsigned int i;
3319         int rval;
3320
3321         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3322         if (sensor == NULL)
3323                 return -ENOMEM;
3324
3325         rval = ccs_get_hwconfig(sensor, &client->dev);
3326         if (rval)
3327                 return rval;
3328
3329         sensor->src = &sensor->ssds[sensor->ssds_used];
3330
3331         v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3332         sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3333
3334         sensor->regulators = devm_kcalloc(&client->dev,
3335                                           ARRAY_SIZE(ccs_regulators),
3336                                           sizeof(*sensor->regulators),
3337                                           GFP_KERNEL);
3338         if (!sensor->regulators)
3339                 return -ENOMEM;
3340
3341         for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3342                 sensor->regulators[i].supply = ccs_regulators[i];
3343
3344         rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3345                                        sensor->regulators);
3346         if (rval) {
3347                 dev_err(&client->dev, "could not get regulators\n");
3348                 return rval;
3349         }
3350
3351         sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3352         if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3353                 dev_info(&client->dev, "no clock defined, continuing...\n");
3354                 sensor->ext_clk = NULL;
3355         } else if (IS_ERR(sensor->ext_clk)) {
3356                 dev_err(&client->dev, "could not get clock (%ld)\n",
3357                         PTR_ERR(sensor->ext_clk));
3358                 return -EPROBE_DEFER;
3359         }
3360
3361         if (sensor->ext_clk) {
3362                 if (sensor->hwcfg.ext_clk) {
3363                         unsigned long rate;
3364
3365                         rval = clk_set_rate(sensor->ext_clk,
3366                                             sensor->hwcfg.ext_clk);
3367                         if (rval < 0) {
3368                                 dev_err(&client->dev,
3369                                         "unable to set clock freq to %u\n",
3370                                         sensor->hwcfg.ext_clk);
3371                                 return rval;
3372                         }
3373
3374                         rate = clk_get_rate(sensor->ext_clk);
3375                         if (rate != sensor->hwcfg.ext_clk) {
3376                                 dev_err(&client->dev,
3377                                         "can't set clock freq, asked for %u but got %lu\n",
3378                                         sensor->hwcfg.ext_clk, rate);
3379                                 return -EINVAL;
3380                         }
3381                 } else {
3382                         sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3383                         dev_dbg(&client->dev, "obtained clock freq %u\n",
3384                                 sensor->hwcfg.ext_clk);
3385                 }
3386         } else if (sensor->hwcfg.ext_clk) {
3387                 dev_dbg(&client->dev, "assuming clock freq %u\n",
3388                         sensor->hwcfg.ext_clk);
3389         } else {
3390                 dev_err(&client->dev, "unable to obtain clock freq\n");
3391                 return -EINVAL;
3392         }
3393
3394         if (!sensor->hwcfg.ext_clk) {
3395                 dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3396                 return -EINVAL;
3397         }
3398
3399         sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3400                                                 GPIOD_OUT_HIGH);
3401         if (IS_ERR(sensor->reset))
3402                 return PTR_ERR(sensor->reset);
3403         /* Support old users that may have used "xshutdown" property. */
3404         if (!sensor->reset)
3405                 sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3406                                                             "xshutdown",
3407                                                             GPIOD_OUT_LOW);
3408         if (IS_ERR(sensor->xshutdown))
3409                 return PTR_ERR(sensor->xshutdown);
3410
3411         rval = ccs_power_on(&client->dev);
3412         if (rval < 0)
3413                 return rval;
3414
3415         mutex_init(&sensor->mutex);
3416
3417         rval = ccs_identify_module(sensor);
3418         if (rval) {
3419                 rval = -ENODEV;
3420                 goto out_power_off;
3421         }
3422
3423         rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3424                                  false);
3425         if (rval >= sizeof(filename)) {
3426                 rval = -ENOMEM;
3427                 goto out_power_off;
3428         }
3429
3430         rval = request_firmware(&fw, filename, &client->dev);
3431         if (!rval) {
3432                 ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3433                                true);
3434                 release_firmware(fw);
3435         }
3436
3437         if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3438             sensor->minfo.smiapp_version) {
3439                 rval = ccs_firmware_name(client, sensor, filename,
3440                                          sizeof(filename), true);
3441                 if (rval >= sizeof(filename)) {
3442                         rval = -ENOMEM;
3443                         goto out_release_sdata;
3444                 }
3445
3446                 rval = request_firmware(&fw, filename, &client->dev);
3447                 if (!rval) {
3448                         ccs_data_parse(&sensor->mdata, fw->data, fw->size,
3449                                        &client->dev, true);
3450                         release_firmware(fw);
3451                 }
3452         }
3453
3454         rval = ccs_read_all_limits(sensor);
3455         if (rval)
3456                 goto out_release_mdata;
3457
3458         rval = ccs_read_frame_fmt(sensor);
3459         if (rval) {
3460                 rval = -ENODEV;
3461                 goto out_free_ccs_limits;
3462         }
3463
3464         rval = ccs_update_phy_ctrl(sensor);
3465         if (rval < 0)
3466                 goto out_free_ccs_limits;
3467
3468         rval = ccs_call_quirk(sensor, limits);
3469         if (rval) {
3470                 dev_err(&client->dev, "limits quirks failed\n");
3471                 goto out_free_ccs_limits;
3472         }
3473
3474         if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3475                 sensor->nbinning_subtypes =
3476                         min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3477                               CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3478
3479                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
3480                         sensor->binning_subtypes[i].horizontal =
3481                                 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3482                                 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3483                         sensor->binning_subtypes[i].vertical =
3484                                 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3485                                 CCS_BINNING_SUB_TYPE_ROW_MASK;
3486
3487                         dev_dbg(&client->dev, "binning %xx%x\n",
3488                                 sensor->binning_subtypes[i].horizontal,
3489                                 sensor->binning_subtypes[i].vertical);
3490                 }
3491         }
3492         sensor->binning_horizontal = 1;
3493         sensor->binning_vertical = 1;
3494
3495         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3496                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3497                 rval = -ENOENT;
3498                 goto out_free_ccs_limits;
3499         }
3500
3501         if (sensor->minfo.smiapp_version &&
3502             CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3503             CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3504                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3505                         dev_err(&client->dev, "sysfs nvm entry failed\n");
3506                         rval = -EBUSY;
3507                         goto out_cleanup;
3508                 }
3509         }
3510
3511         if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3512             !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3513             !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3514             !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3515                 /* No OP clock branch */
3516                 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3517         } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3518                    != CCS_SCALING_CAPABILITY_NONE ||
3519                    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3520                    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3521                 /* We have a scaler or digital crop. */
3522                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3523                 sensor->ssds_used++;
3524         }
3525         sensor->binner = &sensor->ssds[sensor->ssds_used];
3526         sensor->ssds_used++;
3527         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3528         sensor->ssds_used++;
3529
3530         sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3531
3532         /* prepare PLL configuration input values */
3533         sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3534         sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3535         if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3536             CCS_CLOCK_CALCULATION_LANE_SPEED) {
3537                 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3538                 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3539                     CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3540                         sensor->pll.vt_lanes =
3541                                 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3542                         sensor->pll.op_lanes =
3543                                 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3544                         sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3545                 } else {
3546                         sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3547                         sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3548                 }
3549         }
3550         if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3551             CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3552                 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3553         if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3554             CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3555                 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3556         if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3557             CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3558                 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3559         if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3560             CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3561                 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3562                                      CCS_PLL_FLAG_FIFO_OVERRATING;
3563         if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3564             CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3565                 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3566                     CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3567                         u32 v;
3568
3569                         /* Use sensor default in PLL mode selection */
3570                         rval = ccs_read(sensor, PLL_MODE, &v);
3571                         if (rval)
3572                                 goto out_cleanup;
3573
3574                         if (v == CCS_PLL_MODE_DUAL)
3575                                 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3576                 } else {
3577                         sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3578                 }
3579                 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3580                     CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3581                         sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3582                 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3583                     CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3584                         sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3585         }
3586         sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3587         sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3588         sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3589
3590         ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3591                           MEDIA_ENT_F_PROC_VIDEO_SCALER);
3592         ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3593                           MEDIA_ENT_F_PROC_VIDEO_SCALER);
3594         ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3595                           MEDIA_ENT_F_CAM_SENSOR);
3596
3597         rval = ccs_init_controls(sensor);
3598         if (rval < 0)
3599                 goto out_cleanup;
3600
3601         rval = ccs_call_quirk(sensor, init);
3602         if (rval)
3603                 goto out_cleanup;
3604
3605         rval = ccs_get_mbus_formats(sensor);
3606         if (rval) {
3607                 rval = -ENODEV;
3608                 goto out_cleanup;
3609         }
3610
3611         rval = ccs_init_late_controls(sensor);
3612         if (rval) {
3613                 rval = -ENODEV;
3614                 goto out_cleanup;
3615         }
3616
3617         mutex_lock(&sensor->mutex);
3618         rval = ccs_pll_blanking_update(sensor);
3619         mutex_unlock(&sensor->mutex);
3620         if (rval) {
3621                 dev_err(&client->dev, "update mode failed\n");
3622                 goto out_cleanup;
3623         }
3624
3625         sensor->streaming = false;
3626         sensor->dev_init_done = true;
3627
3628         rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3629                                  sensor->src->pads);
3630         if (rval < 0)
3631                 goto out_media_entity_cleanup;
3632
3633         rval = ccs_write_msr_regs(sensor);
3634         if (rval)
3635                 goto out_media_entity_cleanup;
3636
3637         pm_runtime_set_active(&client->dev);
3638         pm_runtime_get_noresume(&client->dev);
3639         pm_runtime_enable(&client->dev);
3640
3641         rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3642         if (rval < 0)
3643                 goto out_disable_runtime_pm;
3644
3645         pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3646         pm_runtime_use_autosuspend(&client->dev);
3647         pm_runtime_put_autosuspend(&client->dev);
3648
3649         return 0;
3650
3651 out_disable_runtime_pm:
3652         pm_runtime_put_noidle(&client->dev);
3653         pm_runtime_disable(&client->dev);
3654
3655 out_media_entity_cleanup:
3656         media_entity_cleanup(&sensor->src->sd.entity);
3657
3658 out_cleanup:
3659         ccs_cleanup(sensor);
3660
3661 out_release_mdata:
3662         kvfree(sensor->mdata.backing);
3663
3664 out_release_sdata:
3665         kvfree(sensor->sdata.backing);
3666
3667 out_free_ccs_limits:
3668         kfree(sensor->ccs_limits);
3669
3670 out_power_off:
3671         ccs_power_off(&client->dev);
3672         mutex_destroy(&sensor->mutex);
3673
3674         return rval;
3675 }
3676
3677 static void ccs_remove(struct i2c_client *client)
3678 {
3679         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3680         struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3681         unsigned int i;
3682
3683         v4l2_async_unregister_subdev(subdev);
3684
3685         pm_runtime_disable(&client->dev);
3686         if (!pm_runtime_status_suspended(&client->dev))
3687                 ccs_power_off(&client->dev);
3688         pm_runtime_set_suspended(&client->dev);
3689
3690         for (i = 0; i < sensor->ssds_used; i++) {
3691                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3692                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3693         }
3694         ccs_cleanup(sensor);
3695         mutex_destroy(&sensor->mutex);
3696         kfree(sensor->ccs_limits);
3697         kvfree(sensor->sdata.backing);
3698         kvfree(sensor->mdata.backing);
3699 }
3700
3701 static const struct ccs_device smia_device = {
3702         .flags = CCS_DEVICE_FLAG_IS_SMIA,
3703 };
3704
3705 static const struct ccs_device ccs_device = {};
3706
3707 static const struct acpi_device_id ccs_acpi_table[] = {
3708         { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3709         { },
3710 };
3711 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3712
3713 static const struct of_device_id ccs_of_table[] = {
3714         { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3715         { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3716         { .compatible = "mipi-ccs", .data = &ccs_device },
3717         { .compatible = "nokia,smia", .data = &smia_device },
3718         { },
3719 };
3720 MODULE_DEVICE_TABLE(of, ccs_of_table);
3721
3722 static const struct dev_pm_ops ccs_pm_ops = {
3723         SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3724         SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3725 };
3726
3727 static struct i2c_driver ccs_i2c_driver = {
3728         .driver = {
3729                 .acpi_match_table = ccs_acpi_table,
3730                 .of_match_table = ccs_of_table,
3731                 .name = CCS_NAME,
3732                 .pm = &ccs_pm_ops,
3733         },
3734         .probe_new = ccs_probe,
3735         .remove = ccs_remove,
3736 };
3737
3738 static int ccs_module_init(void)
3739 {
3740         unsigned int i, l;
3741
3742         for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3743                 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3744                         ccs_limit_offsets[l + 1].lim =
3745                                 ALIGN(ccs_limit_offsets[l].lim +
3746                                       ccs_limits[i].size,
3747                                       ccs_reg_width(ccs_limits[i + 1].reg));
3748                         ccs_limit_offsets[l].info = i;
3749                         l++;
3750                 } else {
3751                         ccs_limit_offsets[l].lim += ccs_limits[i].size;
3752                 }
3753         }
3754
3755         if (WARN_ON(ccs_limits[i].size))
3756                 return -EINVAL;
3757
3758         if (WARN_ON(l != CCS_L_LAST))
3759                 return -EINVAL;
3760
3761         return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3762 }
3763
3764 static void ccs_module_cleanup(void)
3765 {
3766         i2c_del_driver(&ccs_i2c_driver);
3767 }
3768
3769 module_init(ccs_module_init);
3770 module_exit(ccs_module_cleanup);
3771
3772 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3773 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3774 MODULE_LICENSE("GPL v2");
3775 MODULE_ALIAS("smiapp");